Index ← Previous Next →

Regular solids: Book 13 Proposition 12

Translations

Ἐὰν εἰς κύκλον τρίγωνον ἰσόπλευρον ἐγγραφῇ, ἡ τοῦ τριγώνου πλευρὰ δυνάμει τριπλασίων ἐστὶ τῆς ἐκ τοῦ κέντρου τοῦ κύκλου. Ἔστω κύκλος ὁ ΑΒΓ, καὶ εἰς αὐτὸν τρίγωνον ἰσόπλευρον ἐγγεγράφθω τὸ ΑΒΓ: λέγω, ὅτι τοῦ ΑΒΓ τριγώνου μία πλευρὰ δυνάμει τριπλασίων ἐστὶ τῆς ἐκ τοῦ κέντρου τοῦ ΑΒΓ κύκλου. Εἰλήφθω γὰρ τὸ κέντρον τοῦ ΑΒΓ κύκλου τὸ Δ, καὶ ἐπιζευχθεῖσα ἡ ΑΔ διήχθω ἐπὶ τὸ Ε, καὶ ἐπεζεύχθω ἡ ΒΕ. καὶ ἐπεὶ ἰσόπλευρόν ἐστι τὸ ΑΒΓ τρίγωνον, ἡ ΒΕΓ ἄρα περιφέρεια τρίτον μέρος ἐστὶ τῆς τοῦ ΑΒΓ κύκλου περιφερείας. ἡ ἄρα ΒΕ περιφέρεια ἕκτον ἐστὶ μέρος τῆς τοῦ κύκλου περιφερείας: ἑξαγώνου ἄρα ἐστὶν ἡ ΒΕ εὐθεῖα: ἴση ἄρα ἐστὶ τῇ ἐκ τοῦ κέντρου τῇ ΔΕ. καὶ ἐπεὶ διπλῆ ἐστιν ἡ ΑΕ τῆς ΔΕ, τετραπλάσιόν ἐστι τὸ ἀπὸ τῆς ΑΕ τοῦ ἀπὸ τῆς ΕΔ, τουτέστι τοῦ ἀπὸ τῆς ΒΕ. ἴσον δὲ τὸ ἀπὸ τῆς ΑΕ τοῖς ἀπὸ τῶν ΑΒ, ΒΕ: τὰ ἄρα ἀπὸ τῶν ΑΒ, ΒΕ τετραπλάσιά ἐστι τοῦ ἀπὸ τῆς ΒΕ. διελόντι ἄρα τὸ ἀπὸ τῆς ΑΒ τριπλάσιόν ἐστι τοῦ ἀπὸ ΒΕ. ἴση δὲ ἡ ΒΕ τῇ ΔΕ: τὸ ἄρα ἀπὸ τῆς ΑΒ τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΔΕ. Ἡ ἄρα τοῦ τριγώνου πλευρὰ δυνάμει τριπλασία ἐστὶ τῆς ἐκ τοῦ κέντρου [τοῦ κύκλου]: ὅπερ ἔδει δεῖξαι.

If an equilateral triangle be inscribed in a circle, the square on the side of the triangle is triple of the square on the radius of the circle. Let ABC be a circle, and let the equilateral triangle ABC be inscribed in it; I say that the square on one side of the triangle ABC is triple of the square on the radius of the circle. For let the centre D of the circle ABC be taken, let AD be joined and carried through to E, and let BE be joined. Then, since the triangle ABC is equilateral, therefore the circumference BEC is a third part of the circumference of the circle ABC. Therefore the circumference BE is a sixth part of the circumference of the circle; therefore the straight line BE belongs to a hexagon; therefore it is equal to the radius DE. [IV. 15, Por.] And, since AE is double of DE, the square on AE is quadruple of the square on ED, that is, of the square on BE. But the square on AE is equal to the squares on AB, BE; [III. 31, I. 47] therefore the squares on AB, BE are quadruple of the square on BE. Therefore, separando, the square on AB is triple of the square on BE. But BE is equal to DE; therefore the square on AB is triple of the square on DE.