Τὰ ἀπὸ τῶν μήκει συμμέτρων εὐθειῶν τετράγωνα πρὸς ἄλληλα λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: καὶ τὰ τετράγωνα τὰ πρὸς ἄλληλα λόγον ἔχοντα, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, καὶ τὰς πλευρὰς ἕξει μήκει συμμέτρους. τὰ δὲ ἀπὸ τῶν μήκει ἀσυμμέτρων εὐθειῶν τετράγωνα πρὸς ἄλληλα λόγον οὐκ ἔχει, ὅνπερ τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: καὶ τὰ τετράγωνα τὰ πρὸς ἄλληλα λόγον μὴ ἔχοντα, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, οὐδὲ τὰς πλευρὰς ἕξει μήκει συμμέτρους. Ἔστωσαν γὰρ αἱ Α, Β μήκει σύμμετροι: λέγω, ὅτι τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Β τετράγωνον λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. Ἐπεὶ γὰρ σύμμετρός ἐστιν ἡ Α τῇ Β μήκει, ἡ Α ἄρα πρὸς τὴν Β λόγον ἔχει, ὃν ἀριθμὸς πρὸς ἀριθμόν. ἐχέτω, ὃν ὁ Γ πρὸς τὸν Δ. ἐπεὶ οὖν ἐστιν ὡς ἡ Α πρὸς τὴν Β, οὕτως ὁ Γ πρὸς τὸν Δ, ἀλλὰ τοῦ μὲν τῆς Α πρὸς τὴν Β λόγου διπλασίων ἐστὶν ὁ τοῦ ἀπὸ τῆς Α τετραγώνου πρὸς τὸ ἀπὸ τῆς Β τετράγωνον: τὰ γὰρ ὅμοια σχήματα ἐν διπλασίονι λόγῳ ἐστὶ τῶν ὁμολόγων πλευρῶν: τοῦ δὲ τοῦ Γ [ἀριθμοῦ] πρὸς τὸν Δ [ἀριθμὸν] λόγου διπλασίων ἐστὶν ὁ τοῦ ἀπὸ τοῦ Γ τετραγώνου πρὸς τὸν ἀπὸ τοῦ Δ τετράγωνον: δύο γὰρ τετραγώνων ἀριθμῶν εἷς μέσος ἀνάλογόν ἐστιν ἀριθμός, καὶ ὁ τετράγωνος πρὸς τὸν τετράγωνον [ἀριθμὸν] διπλασίονα λόγον ἔχει, ἤπερ ἡ πλευρὰ πρὸς τὴν πλευράν: ἔστιν ἄρα καὶ ὡς τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Β τετράγωνον, οὕτως ὁ ἀπὸ τοῦ Γ τετράγωνος [ἀριθμὸς] πρὸς τὸν ἀπὸ τοῦ Δ [ἀριθμοῦ] τετράγωνον [ἀριθμόν]. Ἀλλὰ δὴ ἔστω ὡς τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Β, οὕτως ὁ ἀπὸ τοῦ Γ τετράγωνος πρὸς τὸν ἀπὸ τοῦ Δ [τετράγωνον]: λέγω, ὅτι σύμμετρός ἐστιν ἡ Α τῇ Β μήκει. Ἐπεὶ γάρ ἐστιν ὡς τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Β [τετράγωνον], οὕτως ὁ ἀπὸ τοῦ Γ τετράγωνος πρὸς τὸν ἀπὸ τοῦ Δ [τετράγωνον], ἀλλ' ὁ μὲν τοῦ ἀπὸ τῆς Α τετραγώνου πρὸς τὸ ἀπὸ τῆς Β [τετράγωνον] λόγος διπλασίων ἐστὶ τοῦ τῆς Α πρὸς τὴν Β λόγου, ὁ δὲ τοῦ ἀπὸ τοῦ Γ [ἀριθμοῦ] τετραγώνου [ἀριθμοῦ] πρὸς τὸν ἀπὸ τοῦ Δ [ἀριθμοῦ] τετράγωνον [ἀριθμὸν] λόγος διπλασίων ἐστὶ τοῦ τοῦ Γ [ἀριθμοῦ] πρὸς τὸν Δ [ἀριθμὸν] λόγου, ἔστιν ἄρα καὶ ὡς ἡ Α πρὸς τὴν Β, οὕτως ὁ Γ [ἀριθμὸς] πρὸς τὸν Δ [ἀριθμόν]. ἡ Α ἄρα πρὸς τὴν Β, λόγον ἔχει, ὃν ἀριθμὸς ὁ Γ πρὸς ἀριθμὸν τὸν Δ: σύμμετρος ἄρα ἐστὶν ἡ Α τῇ Β μήκει. Ἀλλὰ δὴ ἀσύμμετρος ἔστω ἡ Α τῇ Β μήκει: λέγω, ὅτι τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Β [τετράγωνον] λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. Εἰ γὰρ ἔχει τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Β [τετράγωνον] λόγον, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, σύμμετρος ἔσται ἡ Α τῇ Β. οὐκ ἔστι δέ: οὐκ ἄρα τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Β [τετράγωνον] λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. Πάλιν δὴ τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Β [τετράγωνον] λόγον μὴ ἐχέτω, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν: λέγω, ὅτι ἀσύμμετρός ἐστιν ἡ Α τῇ Β μήκει. Εἰ γάρ ἐστι σύμμετρος ἡ Α τῇ Β, ἕξει τὸ ἀπὸ τῆς Α πρὸς τὸ ἀπὸ τῆς Β λόγον, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. οὐκ ἔχει δέ: οὐκ ἄρα σύμμετρός ἐστιν ἡ Α τῇ Β μήκει. Τὰ ἄρα ἀπὸ τῶν μήκει συμμέτρων, καὶ τὰ ἑξῆς.