Index ← Previous Next →

Classification of incommensurables: Book 10 Proposition 80

Translations

Τῇ μέσης ἀποτομῇ πρώτῃ μία μόνον προσαρμόζει εὐθεῖα μέση δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης ῥητὸν περιέχουσα. Ἔστω γὰρ μέσης ἀποτομὴ πρώτη ἡ ΑΒ, καὶ τῇ ΑΒ προσαρμοζέτω ἡ ΒΓ: αἱ ΑΓ, ΓΒ ἄρα μέσαι εἰσὶ δυνάμει μόνον σύμμετροι ῥητὸν περιέχουσαι τὸ ὑπὸ τῶν ΑΓ, ΓΒ: λέγω, ὅτι τῇ ΑΒ ἑτέρα οὐ προσαρμόζει μέση δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης ῥητὸν περιέχουσα. Εἰ γὰρ δυνατόν, προσαρμοζέτω καὶ ἡ ΔΒ. αἱ ἄρα ΑΔ, ΔΒ μέσαι εἰσὶ δυνάμει μόνον σύμμετροι ῥητὸν περιέχουσαι τὸ ὑπὸ τῶν ΑΔ, ΔΒ. καὶ ἐπεί, ᾧ ὑπερέχει τὰ ἀπὸ τῶν ΑΔ, ΔΒ τοῦ δὶς ὑπὸ τῶν ΑΔ, ΔΒ, τούτῳ ὑπερέχει καὶ τὰ ἀπὸ τῶν ΑΓ, ΓΒ τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ: τῷ γὰρ αὐτῷ [πάλιν] ὑπερέχουσι τῷ ἀπὸ τῆς ΑΒ: ἐναλλὰξ ἄρα, ᾧ ὑπερέχει τὰ ἀπὸ τῶν ΑΔ, ΔΒ τῶν ἀπὸ τῶν ΑΓ, ΓΒ, τούτῳ ὑπερέχει καὶ τὸ δὶς ὑπὸ τῶν ΑΔ, ΔΒ τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ. τὸ δὲ δὶς ὑπὸ τῶν ΑΔ, ΔΒ τοῦ δὶς ὑπὸ τῶν ΑΓ, ΓΒ ὑπερέχει ῥητῷ: ῥητὰ γὰρ ἀμφότερα. καὶ τὰ ἀπὸ τῶν ΑΔ, ΔΒ ἄρα τῶν ἀπὸ τῶν ΑΓ, ΓΒ [τετραγώνων] ὑπερέχει ῥητῷ: ὅπερ ἐστὶν ἀδύνατον: μέσα γάρ ἐστιν ἀμφότερα, μέσον δὲ μέσου οὐχ ὑπερέχει ῥητῷ. Τῇ ἄρα μέσης ἀποτομῇ πρώτῃ μία μόνον προσαρμόζει εὐθεῖα μέση δυνάμει μόνον σύμμετρος οὖσα τῇ ὅλῃ, μετὰ δὲ τῆς ὅλης ῥητὸν περιέχουσα: ὅπερ ἔδει δεῖξαι.

To a first apotome of a medial straight line only one medial straight line can be annexed which is commensurable with the whole in square only and which contains with the whole a rational rectangle. For let AB be a first apotome of a medial straight line, and let BC be an annex to AB; therefore AC, CB are medial straight lines commensurable in square only and such that the rectangle AC, CB which they contain is rational; [X. 74] I say that no other medial straight line can be annexed to AB which is commensurable with the whole in square only and which contains with the whole a rational area. For, if possible, let DB also be so annexed; therefore AD, DB are medial straight lines commensurable in square only and such that the rectangle AD, DB which they contain is rational. [X. 74] Now, since the excess of the squares on AD, DB over twice the rectangle AD, DB is also the excess of the squares on AC, CB over twice the rectangle AC, CB, for they exceed by the same, the square on AB, [II. 7] therefore, alternately, the excess of the squares on AD, DB over the squares on AC, CB is also the excess of twice the rectangle AD, DB over twice the rectangle AC, CB. But twice the rectangle AD, DB exceeds twice the rectangle AC, CB by a rational area, for both are rational. Therefore the squares on AD, DB also exceed the squares on AC, CB by a rational area. which is impossible, for both are medial [X. 15 and 23, Por.], and a medial area does not exceed a medial by a rational area. [X. 26]