To bisect a given rectilineal angle.
Τὴν δοθεῖσαν γωνίαν εὐθύγραμμον δίχα τεμεῖν. Ἔστω ἡ δοθεῖσα γωνία εὐθύγραμμος ἡ ὑπὸ ΒΑΓ. δεῖ δὴ αὐτὴν δίχα τεμεῖν. Εἰλήφθω ἐπὶ τῆς ΑΒ τυχὸν σημεῖον τὸ Δ, καὶ ἀφῃρήσθω ἀπὸ τῆς ΑΓ τῇ ΑΔ ἴση ἡ ΑΕ, καὶ ἐπεζεύχθω ἡ ΔΕ, καὶ συνεστάτω ἐπὶ τῆς ΔΕ τρίγωνον ἰσόπλευρον τὸ ΔΕΖ, καὶ ἐπεζεύχθω ἡ ΑΖ: λέγω, ὅτι ἡ ὑπὸ ΒΑΓ γωνία δίχα τέτμηται ὑπὸ τῆς ΑΖ εὐθείας. Ἐπεὶ γὰρ ἴση ἐστὶν ἡ ΑΔ τῇ ΑΕ, κοινὴ δὲ ἡ ΑΖ, δύο δὴ αἱ ΔΑ, ΑΖ δυσὶ ταῖς ΕΑ, ΑΖ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ. καὶ βάσις ἡ ΔΖ βάσει τῇ ΕΖ ἴση ἐστίν: γωνία ἄρα ἡ ὑπὸ ΔΑΖ γωνίᾳ τῇ ὑπὸ ΕΑΖ ἴση ἐστίν. Ἡ ἄρα δοθεῖσα γωνία εὐθύγραμμος ἡ ὑπὸ ΒΑΓ δίχα τέτμηται ὑπὸ τῆς ΑΖ εὐθείας: ὅπερ ἔδει ποιῆσαι. | To bisect a given rectilineal angle. Let the angle BAC be the given rectilineal angle. Thus it is required to bisect it. Let a point D be taken at random on AB; let AE be cut off from AC equal to AD; [I. 3] let DE be joined, and on DE let the equilateral triangle DEF be constructed; let AF be joined. I say that the angle BAC has been bisected by the straight line AF. For, since AD is equal to AE, and AF is common, the two sides DA, AF are equal to the two sides EA, AF respectively. And the base DF is equal to the base EF; therefore the angle DAF is equal to the angle EAF. [I. 8] Therefore the given rectilineal angle BAC has been bisected by the straight line AF. |