Πόρισμα. Καὶ φανερὸν ἐκ τῶν δεδειγμένων ἔσται, ὅτι αἱ μήκει σύμμετροι πάντως καὶ δυνάμει, αἱ δὲ δυνάμει οὐ πάντως καὶ μήκει [εἴπερ τὰ ἀπὸ τῶν μήκει συμμέτρων εὐθειῶν τετράγωνα λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, τὰ δὲ λόγον ἔχοντα, ὃν ἀριθμὸς πρὸς ἀριθμόν, σύμμετρά ἐστιν. ὥστε αἱ μήκει σύμμετροι εὐθεῖαι οὐ μόνον [εἰσὶ] μήκει σύμμετροι, ἀλλὰ καὶ δυνάμει. πάλιν ἐπεί, ὅσα τετράγωνα πρὸς ἄλληλα λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, μήκει ἐδείχθη σύμμετρα καὶ δυνάμει ὄντα σύμμετρα τῷ τὰ τετράγωνα λόγον ἔχειν, ὃν ἀριθμὸς πρὸς ἀριθμόν, ὅσα ἄρα τετράγωνα λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, ἀλλὰ ἁπλῶς, ὃν ἀριθμὸς πρὸς ἀριθμόν, σύμμετρα μὲν ἔσται αὐτὰ τὰ τετράγωνα δυνάμει, οὐκέτι δὲ καὶ μήκει: ὥστε τὰ μὲν μήκει σύμμετρα πάντως καὶ δυνάμει, τὰ δὲ δυνάμει οὐ πάντως καὶ μήκει, εἰ μὴ καὶ λόγον ἔχοιεν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. λέγω δή, ὅτι [καὶ] αἱ μήκει ἀσύμμετροι οὐ πάντως καὶ δυνάμει, ἐπειδήπερ αἱ δυνάμει σύμμετροι δύνανται λόγον μὴ ἔχειν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, καὶ διὰ τοῦτο δυνάμει οὖσαι σύμμετροι μήκει εἰσὶν ἀσύμμετροι. ὥστε οὐχ αἱ τῷ μήκει ἀσύμμετροι πάντως καὶ δυνάμει, ἀλλὰ δύνανται μήκει οὖσαι ἀσύμμετροι δυνάμει εἶναι καὶ ἀσύμμετροι καὶ σύμμετροι. αἱ δὲ δυνάμει ἀσύμμετροι πάντως καὶ μήκει ἀσύμμετροι: εἰ γὰρ [εἰσι] μήκει σύμμετροι, ἔσονται καὶ δυνάμει σύμμετροι. ὑπόκεινται δὲ καὶ ἀσύμμετροι: ὅπερ ἄτοπον. αἱ ἄρα δυνάμει ἀσύμμετροι πάντως καὶ μήκει.]Λῆμμα. Δέδεικται ἐν τοῖς ἀριθμητικοῖς, ὅτι οἱ ὅμοιοι ἐπίπεδοι ἀριθμοὶ πρὸς ἀλλήλους λόγον ἔχουσιν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, καὶ ὅτι, ἐὰν δύο ἀριθμοὶ πρὸς ἀλλήλους λόγον ἔχωσιν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, ὅμοιοί εἰσιν ἐπίπεδοι. καὶ δῆλον ἐκ τούτων, ὅτι οἱ μὴ ὅμοιοι ἐπίπεδοι ἀριθμοί, τουτέστιν οἱ μὴ ἀνάλογον ἔχοντες τὰς πλευράς, πρὸς ἀλλήλους λόγον οὐκ ἔχουσιν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. εἰ γὰρ ἕξουσιν, ὅμοιοι ἐπίπεδοι ἔσονται: ὅπερ οὐχ ὑπόκειται. οἱ ἄρα μὴ ὅμοιοι ἐπίπεδοι πρὸς ἀλλήλους λόγον οὐκ ἔχουσιν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν.
The squares on straight lines commensurable in length have to one another the ratio which a square number has to a square number; and squares which have to one another the ratio which a square number has to a square number will also have their sides commensurable in length. But the squares on straight lines incommensurable in length have not to one another the ratio which a square number has to a square number; and squares which have not to one another the ratio which a square number has to a square number will not have their sides commensurable in length either. For let A, B be commensurable in length; I say that the square on A has to the square on B the ratio which a square number has to a square number. For, since A is commensurable in length with B, therefore A has to B the