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Ovidiu Savin’s talk reviewed the connection between non-local equations and local
equations in one higher dimension. Local PDEs are equations of the form

F (u, ut .ux, ut t , ut x, uxx, . . . ) = 0
where in order to check the equation at a point, it is enough to know u in a
neighbourhood of the point. By contrast, to check a nonlocal PDE at a point it is
necessary to know solution in the whole space.

The talk focused on a simple example, the fractional Laplacian. This has several
definitions, but the preferred one is in terms of an extension property that allows the
fractional Laplacian in Rn to be realised in terms of a local operator in Rn+1.

Savin began the review by recollecting the definition of a fractional derivative in one
dimension. For a ‘nice functions’ u : R→ R, D is said to be a derivative of u if

a) D is linear in u

b) D is translation invariant, and
c) D has order σ under dilation; that is

Duλ(x) = λσDu(λx), where uλ(x) := u(λx) .
Up to a constant, there is only one derivative of order 1 that is also isotropic, that is,
invariant under reflection in the origin. One way to see this is to use translation
invariance to show that (D cos x) = a cos x + b sin x . Isotropy implies that b = 0; and
we can choose a = 1. It follows that Deiξx = |ξ |eiξx , and hence that D is given in
general by its action on the Fourier transform of a function by D̂u = |ξ |û .

This derivative is ‘half’ a second-order derivative. It can be defined in other ways.
First, as a weighted average of second-order increments: define Du for β ∈ (−1, 1) by

Du(x) =
∫ ∞

0

u(x + h) + u(x − h) − 2u(x)
h2+β dh . (1)

Then D is a derivative of order 1 + β, so we can get the desired operator by taking
β = 0.

Second, one can construct Du by taking the y -derivative at y = 0 of the harmonic
extension of u to R2

+. That is Du(x) = Uy (x, 0)where
∆U = 0 and U (x, 0) = u(x) .

In all three approaches, it is clear thatD is nonlocal sinceDu(x) depends on values of
u far from x .

The definitions via the Fourier transform and via the weighted average adapt in
straightforward ways for other values of σ. The definition in terms of the harmonic
extension also generalises, but in a less obvious way. The key is to replace the
harmonic extension by the Caffarelli-Silvestre extension. Define

LσU : U = Uxx +Uy y + (1 − σ)Uy

y
.

and extend u by taking Lσu = 0 andU (x, 0) = u(x). We then get a derivative of order
σ by putting Du(x) = ∂yσU (x, 0).
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Formally Lσ can be viewed as the Laplace operator acting on the rotation ofU
around the x-axis in 2−σ dimensions. The solutions of LσU = 0minimize the energy∫

R2
+

|∇U |2y 1−σ dxdy .

This extension was already known in a probabilistic context.

In higher dimensions, one can extend the ‘weighted average’ construction in (1) to
define fractional powers of the Laplacian on Rn . If u ∈ C 2 near x and if u(y ) decays
more slowly than |y |σ at infinity, then the (nonlocal) definition is

∆
σ/2u(x) = cn,σ P.V.

∫
Rn

u(x + y ) − u(x)
|y |n+σ dy .

This operator appears in the theory of stochastic processes as the generator of an
isotropic σ-stable Lévy process Xt , with

lim
t→0+

E
�
u(x + Xt )� − u(x)

t
= ∆σ/2u(x) .

(In the case of Brownian motion σ = 2 and the operator on the right is the
Laplacian.) The nonlocal character of the operator reflects the fact that the Lévy
process can make discontinuous jumps.The corresponding fractional heat equation,
ut = ∆

σ/2 models anomalous diffusion. It arises in financial mathematical and in a
wide variety of physical and geometric problems.

The Dirichlet problem for the classical Laplacian has a probabilistic interpretation
in terms of Brownian motion in the unit ball B1. If g is a given function on the
boundary ∂B1, then the expected value u(x) of g at the exit point when the process
starts at x satisfies

∆u = 0 in B1, u(x) = g (x) on ∂B1
The same is true for the fractional Laplacian and the Lévy process, except that
boundary data must be given on the complement of B1 rather than just on its
boundary, to allow for the possibility of jumps from inside the ball to the outside. So
the second equation above is replaced by u(x) = g (x) on Rn\B1.

So how does one address existence, uniqueness and regularity questions for such
problems? In the case of the classical elliptic boundary value problem for the
Laplacian ∆, the essential tools are the following.

1) Energy methods: the solution minimizes
∫

B1
|∇u |2 dx subject to u = g on ∂B1.

2) The maximum principle: if u ≤ v on ∂B1 and ∆u ≥ ∆v then u ≤ v in B1

3) Holder estimates: ||u ||C α(B1/2) ≤ C ||u ||L∞(B1).
By iterating the last estimate one can successively improve statements about the
smoothness of u . In the case of linear equations with rough coefficients, such a
Harnack inequality serves the same purpose. For nonlinear equations with rough
coefficients, such as the Bellman equation in control theory, the approach can be
adapted by taking derivatives to obtain linear equations.

For the fractional Laplacian, the key is to pass to a local equation, Laplace’s
equation, in one extra variable. That is to consider the problem

∆U = 0 inRn+1\B1 × {0}, U = g onRn × {0}\B1 .
This, together with boundary regularity (U ∈ C 1/2 =⇒ u ∈ C 1/2), allows conclusions
about the regularity of u . Apart from the need to take care over the requirement to
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specify data outside the unit ball, the energy methods and the maximum principle
extend in a straightforward way to the fractional Laplacian without the need to
extend to Rn+1.

More recent developments cover the case of nonlocal equations with rough
coefficients and integro-differential equations with measurable kernels. There is a
Harnack inequality in the latter case that reduces to the standard one in the limiting
local case.

Finally, Savin turned to the obstacle problem for ∆1/2: for some given function ϕ, the
problem is to find u ≥ ϕ such that

∆
1/2u ≤ 0, ∆

1/2u = 0 in {u > ϕ} .
This can be reformulated in Rn+1 in terms of the extensionU and the standard
Laplacian as an obstacle problem with a ‘thin’ obstacle:

∆U ≤ 0 in B1, U (x, 0) ≥ ϕ(x), ∆U = 0 outside {U = ϕ} ∩ {xn+1 = 0} .
The regularity problems forU and the free boundary have been addressed in this
case by using a monotonicity formula to explore the behaviour ofU near the free
boundary ∂{u > φ}. However the formula is very closely tied to the specific
geometric properties of the Laplacian and unit ball. A new approach by Caffarelli
and others avoids the use of the monotonicity formula, and so may be used more
generally.
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