Index ← Previous Next →

Triangles, parallels, and area: Book 1 Proposition 11

Translations

Τῇ δοθείσῃ εὐθείᾳ ἀπὸ τοῦ πρὸς αὐτῇ δοθέντος σημείου πρὸς ὀρθὰς γωνίας εὐθεῖαν γραμμὴν ἀγαγεῖν. Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἡ ΑΒ τὸ δὲ δοθὲν σημεῖον ἐπ' αὐτῆς τὸ Γ: δεῖ δὴ ἀπὸ τοῦ Γ σημείου τῇ ΑΒ εὐθείᾳ πρὸς ὀρθὰς γωνίας εὐθεῖαν γραμμὴν ἀγαγεῖν. Εἰλήφθω ἐπὶ τῆς ΑΓ τυχὸν σημεῖον τὸ Δ, καὶ κείσθω τῇ ΓΔ ἴση ἡ ΓΕ, καὶ συνεστάτω ἐπὶ τῆς ΔΕ τρίγωνον ἰσόπλευρον τὸ ΖΔΕ, καὶ ἐπεζεύχθω ἡ ΖΓ: λέγω, ὅτι τῇ δοθείσῃ εὐθείᾳ τῇ ΑΒ ἀπὸ τοῦ πρὸς αὐτῇ δοθέντος σημείου τοῦ Γ πρὸς ὀρθὰς γωνίας εὐθεῖα γραμμὴ ἦκται ἡ ΖΓ. Ἐπεὶ γὰρ ἴση ἐστὶν ἡ ΔΓ τῇ ΓΕ, κοινὴ δὲ ἡ ΓΖ, δύο δὴ αἱ ΔΓ, ΓΖ δυσὶ ταῖς ΕΓ, ΓΖ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ: καὶ βάσις ἡ ΔΖ βάσει τῇ ΖΕ ἴση ἐστίν: γωνία ἄρα ἡ ὑπὸ ΔΓΖ γωνίᾳ τῇ ὑπὸ ΕΓΖ ἴση ἐστίν: καί εἰσιν ἐφεξῆς. ὅταν δὲ εὐθεῖα ἐπ' εὐθεῖαν σταθεῖσα τὰς ἐφεξῆς γωνίας ἴσας ἀλλήλαις ποιῇ, ὀρθὴ ἑκατέρα τῶν ἴσων γωνιῶν ἐστιν: ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΔΓΖ, ΖΓΕ. Τῇ ἄρα δοθείσῃ εὐθείᾳ τῇ ΑΒ ἀπὸ τοῦ πρὸς αὐτῇ δοθέντος σημείου τοῦ Γ πρὸς ὀρθὰς γωνίας εὐθεῖα γραμμὴ ἦκται ἡ ΓΖ: ὅπερ ἔδει ποιῆσαι.

To draw a straight line at right angles to a given straight line from a given point on it. Let AB be the given straight line, and C the given point on it. Thus it is required to draw from the point C a straight line at right angles to the straight line AB. Let a point D be taken at random on AC; let CE be made equal to CD; [I. 3] on DE let the equilateral triangle FDE be constructed, [I. 1] and let FC be joined; I say that the straight line FC has been drawn at right angles to the given straight line AB from C the given point on it. For, since DC is equal to CE, and CF is common, the two sides DC, CF are equal to the two sides EC, CF respectively; and the base DF is equal to the base FE; therefore the angle DCF is equal to the angle ECF; [I. 8] and they are adjacent angles. But, when a straight line set up on a straight line makes the adjacent angles equal to one another, each of the equal angles is right; [Def. 10] therefore each of the angles DCF, FCE is right. Therefore the straight line CF has been drawn at right angles to the given straight line AB from the given point C on it.