
Ian Stewart on Minesweeper
It's not often you can win a million dollars by analysing a 
computer game, but by a curious conjunction of fate, there's a 
chance that you might. However, you'll only pick up the loot if all 
the experts are wrong and a problem that they think is 
extraordinarily hard turns out to be easy. So don't order the 
Corvette yet. 

The prize is one of seven now on offer from the newly founded 
Clay Mathematics Institute in Cambridge MA, set up by 
businessman Landon T. Clay to promote the growth and spread 
of mathematical knowledge, each bearing a million-buck price-
tag. The computer game is Minesweeper, which is included in 
Microsoft's Windows operating system, and involves locating 

hidden mines on a grid by making guesses about where they are located and using clues 
provided by the computer. And the problem is one of the most notorious open questions in 
mathematics, which rejoices in the name 'P=NP?'. 

The connection between the game and the prize problem was explained by Richard Kaye 
of the University of Birmingham, England ('Minesweeper is NP-complete', Mathematical 
Intelligencer volume 22 number 4, 2000, pages 9-15). And before anyone gets too excited, 
you won't win the prize by winning the game. To win the prize, you will have to find a really 
slick method to answer questions about Minesweeper when it's played on gigantic grids 
and all the evidence suggests that there isn't a slick method. In fact, if you can prove that 
there isn't one, you can win the prize that way too. 

Let's start with Minesweeper. The computer starts the game by showing you a blank grid 
of squares. Some squares conceal mines; the rest are safe. Your task is to work out where 
the mines are without detonating any of them. You do this by choosing a square. If there's 
a mine underneath it, the mine is detonated and the game ends — - with a loss for you, of 
course. If there is no mine, however, the computer writes a number in that square, telling 

you how many mines there are in the eight immediately 
adjacent squares (horizontally, vertically, and diagonally). 

If your first guess hits a mine, you're unlucky: you get no 
information except that you've lost. If it doesn't, though, 
then you get partial information about the location of 
nearby mines. You use this information to influence your 
next choice of square, and again either you detonate a 
mine and lose, or you gain information about the positions 
of nearby mines. If you wish, you can choose to mark a 
square as containing a mine: if you're wrong, you lose. 
Proceeding in this way, you can win the game by locating 
and marking all the mines. 

For instance, after a few moves you might reach the 
position shown in Fig.1. Here a flag shows a known mine 

(position already deduced), the numbers are the information you've gotten from the 
computer, and the letters mark squares whose status is as yet untested. With a little 
thought, you can deduce that the squares marked A must contain mines, because of the 

Fig.1 A Typical Minesweeper 
Position 



2's just below them. The squares marked B must also contain mines, because of the 4's 
and 5's nearby. In the same way, C must contain a mine; and it then follows that D and E 
do not. The status of F can then be deduced, after a few moves, by uncovering D and 
seeing what number appears. 

Now, the P=NP? problem. Recall that an algorithm is a procedure for solving some 
problem that can be run by a computer: every step is specified by some program. A central 
question in the mathematics of computation is: how efficiently can an algorithm solve a 
given problem? How does the running time — - the number of computations needed to get 
the answer — - depend on the initial data? For theoretical purposes the main distinction is 
between problems that are of type P — - polynomial time — - and those that are not. A 
problem is of type P if it can be solved using an algorithm whose running time grows no 
faster than some fixed power of the number of symbols required to specify the initial data. 
Otherwise the problem is non-P. Intuitively, problems in P can be solved efficiently, 
whereas non-P problems cannot be solved algorithmically in any practical manner 
because any algorithm will take a ridiculously long time to get an answer. Problems of type 
P are easy, non-P problems are hard. Of course it's not quite as simple as that, but it's a 
good rule of thumb. 

You can prove that a problem is of type P by exhibiting an algorithm that solves it in 
polynomial time. For example, sorting a list of numbers into numerical order is a type P 
problem, which is why commercial databases can sort data; and searching a string for 
some sequence of symbols is also a type P problem, which is why commercial 
wordprocessors can carry out search-and-replace operations. In contrast, the Travelling 
Salesman Problem — - find the shortest route whereby a salesman can visit every city on 
some itinerary — - is widely believed to be non-P, but this has never been proved. Finding 
the prime factors of a given integer is also widely believed to be non-P, too, but this has 
never been proved either. The security of certain cryptosystems, some of which are used 
to send personal data such as credit card numbers over the Internet, depends upon this 
belief being correct. 

Why is it so hard to prove that a problem is non-P? Because you can't do that by analysing 
any particular algorithm. You have to contemplate all possible algorithms and show that 
none of them can solve the problem in polynomial time. This is a mindboggling task. The 
best that has been done to date is to prove that a broad class of candidate non-P 
problems are all on the same footing — - if any one of them can be solved in polynomial 
time, then they all can. The problems involved here are said to have 'nondeterministic 
polynomial' running time: type NP. 

NP is not the same as non-P. A problem is NP if you can check whether a proposed 
solution actually is a solution in polynomial time. This is — - or at least, seems to be — - a 
much less stringent condition than being able to find that solution in polynomial time. My 
favourite example here is a jigsaw puzzle. Solving the puzzle can be very hard, but if 
someone claims they've solved it, it usually takes no more than a quick glance to check 
whether they're right. To get a quantitative estimate of the running time, just look at each 
piece in turn and make sure that it fits the limited number of neighbours that adjoin it. The 
number of calculations required to do this is roughly proportional to the number of pieces, 
so the check runs in polynomial time. But you can't solve the puzzle that way. Neither can 
you try every potential solution in turn and check each as you go along, because the 
number of potential solutions grows much faster than any fixed power of the number of 
pieces. 



