Ἐὰν πρῶτον πρὸς δεύτερον τὸν αὐτὸν ἔχῃ λόγον καὶ τρίτον πρὸς τέταρτον, καὶ τὰ ἰσάκις πολλαπλάσια τοῦ τε πρώτου καὶ τρίτου πρὸς τὰ ἰσάκις πολλαπλάσια τοῦ δευτέρου καὶ τετάρτου καθ' ὁποιονοῦν πολλαπλασιασμὸν τὸν αὐτὸν ἕξει λόγον ληφθέντα κατάλληλα. Πρῶτον γὰρ τὸ Α πρὸς δεύτερον τὸ Β τὸν αὐτὸν ἐχέτω λόγον καὶ τρίτον τὸ Γ πρὸς τέταρτον τὸ Δ, καὶ εἰλήφθω τῶν μὲν Α, Γ ἰσάκις πολλαπλάσια τὰ Ε, Ζ, τῶν δὲ Β, Δ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια τὰ Η, Θ: λέγω, ὅτι ἐστὶν ὡς τὸ Ε πρὸς τὸ Η, οὕτως τὸ Ζ πρὸς τὸ Θ. Εἰλήφθω γὰρ τῶν μὲν Ε, Ζ ἰσάκις πολλαπλάσια τὰ Κ, Λ, τῶν δὲ Η, Θ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια τὰ Μ, Ν. [Καὶ] ἐπεὶ ἰσάκις ἐστὶ πολλαπλάσιον τὸ μὲν Ε τοῦ Α, τὸ δὲ Ζ τοῦ Γ, καὶ εἴληπται τῶν Ε, Ζ ἰσάκις πολλαπλάσια τὰ Κ, Λ, ἰσάκις ἄρα ἐστὶ πολλαπλάσιον τὸ Κ τοῦ Α καὶ τὸ Λ τοῦ Γ. διὰ τὰ αὐτὰ δὴ ἰσάκις ἐστὶ πολλαπλάσιον τὸ Μ τοῦ Β καὶ τὸ Ν τοῦ Λ. καὶ ἐπεί ἐστιν ὡς τὸ Α πρὸς τὸ Β, οὕτως τὸ Γ πρὸς τὸ Δ, καὶ εἴληπται τῶν μὲν Α, Γ ἰσάκις πολλαπλάσια τὰ Κ, Λ, τῶν δὲ Β, Δ ἄλλα ἃ ἔτυχεν, ἰσάκις πολλαπλάσια τὰ Μ, Ν, εἰ ἄρα ὑπερέχει τὸ Κ τοῦ Μ, ὑπερέχει καὶ τὸ Λ τοῦ Ν, καὶ εἰ ἴσον, ἴσον, καὶ εἰ ἔλαττον, ἔλαττον. καί ἐστι τὰ μὲν Κ, Λ τῶν Ε, Ζ ἰσάκις πολλαπλάσια, τὰ δὲ Μ, Ν τῶν Η, Θ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια: ἔστιν ἄρα ὡς τὸ Ε πρὸς τὸ Η, οὕτως τὸ Ζ πρὸς τὸ Θ. Ἐὰν ἄρα πρῶτον πρὸς δεύτερον τὸν αὐτὸν ἔχῃ λόγον καὶ τρίτον πρὸς τέταρτον, καὶ τὰ ἰσάκις πολλαπλάσια τοῦ τε πρώτου καὶ τρίτου πρὸς τὰ ἰσάκις πολλαπλάσια τοῦ δευτέρου καὶ τετάρτου τὸν αὐτὸν ἕξει λόγον καθ' ὁποιονοῦν πολλαπλασιασμὸν ληφθέντα κατάλληλα: ὅπερ ἔδει δεῖξαι.
If a first magnitude have to a second the same ratio as a third to a fourth, any equimultiples whatever of the first and third will also have the same ratio to any equimultiples whatever of the second and fourth respectively, taken in corresponding order. For let a first magnitude A have to a second B the same ratio as a third C to a fourth D; and let equimultiples E, F be taken of A, C, and G, H other, chance, equimultiples of B, D; I say that, as E is to G, so is F to H. For let equimultiples K, L be taken of E, F, and other, chance, equimultiples M, N of G, H. Since E is the same multiple of A that F is of C, and equimultiples K, L of E, F have been taken, therefore K is the same multiple of A that L is of C. [V. 3] For the same reason M is the same multiple of B that N is of D. And, since, as A is to B, so is C to D, and of A, C equimultiples K, L have been taken, and of B, D other, chance, equimultiples M, N, therefore, if K is in excess of M, L also is in excess of N, if it is equal, equal, and if less, less. [V. Def. 5] And K, L are equimultiples of E, F, and M, N other, chance, equimultiples of G, H; therefore, as E is to G, so is F to H. [V. Def. 5]