Index ← Previous Next →

Theory of proportions: Book 5 Proposition 23

Translations

Ἐὰν ᾖ τρία μεγέθη καὶ ἄλλα αὐτοῖς ἴσα τὸ πλῆθος σύνδυο λαμβανόμενα ἐν τῷ αὐτῷ λόγῳ, ᾖ δὲ τεταραγμένη αὐτῶν ἡ ἀναλογία, καὶ δι' ἴσου ἐν τῷ αὐτῷ λόγῳ ἔσται. Ἔστω τρία μεγέθη τὰ Α, Β, Γ καὶ ἄλλα αὐτοῖς ἴσα τὸ πλῆθος σύνδυο λαμβανόμενα ἐν τῷ αὐτῷ λόγῳ τὰ Δ, Ε, Ζ, ἔστω δὲ τεταραγμένη αὐτῶν ἡ ἀναλογία, ὡς μὲν τὸ Α πρὸς τὸ Β, οὕτως τὸ Ε πρὸς τὸ Ζ, ὡς δὲ τὸ Β πρὸς τὸ Γ, οὕτως τὸ Δ πρὸς τὸ Ε: λέγω, ὅτι ἐστὶν ὡς τὸ Α πρὸς τὸ Γ, οὕτως τὸ Δ πρὸς τὸ Ζ. Εἰλήφθω τῶν μὲν Α, Β, Δ ἰσάκις πολλαπλάσια τὰ Η, Θ, Κ, τῶν δὲ Γ, Ε, Ζ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια τὰ Λ, Μ, Ν. Καὶ ἐπεὶ ἰσάκις ἐστὶ πολλαπλάσια τὰ Η, Θ τῶν Α, Β, τὰ δὲ μέρη τοῖς ὡσαύτως πολλαπλασίοις τὸν αὐτὸν ἔχει λόγον, ἔστιν ἄρα ὡς τὸ Α πρὸς τὸ Β, οὕτως τὸ Η πρὸς τὸ Θ. διὰ τὰ αὐτὰ δὴ καὶ ὡς τὸ Ε πρὸς τὸ Ζ, οὕτως τὸ Μ πρὸς τὸ Ν: καί ἐστιν ὡς τὸ Α πρὸς τὸ Β, οὕτως τὸ Ε πρὸς τὸ Ζ: καὶ ὡς ἄρα τὸ Η πρὸς τὸ Θ, οὕτως τὸ Μ πρὸς τὸ Ν. καὶ ἐπεί ἐστιν ὡς τὸ Β πρὸς τὸ Γ, οὕτως τὸ Δ πρὸς τὸ Ε, καὶ ἐναλλὰξ ὡς τὸ Β πρὸς τὸ Δ, οὕτως τὸ Γ πρὸς τὸ Ε. καὶ ἐπεὶ τὰ Θ, Κ τῶν Β, Δ ἰσάκις ἐστὶ πολλαπλάσια, τὰ δὲ μέρη τοῖς ἰσάκις πολλαπλασίοις τὸν αὐτὸν ἔχει λόγον, ἔστιν ἄρα ὡς τὸ Β πρὸς τὸ Δ, οὕτως τὸ Θ πρὸς τὸ Κ. ἀλλ' ὡς τὸ Β πρὸς τὸ Δ, οὕτως τὸ Γ πρὸς τὸ Ε: καὶ ὡς ἄρα τὸ Θ πρὸς τὸ Κ, οὕτως τὸ Γ πρὸς τὸ Ε. πάλιν, ἐπεὶ τὰ Λ, Μ τῶν Γ, Ε ἰσάκις ἐστι πολλαπλάσια, ἔστιν ἄρα ὡς τὸ Γ πρὸς τὸ Ε, οὕτως τὸ Λ πρὸς τὸ Μ. ἀλλ' ὡς τὸ Γ πρὸς τὸ Ε, οὕτως τὸ Θ πρὸς τὸ Κ: καὶ ὡς ἄρα τὸ Θ πρὸς τὸ Κ, οὕτως τὸ Λ πρὸς τὸ Μ, καὶ ἐναλλὰξ ὡς τὸ Θ πρὸς τὸ Λ, τὸ Κ πρὸς τὸ Μ. ἐδείχθη δὲ καὶ ὡς τὸ Η πρὸς τὸ Θ, οὕτως τὸ Μ πρὸς τὸ Ν. ἐπεὶ οὖν τρία μεγέθη ἐστὶ τὰ Η, Θ, Λ, καὶ ἄλλα αὐτοῖς ἴσα τὸ πλῆθος τὰ Κ, Μ, Ν σύνδυο λαμβανόμενα ἐν τῷ αὐτῷ λόγῳ, καί ἐστιν αὐτῶν τεταραγμένη ἡ ἀναλογία, δι' ἴσου ἄρα, εἰ ὑπερέχει τὸ Η τοῦ Λ, ὑπερέχει καὶ τὸ Κ τοῦ Ν, καὶ εἰ ἴσον, ἴσον, καὶ εἰ ἔλαττον, ἔλαττον. καί ἐστι τὰ μὲν Η, Κ τῶν Α, Δ ἰσάκις πολλαπλάσια, τὰ δὲ Λ, Ν τῶν Γ, Ζ. ἔστιν ἄρα ὡς τὸ Α πρὸς τὸ Γ, οὕτως τὸ Δ πρὸς τὸ Ζ. Ἐὰν ἄρα ᾖ τρία μεγέθη καὶ ἄλλα αὐτοῖς ἴσα τὸ πλῆθος σύνδυο λαμβανόμενα ἐν τῷ αὐτῷ λόγῳ, ᾖ δὲ τεταραγμένη αὐτῶν ἡ ἀναλογία, καὶ δι' ἴσου ἐν τῷ αὐτῷ λόγῳ ἔσται: ὅπερ ἔδει δεῖξαι.

