Index ← Previous Next →

Classification of incommensurables: Book 10 Proposition 40

Translations

Ἐὰν δύο εὐθεῖαι δυνάμει ἀσύμμετροι συντεθῶσι ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπ' αὐτῶν τετραγώνων μέσον, τὸ δ' ὑπ' αὐτῶν ῥητόν, ἡ ὅλη εὐθεῖα ἄλογός ἐστιν, καλείσθω δὲ ῥητὸν καὶ μέσον δυναμένη. Συγκείσθωσαν γὰρ δύο εὐθεῖαι δυνάμει ἀσύμμετροι αἱ ΑΒ, ΒΓ ποιοῦσαι τὰ προκείμενα: λέγω, ὅτι ἄλογός ἐστιν ἡ ΑΓ. Ἐπεὶ γὰρ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΒ, ΒΓ μέσον ἐστίν, τὸ δὲ δὶς ὑπὸ τῶν ΑΒ, ΒΓ ῥητόν, ἀσύμμετρον ἄρα ἐστὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΒ, ΒΓ τῷ δὶς ὑπὸ τῶν ΑΒ, ΒΓ: ὥστε καὶ τὸ ἀπὸ τῆς ΑΓ ἀσύμμετρόν ἐστι τῷ δὶς ὑπὸ τῶν ΑΒ, ΒΓ. ῥητὸν δὲ τὸ δὶς ὑπὸ τῶν ΑΒ, ΒΓ: ἄλογον ἄρα τὸ ἀπὸ τῆς ΑΓ. ἄλογος ἄρα ἡ ΑΓ, καλείσθω δὲ ῥητὸν καὶ μέσον δυναμένη. ὅπερ ἔδει δεῖξαι.

If two straight lines incommensurable in square which make the sum of the squares on them medial, but the rectangle contained by them rational, be added together, the whole straight line is irrational; and let it be called the side of a rational plus a medial area. For let two straight lines AB, BC incommensurable in square, and fulfilling the given conditions [X. 34], be added together; I say that AC is irrational. For, since the sum of the squares on AB, BC is medial, while twice the rectangle AB, BC is rational, therefore the sum of the squares on AB, BC is incommensurable with twice the rectangle AB, BC; so that the square on AC is also incommensurable with twice the rectangle AB, BC. [X. 16] But twice the rectangle AB, BC is rational; therefore the square on AC is irrational. Therefore AC is irrational. [X. Def. 4].