Διὰ τοῦ δοθέντος σημείου τῇ δοθείσῃ εὐθείᾳ παράλληλον εὐθεῖαν γραμμὴν ἀγαγεῖν. Ἔστω τὸ μὲν δοθὲν σημεῖον τὸ Α, ἡ δὲ δοθεῖσα εὐθεῖα ἡ ΒΓ: δεῖ δὴ διὰ τοῦ Α σημείου τῇ ΒΓ εὐθείᾳ παράλληλον εὐθεῖαν γραμμὴν ἀγαγεῖν. Εἰλήφθω ἐπὶ τῆς ΒΓ τυχὸν σημεῖον τὸ Δ, καὶ ἐπεζεύχθω ἡ ΑΔ: καὶ συνεστάτω πρὸς τῇ ΔΑ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Α τῇ ὑπὸ ΑΔΓ γωνίᾳ ἴση ἡ ὑπὸ ΔΑΕ: καὶ ἐκβεβλήσθω ἐπ' εὐθείας τῇ ΕΑ εὐθεῖα ἡ ΑΖ. Καὶ ἐπεὶ εἰς δύο εὐθείας τὰς ΒΓ, ΕΖ εὐθεῖα ἐμπίπτουσα ἡ ΑΔ τὰς ἐναλλὰξ γωνίας τὰς ὑπὸ ΕΑΔ, ΑΔΓ ἴσας ἀλλήλαις πεποίηκεν, παράλληλος ἄρα ἐστὶν ἡ ΕΑΖ τῇ ΒΓ. Διὰ τοῦ δοθέντος ἄρα σημείου τοῦ Α τῇ δοθείσῃ εὐθείᾳ τῇ ΒΓ παράλληλος εὐθεῖα γραμμὴ ἦκται ἡ ΕΑΖ: ὅπερ ἔδει ποιῆσαι.
Through a given point to draw a straight line parallel to a given straight line. Let A be the given point, and BC the given straight line; thus it is required to draw through the point A a straight line parallel to the straight line BC. Let a point D be taken at random on BC, and let AD be joined; on the straight line DA, and at the point A on it, let the angle DAE be constructed equal to the angle ADC [I. 23I. 27] Therefore through the given point A the straight line EAF has been drawn parallel to the given straight line BC.