If there be three magnitudes, and others equal to them in multitude, which taken two and two together are in the same ratio, and the proportion of them be perturbed, they will also be in the same ratio ex aequali. Let there be three magnitudes A, B, C, and others equal to them in multitude, which, taken two and two together, are in the same proportion, namely D, E, F; and let the proportion of them be perturbed, so that, as A is to B, so is E to F, and, as B is to C, so is D to E; I say that, as A is to C, so is D to F. Of A, B, D let equimultiples G, H, K be taken, and of C, E, F other, chance, equimultiples L, M, N. Then, since G, H are equimultiples of A, B, and parts have the same ratio as the same multiples of them, [V. 15] therefore, as A is to B, so is G to H. For the same reason also, as E is to F, so is M to N. And, as A is to B, so is E to F; therefore also, as G is to H, so is M to N. [V. 11] Next, since, as B is to C, so is D to E, alternately, also, as B is to D, so is C to E. [V. 16] And, since H, K are equimultiples of B, D, and parts have the same ratio as their equimultiples, therefore, as B is to D, so is H to K. [V. 15] But, as B is to D, so is C to E; therefore also, as H is to K, so is C to E. [V. 11] Again, since L, M are equimultiples of C, E, therefore, as C is to E, so is L to M. [V. 15] But, as C is to E, so is H to K; therefore also, as H is to K, so is L to M, [V. 11] and, alternately, as H is to L, so is K to M. [V. 16] But it was also proved that, as G is to H, so is M to N. Since, then, there are three magnitudes G, H, L, and others equal to them in multitude K, M, N, which taken two and two together are in the same ratio, and the proportion of them is perturbed, therefore, ex aequali, if G is in excess of L, K is also in excess of N; if equal, equal; and if less, less. [V. 21] And G, K are equimultiples of A, D, and L, N of C, F. Therefore, as A is to C, so is D to F.