Index ← Previous Next →

Triangles, parallels, and area: Book 1 Proposition 27

Translations

Ἐὰν εἰς δύο εὐθείας εὐθεῖα ἐμπίπτουσα τὰς ἐναλλὰξ γωνίας ἴσας ἀλλήλαις ποιῇ, παράλληλοι ἔσονται ἀλλήλαις αἱ εὐθεῖαι. Εἰς γὰρ δύο εὐθείας τὰς ΑΒ, ΓΔ εὐθεῖα ἐμπίπτουσα ἡ ΕΖ τὰς ἐναλλὰξ γωνίας τὰς ὑπὸ ΑΕΖ, ΕΖΔ ἴσας ἀλλήλαις ποιείτω: λέγω, ὅτι παράλληλός ἐστιν ἡ ΑΒ τῇ ΓΔ. Εἰ γὰρ μή, ἐκβαλλόμεναι αἱ ΑΒ, ΓΔ συμπεσοῦνται ἤτοι ἐπὶ τὰ Β, Δ μέρη ἢ ἐπὶ τὰ Α, Γ. ἐκβεβλήσθωσαν καὶ συμπιπτέτωσαν ἐπὶ τὰ Β, Δ μέρη κατὰ τὸ Η. τριγώνου δὴ τοῦ ΗΕΖ ἡ ἐκτὸς γωνία ἡ ὑπὸ ΑΕΖ ἴση ἐστὶ τῇ ἐντὸς καὶ ἀπεναντίον τῇ ὑπὸ ΕΖΗ: ὅπερ ἐστὶν ἀδύνατον: οὐκ ἄρα αἱ ΑΒ, ΓΔ ἐκβαλλόμεναι συμπεσοῦνται ἐπὶ τὰ Β, Δ μέρη. ὁμοίως δὴ δειχθήσεται, ὅτι οὐδὲ ἐπὶ τὰ Α, Γ: αἱ δὲ ἐπὶ μηδέτερα τὰ μέρη συμπίπτουσαι παράλληλοί εἰσιν: παράλληλος ἄρα ἐστὶν ἡ ΑΒ τῇ ΓΔ. Ἐὰν ἄρα εἰς δύο εὐθείας εὐθεῖα ἐμπίπτουσα τὰς ἐναλλὰξ γωνίας ἴσας ἀλλήλαις ποιῇ, παράλληλοι ἔσονται αἱ εὐθεῖαι: ὅπερ ἔδει δεῖξαι.

If a straight line falling on two straight lines make the alternate angles equal to one another, the straight lines will be parallel to one another. For let the straight line EF falling on the two straight lines AB, CD make the alternate angles AEF, EFD equal to one another; I say that AB is parallel to CD. For, if not, AB, CD when produced will meet either in the direction of B, D or towards A, C. Let them be produced and meet, in the direction of B, D, at G. Then, in the triangle GEF, the exterior angle AEF is equal to the interior and opposite angle EFG: which is impossible. [I. 16] Therefore AB, CD when produced will not meet in the direction of B, D. Similarly it can be proved that neither will they meet towards A, C. But straight lines which do not meet in either direction are parallel; [Def. 23] therefore AB is parallel to CD. Therefore etc.