
CMI ANNUAL REPORT6

Clay Research Awards

R
e
c
o
g
n
i
z
i
n
g
 
a
c
h
i
e
v
e
m
e
n
t

Cliff Taubes receiving the 2008 Clay Research Award that was presented by 
Landon and Lavinia Clay and President James Carlson.

The Weinstein Conjecture

Classical mechanics, as formulated by Hamilton,
takes place in the context of a configuration space
of positions and momenta. Mathematically, this is
a manifold M with a symplectic structure and a
distinguished function H, the Hamiltonian. The
symplectic structure is given by a closed 2-form ω
such that ωn(x) = 0, for all x in M , where M is
of dimension 2n. Such a manifold carries a natural
vector field XH defined by the condition

ω(XH , Y ) = dH(Y )

for all Y . This, the Hamitonian vectorfield, defines
a flow φt(x) on the manifold. If x = (q, p) give the
position and momentum of a particle, its trajectory
as time evolves is given by φt(x) for varying t. The
flow itself is defined by Hamilton’s equations,

ṗ =
∂H

∂q
, q̇ = −∂H

∂p

where q and q are Darboux coordinates, giving con-
jugate positions and momenta.

The flow just defined determines a dynamical sys-
tem. A fundamental problem is whether or not
there exist closed orbits for such a system. For ex-
ample, we hope that the orbit of the earth is both
closed and quite stable. Orbits, of course, lie on
the level sets of H, which is commonly taken to be
the total energy.

In the late 1970s Rabinowitz and Weinstein proved
that for H : R2n −→ R which has either star-
shaped or convex level sets, the corresponding Hamil-
tonian flow has a periodic orbit on the level sets. In
searching for a common generalization, Weinstein
observed that a contact structure could be seen as
the engine which makes the arguments work.

A contact manifold is an odd-dimensional manifold
with a one-form A such that A∧dAn is everywhere
nonzero. The kernel of A is a maximally noninte-
grable field of hyperplanes in the tangent bundle;
the Reeb vector field generates the kernel of dA
and pairs to one with A. For a motivating exam-
ple, consider the unit sphere in Cn, where A is the a
standard form which annihilates the maximal com-
plex subspace of the tangent space. If Z is a coor-
dinate vector for Cn, then A =

√
−1(∂̄−∂)log||Z||2

is such a form. In this case the Reeb vector field
is the field tangent to the circles in the fibration
S2n−1 −→ CPn from the sphere to the associated
complex projective space.

The Weinstein conjecture, stated some thirty years
ago, asks whether the Reeb vector field for a con-
tact manifold always has a a closed orbit. By
contrast, there exist arbitrary vector fields on the
three-sphere not annihilated by dA with no closed
orbits. These are the counterexamples to the Seifert
Conjecture of Schweitzer, Harrison and Kuperberg.

Hofer proved the Weinstein Conjecture in many
special cases in dimension three, for example, the
three-sphere and contact structures on any three-
dimensional reducible manifold. Taubes’ solution
to the general conjecture in dimension three is based
on a novel application of the Seiberg-Witten equa-
tions to the problem. The orbits come from special
cycles in the Seiberg-Witten Monopole Floer Ho-
mology.The Weinstein Conjecture
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Cliff Taubes and Claire Voisin delivering their acceptance speeches.   
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Claire Voisin receiving the 2008 Clay Research Award that was presented by 
Landon and Lavinia Clay and President James Carlson.

The Kodaira Conjecture

Geometric structures on a topological manifold of-
ten impose restrictions on what kind of manifolds
can arise. For example, a symplectic manifold must
have nonzero second Betti number, since the sym-
plectic form ω is non-trivial in cohomology. In-
deed, if the manifold has dimension 2n, then ωn has
nonzero integral. Yet more restrictive is the notion
of a Kähler manifold – a symplectic manifold for
which the form ω has type (1, 1) in a compatible
complex structure. In that case many topological
conditions are satisfied: the odd Betti numbers are
even, the cohomology ring is formal, and there are
numerous restrictions on the fundamental group.
Kähler manifolds abound: any projective algebraic
manifold, that is, any submanifold of complex pro-
jective space defined by homogeneous polynomial
equations, is a Kähler manifold. In complex dimen-
sion one, the converse is true: any Kähler manifold
(a Riemann surface) is complex projective. In com-
plex dimension two, the converse is false, but just
barely: every complex Kähler manifold is the de-
formation of a projective algebraic manifold. This
fact was proved by Kodaira, using his classification
theorem for complex surfaces.

The question then arises: is every compact Kähler
manifold deformable to projective algebraic one?
Although never explicitly stated by Kodaira, this
question has become known as the Kodaira Con-
jecture. Alas, the proof in dimension two gives no
clue about what happens in higher dimension. The
crux of the problem, however, is to show that on
the given complex manifoldM , can one deform the
complex structure so as to obtain a positive (1, 1)
class in the rational cohomology. That is, one must
show that the Hodge structure is polarizable. The
fundamental theorem here is due to Kodaira: from
a closed, rational, positive, (1, 1) form, one may
construct an imbedding of the underlying manifold
into projective space.

There have been various attempts to prove or dis-
prove the conjecture. Since any deformation of M
has the same diffeomorphism type as M , a dis-
proof requires a topological invariant defined for
Kähler manifolds that distinguishes the projective
algebraic ones from those that are not.

The starting point for Voisin’s counterexample is
the construction of a complex torus T which is
not projective algebraic because of the existence

of a “wild” endomorphism Φ. This is an endo-
morphishm whose eigenvalues are non-real and dis-
tinct, and such that the Galois group of the field
generated by the eigenvalues is as large as possi-
ble. An example is given by the companion matrix
of the polynomial x4 − x + 1. The second exte-
rior product of a weight one Hodge structure with
a wild endomorphism carries no nonzero rational
(1, 1) classes, so long as the space of elements of
type (1, 0) has dimension strictly greater than one.
Therefore the complex manifold T is not projective
algebraic, though it can, of course, be deformed to
an algebraic torus. The actual counterexample is
a suitable blowup of T × T . Consider the subvari-
eties T × {0}, {0} × T , the graph of the diagonal,
and the graph of Φ. Blow up the points of in-
tersection of the diagonals of the identity and of
Φ and also the intersection of T × {0} with the
graph of Φ. Then blow up the proper transforms
of the subvarieties to obtain a Kähler manifold V
with H2(V ) ∼= Λ2H1(T ). Any deformation of a
blowup of a complex torus is obtained first by de-
forming the torus and then deforming the blowup.
From this one sees that the wild endomorphism is
preserved. Therefore the Hodge structure H2(V )
contains no rational (1, 1) classes, and so V , and
indeed any Kähler manifold with the same coho-
mology ring as V , is not projective algebraic. The
same kind of construction yields a disproof of the
Kodaira conjecure in dimension four or greater.
Voisin also gives simply connected counterexam-
ples in dimension six and greater.
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