ratio which a number has to a number. [X. 5] Let it have to it the ratio which C has to D. Since then, as A is to B, so is C to D, while the ratio of the square on A to the square on B is duplicate of the ratio of A to B, for similar figures are in the duplicate ratio of their corresponding sides; [VI. 20, Por.] and the ratio of the square on C to the square on D is duplicate of the ratio of C to D, for between two square numbers there is one mean proportional number, and the square number has to the square number the ratio duplicate of that which the side has to the side; [VIII. 11] therefore also, as the square on A is to the square on B, so is the square on C to the square on D. Next, as the square on A is to the square on B, so let the square on C be to the square on D; I say that A is commensurable in length with B. For since, as the square on A is to the square on B, so is the square on C to the square on D, while the ratio of the square on A to the square on B is duplicate of the ratio of A to B, and the ratio of the square on C to the square on D is duplicate of the ratio of C to D, therefore also, as A is to B, so is C to D. Therefore A has to B the ratio which the number C has to the number D; therefore A is commensurable in length with B. [X. 6] Next, let A be incommensurable in length with B; I say that the square on A has not to the square on B the ratio which a square number has to a square number. For, if the square on A has to the square on B the ratio which a square number has to a square number, A will be commensurable with B. But it is not; therefore the square on A has not to the square on B the ratio which a square number has to a square number. Again, let the square on A not have to the square on B the ratio which a square number has to a square number; I say that A is incommensurable in length with B. For, if A is commensurable with B, the square on A will have to the square on B the ratio which a square number has to a square number. But it has not; therefore A is not commensurable in length with B. Therefore etc.Porism. And it is manifest from what has been proved that straight lines commensurable in length are always commensurable in square also, but those commensurable in square are not always commensurable in length also.Lemma. [It has been proved in the arithmetical books that similar plane numbers have to one another the ratio which a square number has to a square number, [VIII. 26] and that, if two numbers have to one another the ratio which a square number has to a square number, they are similar plane numbers. [Converse of VIII. 26] And it is manifest from these propositions that numbers which are not similar plane numbers, that is, those which have not their sides proportional, have not to one another the ratio which a square number has to a square number. For, if they have, they will be similar plane numbers: which is contrary to the hypothesis. Therefore numbers which are not similar plane numbers have not to one another the ratio which a square number has to a square number.]