Ἐὰν ᾖ ὁποσαοῦν μεγέθη ἀνάλογον, ἔσται ὡς ἓν τῶν ἡγουμένων πρὸς ἓν τῶν ἑπομένων, οὕτως ἅπαντα τὰ ἡγούμενα πρὸς ἅπαντα τὰ ἑπόμενα. Ἔστωσαν ὁποσαοῦν μεγέθη ἀνάλογον τὰ Α, Β, Γ, Δ, Ε, Ζ, ὡς τὸ Α πρὸς τὸ Β, οὕτως τὸ Γ πρὸς τὸ Δ, καὶ τὸ Ε πρὸς τὸ Ζ: λέγω, ὅτι ἐστὶν ὡς τὸ Α πρὸς τὸ Β, οὕτως τὰ Α, Γ, Ε πρὸς τὰ Β, Δ, Ζ. Εἰλήφθω γὰρ τῶν μὲν Α, Γ, Ε ἰσάκις πολλαπλάσια τὰ Η, Θ, Κ, τῶν δὲ Β, Δ, Ζ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια τὰ Λ, Μ, Ν. Καὶ ἐπεί ἐστιν ὡς τὸ Α πρὸς τὸ Β, οὕτως τὸ Γ πρὸς τὸ Δ, καὶ τὸ Ε πρὸς τὸ Ζ, καὶ εἴληπται τῶν μὲν Α, Γ, Ε ἰσάκις πολλαπλάσια τὰ Η, Θ, Κ τῶν δὲ Β, Δ, Ζ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια τὰ Λ, Μ, Ν, εἰ ἄρα ὑπερέχει τὸ Η τοῦ Λ, ὑπερέχει καὶ τὸ Θ τοῦ Μ, καὶ τὸ Κ τοῦ Ν, καὶ εἰ ἴσον, ἴσον, καὶ εἰ ἔλαττον, ἔλαττον. ὥστε καὶ εἰ ὑπερέχει τὸ Η τοῦ Λ, ὑπερέχει καὶ τὰ Η, Θ, Κ τῶν Λ, Μ, Ν, καὶ εἰ ἴσον, ἴσα, καὶ εἰ ἔλαττον, ἐλάττονα. καί ἐστι τὸ μὲν Η καὶ τὰ Η, Θ, Κ τοῦ Α καὶ τῶν Α, Γ, Ε ἰσάκις πολλαπλάσια, ἐπειδήπερ ἐὰν ᾖ ὁποσαοῦν μεγέθη ὁποσωνοῦν μεγεθῶν ἴσων τὸ πλῆθος ἕκαστον ἑκάστου ἰσάκις πολλαπλάσιον, ὁσαπλάσιόν ἐστιν ἓν τῶν μεγεθῶν ἑνός, τοσαυταπλάσια ἔσται καὶ τὰ πάντα τῶν πάντων. διὰ τὰ αὐτὰ δὴ καὶ τὸ Λ καὶ τὰ Λ, Μ, Ν τοῦ Β καὶ τῶν Β, Δ, Ζ ἰσάκις ἐστὶ πολλαπλάσια: ἔστιν ἄρα ὡς τὸ Α πρὸς τὸ Β, οὕτως τὰ Α, Γ, Ε πρὸς τὰ Β, Δ, Ζ. Ἐὰν ἄρα ᾖ ὁποσαοῦν μεγέθη ἀνάλογον, ἔσται ὡς ἓν τῶν ἡγουμένων πρὸς ἓν τῶν ἑπομένων, οὕτως ἅπαντα τὰ ἡγούμενα πρὸς ἅπαντα τὰ ἑπόμενα: ὅπερ ἔδει δεῖξαι.
If any number of magnitudes be proportional, as one of the antecedents is to one of the consequents, so will all the antecedents be to all the consequents. Let any number of magnitudes A, B, C, D, E, F be proportional, so that, as A is to B, so is C to D and E to F; I say that, as A is to B, so are A, C, E to B, D, F. For of A, C, E let equimultiples G, H, K be taken, and of B, D, F other, chance, equimultiples L, M, N. Then since, as A is to B, so is C to D, and E to F, and of A, C, E equimultiples G, H, K have been taken, and of B, D, F other, chance, equimultiples L, M, N, therefore, if G is in excess of L, H is also in excess of M, and K of N, if equal, equal, and if less, less; so that, in addition, if G is in excess of L, then G, H, K are in excess of L, M, N, if equal, equal, and if less, less. Now G and G, H, K are equimultiples of A and A, C, E, since, if any number of magnitudes whatever are respectively equimultiples of any magnitudes equal in multitude, whatever multiple one of the magnitudes is of one, that multiple also will all be of all. [V. 1] For the same reason L and L, M, N are also equimultiples of B and B, D, F; therefore, as A is to B, so are A, C, E to B, D, F. [V. Def. 5]