Index ← Previous Next →

Classification of incommensurables: Book 10 Proposition 64

Translations

Τὸ ἀπὸ τῆς ῥητὸν καὶ μέσον δυναμένης παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ τὴν ἐκ δύο ὀνομάτων πέμπτην. Ἔστω ῥητὸν καὶ μέσον δυναμένη ἡ ΑΒ διῃρημένη εἰς τὰς εὐθείας κατὰ τὸ Γ, ὥστε μείζονα εἶναι τὴν ΑΓ, καὶ ἐκκείσθω ῥητὴ ἡ ΔΕ, καὶ τῷ ἀπὸ τῆς ΑΒ ἴσον παρὰ τὴν ΔΕ παραβεβλήσθω τὸ ΔΖ πλάτος ποιοῦν τὴν ΔΗ: λέγω, ὅτι ἡ ΔΗ ἐκ δύο ὀνομάτων ἐστὶ πέμπτη. Κατεσκευάσθω τὰ αὐτὰ τοῖς πρὸ τούτου. ἐπεὶ οὖν ῥητὸν καὶ μέσον δυναμένη ἐστὶν ἡ ΑΒ διῃρημένη κατὰ τὸ Γ, αἱ ΑΓ, ΓΒ ἄρα δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπ' αὐτῶν τετραγώνων μέσον, τὸ δ' ὑπ' αὐτῶν ῥητόν. ἐπεὶ οὖν μέσον ἐστὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΓ, ΓΒ, μέσον ἄρα ἐστὶ τὸ ΔΛ: ὥστε ῥητή ἐστιν ἡ ΔΜ καὶ μήκει ἀσύμμετρος τῇ ΔΕ. πάλιν, ἐπεὶ ῥητόν ἐστι τὸ δὶς ὑπὸ τῶν ΑΓΒ, τουτέστι τὸ ΜΖ, ῥητὴ ἄρα ἡ ΜΗ καὶ σύμμετρος τῇ ΔΕ. ἀσύμμετρος ἄρα ἡ ΔΜ τῇ ΜΗ: αἱ ΔΜ, ΜΗ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἐκ δύο ἄρα ὀνομάτων ἐστὶν ἡ ΔΗ. Λέγω δή, ὅτι καὶ πέμπτη. Ὁμοίως γὰρ δειχθήσεται, ὅτι τὸ ὑπὸ τῶν ΔΚΜ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΜΝ, καὶ ἀσύμμετρος ἡ ΔΚ τῇ ΚΜ μήκει: ἡ ΔΜ ἄρα τῆς ΜΗ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ. καί εἰσιν αἱ ΔΜ, ΜΗ [ῥηταὶ] δυνάμει μόνον σύμμετροι, καὶ ἡ ἐλάσσων ἡ ΜΗ σύμμετρος τῇ ΔΕ μήκει. Ἡ ΔΗ ἄρα ἐκ δύο ὀνομάτων ἐστὶ πέμπτη: ὅπερ ἔδει δεῖξαι.

The square on the side of a rational plus a medial area applied to a rational straight line produces as breadth the fifth binomial. Let AB be the side of a rational plus a medial area, divided into its straight lines at C, so that AC is the greater; let a rational straight line DE be set out, and let there be applied to DE the parallelogram DF equal to the square on AB, producing DG as its breadth; I say that DG is a fifth binomial straight line. Let the same construction as before be made. Since then AB is the side of a rational plus a medial area, divided at C, therefore AC, CB are straight lines incommensurable in square which make the sum of the squares on them medial, but the rectangle contained by them rational. [X. 40] Since then the sum of the squares on AC, CB is medial, therefore DL is medial, so that DM is rational and incommensurable in length with DE. [X. 22] Again, since twice the rectangle AC, CB, that is MF, is rational, therefore MG is rational and commensurable with DE. [X. 20] Therefore DM is incommensurable with MG; [X. 13] therefore DM, MG are rational straight lines commensurable in square only; therefore DG is binomial. [X. 36] I say next that it is also a fifth binomial straight line. For it can be proved similarly that the rectangle DK, KM is equal to the square on MN, and that DK is incommensurable in length with KM; therefore the square on DM is greater than the square on MG by the square on a straight line incommensurable with DM. [X. 18] And DM, MG are commensurable in square only, and the less, MG, is commensurable in length with DE.