Index ← Previous Next →

Regular solids: Book 13 Proposition 14

Translations

Ὀκτάεδρον συστήσασθαι καὶ σφαίρᾳ περιλαβεῖν, ᾗ καὶ τὰ πρότερα, καὶ δεῖξαι, ὅτι ἡ τῆς σφαίρας διάμετρος δυνάμει διπλασία ἐστὶ τῆς πλευρᾶς τοῦ ὀκταέδρου. Ἐκκείσθω ἡ τῆς δοθείσης σφαίρας διάμετρος ἡ ΑΒ, καὶ τετμήσθω δίχα κατὰ τὸ Γ, καὶ γεγράφθω ἐπὶ τῆς ΑΒ ἡμικύκλιον τὸ ΑΔΒ, καὶ ἤχθω ἀπὸ τοῦ Γ τῇ ΑΒ πρὸς ὀρθὰς ἡ ΓΔ, καὶ ἐπεζεύχθω ἡ ΔΒ, καὶ ἐκκείσθω τετράγωνον τὸ ΕΖΗΘ ἴσην ἔχον ἑκάστην τῶν πλευρῶν τῇ ΔΒ, καὶ ἐπεζεύχθωσαν αἱ ΘΖ, ΕΗ, καὶ ἀνεστάτω ἀπὸ τοῦ Κ σημείου τῷ τοῦ ΕΖΗΘ τετραγώνου ἐπιπέδῳ πρὸς ὀρθὰς εὐθεῖα ἡ ΚΛ καὶ διήχθω ἐπὶ τὰ ἕτερα μέρη τοῦ ἐπιπέδου ὡς ἡ ΚΜ, καὶ ἀφῃρήσθω ἀφ' ἑκατέρας τῶν ΚΛ, ΚΜ μιᾷ τῶν ΕΚ, ΖΚ, ΗΚ, ΘΚ ἴση ἑκατέρα τῶν ΚΛ, ΚΜ, καὶ ἐπεζεύχθωσαν αἱ ΛΕ, ΛΖ, ΛΗ, ΛΘ, ΜΕ, ΜΖ, ΜΗ, ΜΘ. καὶ ἐπεὶ ἴση ἐστὶν ἡ ΚΕ τῇ ΚΘ, καί ἐστιν ὀρθὴ ἡ ὑπὸ ΕΚΘ γωνία, τὸ ἄρα ἀπὸ τῆς ΘΕ διπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΕΚ. πάλιν, ἐπεὶ ἴση ἐστὶν ἡ ΛΚ τῇ ΚΕ, καί ἐστιν ὀρθὴ ἡ ὑπὸ ΛΚΕ γωνία, τὸ ἄρα ἀπὸ τῆς ΕΛ διπλάσιόν ἐστι τοῦ ἀπὸ ΕΚ. ἐδείχθη δὲ καὶ τὸ ἀπὸ τῆς ΘΕ διπλάσιον τοῦ ἀπὸ τῆς ΕΚ: τὸ ἄρα ἀπὸ τῆς ΛΕ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΕΘ: ἴση ἄρα ἐστὶν ἡ ΛΕ τῇ ΕΘ. διὰ τὰ αὐτὰ δὴ καὶ ἡ ΛΘ τῇ ΘΕ ἐστιν ἴση: ἰσόπλευρον ἄρα ἐστὶ τὸ ΛΕΘ τρίγωνον. ὁμοίως δὴ δείξομεν, ὅτι καὶ ἕκαστον τῶν λοιπῶν τριγώνων, ὧν βάσεις μέν εἰσιν αἱ τοῦ ΕΖΗΘ τετραγώνου πλευραί, κορυφαὶ δὲ τὰ Λ, Μ σημεῖα, ἰσόπλευρόν ἐστιν: ὀκτάεδρον ἄρα συνέσταται ὑπὸ ὀκτὼ τριγώνων ἰσοπλεύρων περιεχόμενον. Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ καὶ δεῖξαι, ὅτι ἡ τῆς σφαίρας διάμετρος δυνάμει διπλασίων ἐστὶ τῆς τοῦ ὀκταέδρου πλευρᾶς. Ἐπεὶ γὰρ αἱ τρεῖς αἱ ΛΚ, ΚΜ, ΚΕ ἴσαι ἀλλήλαις εἰσίν, τὸ ἄρα ἐπὶ τῆς ΛΜ γραφόμενον ἡμικύκλιον ἥξει καὶ διὰ τοῦ Ε. καὶ διὰ τὰ αὐτά, ἐὰν μενούσης τῆς ΛΜ περιενεχθὲν τὸ ἡμικύκλιον εἰς τὸ αὐτὸ ἀποκατασταθῇ, ὅθεν ἤρξατο φέρεσθαι, ἥξει καὶ διὰ τῶν Ζ, Η, Θ σημείων, καὶ ἔσται σφαίρᾳ περιειλημμένον τὸ ὀκτάεδρον. λέγω δή, ὅτι καὶ τῇ δοθείσῃ. ἐπεὶ γὰρ ἴση ἐστὶν ἡ ΛΚ τῇ ΚΜ, κοινὴ δὲ ἡ ΚΕ, καὶ γωνίας ὀρθὰς περιέχουσιν, βάσις ἄρα ἡ ΛΕ βάσει τῇ ΕΜ ἐστιν ἴση. καὶ ἐπεὶ ὀρθή ἐστιν ἡ ὑπὸ ΛΕΜ γωνία: ἐν ἡμικυκλίῳ γάρ: τὸ ἄρα ἀπὸ τῆς ΛΜ διπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΛΕ. πάλιν, ἐπεὶ ἴση ἐστὶν ἡ ΑΓ τῇ ΓΒ, διπλασία ἐστὶν ἡ ΑΒ τῆς ΒΓ. ὡς δὲ ἡ ΑΒ πρὸς τὴν ΒΓ, οὕτως τὸ ἀπὸ τῆς ΑΒ πρὸς τὸ ἀπὸ τῆς ΒΔ: διπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΑΒ τοῦ ἀπὸ τῆς ΒΔ. ἐδείχθη δὲ καὶ τὸ ἀπὸ τῆς ΛΜ διπλάσιον τοῦ ἀπὸ τῆς ΛΕ. καί ἐστιν ἴσον τὸ ἀπὸ τῆς ΔΒ τῷ ἀπὸ τῆς ΛΕ: ἴση γὰρ κεῖται ἡ ΕΘ τῇ ΔΒ. ἴσον ἄρα καὶ τὸ ἀπὸ τῆς ΑΒ τῷ ἀπὸ τῆς ΛΜ: ἴση ἄρα ἡ ΑΒ τῇ ΛΜ. καί ἐστιν ἡ ΑΒ ἡ τῆς δοθείσης σφαίρας διάμετρος: ἡ ΛΜ ἄρα ἴση ἐστὶ τῇ τῆς δοθείσης σφαίρας διαμέτρῳ. Περιείληπται ἄρα τὸ ὀκτάεδρον τῇ δοθείσῃ σφαίρᾳ. καὶ συναποδέδεικται, ὅτι ἡ τῆς σφαίρας διάμετρος δυνάμει διπλασίων ἐστὶ τῆς τοῦ ὀκταέδρου πλευρᾶς: ὅπερ ἔδει δεῖξαι.