It turns out that a lot of NP problems have 'equivalent' running times. Specifically, an NP 
problem is said to be NP-complete if the existence of a polynomial time solution for that 
problem implies that all NP problems have a polynomial time solution. Solve one in 
polynomial time, and you've solved them all in polynomial time. A vast range of problems 
are known to be NP-complete. The P=NP? problem asks whether types P and NP are 
(despite all appearances to the contrary) the same. The expected answer is 'no'. However, 
if any NP-complete problem turns out to be of type P — - to have a polynomial time 
solution — - than NP must equal P. We therefore expect all NP-complete problems to be 
non-P, but no one can yet prove this. 

One of the simplest known NP-complete problems is SAT, the logical satisfiability of a 
Boolean condition. Boolean circuits are built from logic gates with names like AND, OR 
and NOT. The inputs to these circuits are either T (true) or F (false). Each gate accepts a 
number of inputs, and outputs the logical value of that combination. For instance an AND 
gate takes inputs p, q and outputs p AND q, which is T provided p and q are both T, and F 
otherwise. A NOT gate turns input T into output F and input F into output T. The SAT 
problem asks, for a given Boolean circuit, whether there exist choices of inputs that 
produce the output T. If this sounds easy, don't forget that a circuit may contain huge 

numbers of gates and have huge numbers of inputs. 

The link to the computer game comes when we introduce the 
Minesweeper Consistency Problem. This is not to find the 
mines, but to determine whether a given state of what 
purports to be a Minesweeper game is or is not logically 
consistent. For example, if during the state of play you 
encountered Fig.2, you would know that the programmer had 
made a mistake: there is no allocation of mines consistent 
with the information shown. Kaye proves that Minesweeper is 
equivalent to SAT, in the following sense. The SAT problem 
for a given Boolean circuit can be 'encoded' as a 
Minesweeper Consistency Problem for some position in the 
game, using a code procedure that runs in polynomial time. 
Therefore, if you could solve the Minesweeper Consistency 

Problem in polynomial time, you would have solved the SAT problem for that circuit in 
polynomial time. In other words, Minesweeper is NP-complete. So, if some bright spark 
finds a polynomial-time solution to Minesweeper, or alternately proves that no such 
solution exists, then the P=NP? problem is solved (one way or the other). 

Kaye's proof involves a systematic procedure for converting Boolean circuits into 
Minesweeper positions. Here a grid square has state T if it contains a mine, and F if not. 
The first step involves not gates, but the wires that connect them. Fig.3 shows a 
Minesweeper wire. All squares marked x either contain a mine (T) or do not contain a mine 

Fig.3 A Minesweeper wire.

Fig.2 Impossible 
Minesweeper position. 



(F), but we don't know which. All squares marked x' do the opposite of x. You should check 
that all the numbers shown are correct whether x is T or F. The effect of the wire is to 
'propagate' the signal T or F along its length, ready to be input into a gate. 

Fig.4 shows a NOT gate. The numbers marked on the block in the middle force an 
interchange of x and x' on the exit wire, compared to the input wire. 

The AND gate (Fig. 5) is more complicated. 

 

It has two input wires U, V, and one output W. To establish that this is an AND gate, we 
assume that the output is T and show that both inputs have to be T as well. Since the 
output is T, every symbol t must indicate a mine and every t' a non-mine. Now the 3 above 
and below a3 implies that a2 and a3 are mines, so a1 is not a mine, so s is a mine. 
Similarly, r is a mine. Then the central 4 already has four mines as neighbours, which 
implies that u' and v' are non-mines, so u and v are mines — and this means that U and V 
have truth-value T. Conversely, if U and V have value T then so does W. In short, we have 
an AND gate as claimed. 

Fig.4 The NOT gate. 

Fig. 5 The AND gate.



There's more to Minesweeper electronics than this — for example, we need to be able to 
bend wires, split them, join them, or make them cross without connecting. Kaye solves all 
these problems, and other more subtle ones, in his article. The upshot is that solving the 
Minesweeper Consistency Problem is algorithmically equivalent to the SAT problem, and 
is thus NP-complete. To virtually every mathematician and computer scientist, this means 
that the Minesweeper Consistency Problem must be inherently hard. It is astonishing that 
such a simple game should have such intractable consequences, but mathematical games 
are like that. 

If you're interested in those million-dollar prizes, a word of warning. The Clay Institute 
imposes strict rules before it will accept a solution as being valid. In particular, it must be 
published by a major refereed journal, and it must have been 'generally accepted' by the 
mathematical community within two years of publication. But even if you're not going to 
tackle anything as daunting as that, you can have a lot of fun playing Minesweeper, secure 
in the knowledge that it encompasses one of the great unsolved problems of our age. 

The Clay Mathematics Institute thanks Ian Stewart for permission to post this article on our 
web site. 

More information on the connection between Minesweeper and the P=NP? problem is 
available at the personal web site of Richard Kaye at the University of Birmingham, UK, 
located at the internet address

http://web.mat.bham.ac.uk/R.W.Kaye/minesw/minesw.htm

Richard Kaye's site contains, in particular, his companion paper, Some Minesweeper 
Configurations. 

http://web.mat.bham.ac.uk/R.W.Kaye/minesw/minesw.htm
http://web.mat.bham.ac.uk/R.W.Kaye/minesw/minesw.htm

