Index ← Previous Next →

Circles: Book 3 Proposition 9

Translations

Ἐὰν κύκλου ληφθῇ τι σημεῖον ἐντός, ἀπὸ δὲ τοῦ σημείου πρὸς τὸν κύκλον προσπίπτωσι πλείους ἢ δύο ἴσαι εὐθεῖαι, τὸ ληφθὲν σημεῖον κέντρον ἐστὶ τοῦ κύκλου. Ἔστω κύκλος ὁ ΑΒΓ, ἐντὸς δὲ αὐτοῦ σημεῖον τὸ Δ, καὶ ἀπὸ τοῦ Δ πρὸς τὸν ΑΒΓ κύκλον προσπιπτέτωσαν πλείους ἢ δύο ἴσαι εὐθεῖαι αἱ ΔΑ, ΔΒ, ΔΓ: λέγω, ὅτι τὸ Δ σημεῖον κέντρον ἐστὶ τοῦ ΑΒΓ κύκλου. Ἐπεζεύχθωσαν γὰρ αἱ ΑΒ, ΒΓ καὶ τετμήσθωσαν δίχα κατὰ τὰ Ε, Ζ σημεῖα, καὶ ἐπιζευχθεῖσαι αἱ ΕΔ, ΖΔ διήχθωσαν ἐπὶ τὰ Η, Κ, Θ, Λ σημεῖα. Ἐπεὶ οὖν ἴση ἐστὶν ἡ ΑΕ τῇ ΕΒ, κοινὴ δὲ ἡ ΕΔ, δύο δὴ αἱ ΑΕ, ΕΔ δύο ταῖς ΒΕ, ΕΔ ἴσαι εἰσίν: καὶ βάσις ἡ ΔΑ βάσει τῇ ΔΒ ἴση: γωνία ἄρα ἡ ὑπὸ ΑΕΔ γωνίᾳ τῇ ὑπὸ ΒΕΔ ἴση ἐστίν: ὀρθὴ ἄρα ἑκατέρα τῶν ὑπὸ ΑΕΔ, ΒΕΔ γωνιῶν: ἡ ΗΚ ἄρα τὴν ΑΒ τέμνει δίχα καὶ πρὸς ὀρθάς. καὶ ἐπεί, ἐὰν ἐν κύκλῳ εὐθεῖά τις εὐθεῖάν τινα δίχα τε καὶ πρὸς ὀρθὰς τέμνῃ, ἐπὶ τῆς τεμνούσης ἐστὶ τὸ κέντρον τοῦ κύκλου, ἐπὶ τῆς ΗΚ ἄρα ἐστὶ τὸ κέντρον τοῦ κύκλου. διὰ τὰ αὐτὰ δὴ καὶ ἐπὶ τῆς ΘΛ ἐστι τὸ κέντρον τοῦ ΑΒΓ κύκλου. καὶ οὐδὲν ἕτερον κοινὸν ἔχουσιν αἱ ΗΚ, ΘΛ εὐθεῖαι ἢ τὸ Δ σημεῖον: τὸ Δ ἄρα σημεῖον κέντρον ἐστὶ τοῦ ΑΒΓ κύκλου. Ἐὰν ἄρα κύκλου ληφθῇ τι σημεῖον ἐντός, ἀπὸ δὲ τοῦ σημείου πρὸς τὸν κύκλον προσπίπτωσι πλείους ἢ δύο ἴσαι εὐθεῖαι, τὸ ληφθὲν σημεῖον κέντρον ἐστὶ τοῦ κύκλου: ὅπερ ἔδει δεῖξαι.

If a point be taken within a circle, and more than two equal straight lines fall from the point on the circle, the point taken is the centre of the circle. Let ABC be a circle and D a point within it, and from D let more than two equal straight lines, namely DA, DB, DC, fall on the circle ABC; I say that the point D is the centre of the circle ABC. For let AB, BC be joined and bisected at the points E, F, and let ED, FD be joined and drawn through to the points G, K, H, L. Then, since AE is equal to EB, and ED is common, the two sides AE, ED are equal to the two sides BE, ED; and the base DA is equal to the base DB; therefore the angle AED is equal to the angle BED. [I. 8] Therefore each of the angles AED, BED is right; [I. Def. 10] therefore GK cuts AB into two equal parts and at right angles. And since, if in a circle a straight line cut a straight line into two equal parts and at right angles, the centre of the circle is on the cutting straight line, [III. 1, Por.] the centre of the circle is on GK. For the same reason the centre of the circle ABC is also on HL. And the straight lines GK, HL have no other point common but the point D; therefore the point D is the centre of the circle ABC.