To construct an octahedron and comprehend it in a sphere, as in the preceding case; and to prove that the square on the diameter of the sphere is double of the square on the side of the octahedron. Let the diameter AB of the given sphere be set out, and let it be bisected at C; let the semicircle ADB be described on AB, let CD be drawn from C at right angles to AB, let DB be joined; let the square EFGH, having each of its sides equal to DB, be set out, let HF, EG be joined, from the point K let the straight line KL be set up at right angles to the plane of the square EFGH [XI. 12], and let it be carried through to the other side of the plane, as KM; from the straight lines KL, KM let KL, KM be respectively cut off equal to one of the straight lines EK, FK, GK, HK, and let LE, LF, LG, LH, ME, MF, MG, MH be joined. Then, since KE is equal to KH, and the angle EKH is right, therefore the square on HE is double of the square on EK. [I. 47] Again, since LK is equal to KE, and the angle LKE is right, therefore the square on EL is double of the square on EK. [id.] But the square on HE was also proved double of the square on EK; therefore the square on LE is equal to the square on EH; therefore LE is equal to EH. For the same reason LH is also equal to HE; therefore the triangle LEH is equilateral. Similarly we can prove that each of the remaining triangles of which the sides of the square EFGH are the bases, and the points L, M the vertices, is equilateral; therefore an octahedron has been constructed which is contained by eight equilateral triangles. It is next required to comprehend it in the given sphere, and to prove that the square on the diameter of the sphere is double of the square on the side of the octahedron. For, since the three straight lines LK, KM, KE are equal to one another, therefore the semicircle described on LM will also pass through E. And for the same reason, if, LM remaining fixed, the semicircle be carried round and restored to the same position from which it began to be moved, it will also pass through the points F, G, H, and the octahedron will have been comprehended in a sphere. I say next that it is also comprehended in the given sphere. For, since LK is equal to KM, while KE is common, and they contain right angles, therefore the base LE is equal to the base EM. [I. 4] And, since the angle LEM is right, for it is in a semicircle, [III. 31] therefore the square on LM is double of the square on LE. [I. 47] Again, since AC is equal to CB, AB is double of BC. But, as AB is to BC, so is the square on AB to the square on BD; therefore the square on AB is double of the square on BD. But the square on LM was also proved double of the square on LE. And the square on DB is equal to the square on LE, for EH was made equal to DB. Therefore the square on AB is also equal to the square on LM; therefore AB is equal to LM. And AB is the diameter of the given sphere; therefore LM is equal to the diameter of the given sphere.