The square on the straight line which produces with a rational area a medial whole, if applied to a rational straight line, produces as breadth a fifth apotome.
Τὸ ἀπὸ τῆς μετὰ ῥητοῦ μέσον τὸ ὅλον ποιούσης παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ ἀποτομὴν πέμπτην. Ἔστω ἡ μετὰ ῥητοῦ μέσον τὸ ὅλον ποιοῦσα ἡ ΑΒ, ῥητὴ δὲ ἡ ΓΔ, καὶ τῷ ἀπὸ τῆς ΑΒ ἴσον παρὰ τὴν ΓΔ παραβεβλήσθω τὸ ΓΕ πλάτος ποιοῦν τὴν ΓΖ: λέγω, ὅτι ἡ ΓΖ ἀποτομή ἐστι πέμπτη. Ἔστω γὰρ τῇ ΑΒ προσαρμόζουσα ἡ ΒΗ: αἱ ἄρα ΑΗ, ΗΒ εὐθεῖαι δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπ' αὐτῶν τετραγώνων μέσον, τὸ δὲ δὶς ὑπ' αὐτῶν ῥητόν. καὶ τῷ μὲν ἀπὸ τῆς ΑΗ ἴσον παρὰ τὴν ΓΔ παραβεβλήσθω τὸ ΓΘ, τῷ δὲ ἀπὸ τῆς ΗΒ ἴσον τὸ ΚΛ: ὅλον ἄρα τὸ ΓΛ ἴσον ἐστὶ τοῖς ἀπὸ τῶν ΑΗ, ΗΒ. τὸ δὲ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΗ, ΗΒ ἅμα μέσον ἐστίν: μέσον ἄρα ἐστὶ τὸ ΓΛ. καὶ παρὰ ῥητὴν τὴν ΓΔ παράκειται πλάτος ποιοῦν τὴν ΓΜ: ῥητὴ ἄρα ἐστὶν ἡ ΓΜ καὶ ἀσύμμετρος τῇ ΓΔ. καὶ ἐπεὶ ὅλον τὸ ΓΛ ἴσον ἐστὶ τοῖς ἀπὸ τῶν ΑΗ, ΗΒ, ὧν τὸ ΓΕ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΑΒ, λοιπὸν ἄρα τὸ ΖΛ ἴσον ἐστὶ τῷ δὶς ὑπὸ τῶν ΑΗ, ΗΒ. τετμήσθω οὖν ἡ ΖΜ δίχα κατὰ τὸ Ν, καὶ ἤχθω διὰ τοῦ Ν ὁποτέρᾳ τῶν ΓΔ, ΜΛ παράλληλος ἡ ΝΞ: ἑκάτερον ἄρα τῶν ΖΞ, ΝΛ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΑΗ, ΗΒ. καὶ ἐπεὶ τὸ δὶς ὑπὸ τῶν ΑΗ, ΗΒ ῥητόν ἐστι καί [ ἐστιν ] ἴσον τῷ ΖΛ, ῥητὸν ἄρα ἐστὶ τὸ ΖΛ. καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν τὴν ΖΜ: ῥητὴ ἄρα ἐστὶν ἡ ΖΜ καὶ σύμμετρος τῇ ΓΔ μήκει. καὶ ἐπεὶ τὸ μὲν ΓΛ μέσον ἐστίν, τὸ δὲ ΖΛ ῥητόν, ἀσύμμετρον ἄρα ἐστὶ τὸ ΓΛ τῷ ΖΛ. ὡς δὲ τὸ ΓΛ πρὸς τὸ ΖΛ, οὕτως ἡ ΓΜ πρὸς τὴν ΜΖ: ἀσύμμετρος ἄρα ἐστὶν ἡ ΓΜ τῇ ΜΖ μήκει. καί εἰσιν ἀμφότεραι ῥηταί: αἱ ἄρα ΓΜ, ΜΖ ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἀποτομὴ ἄρα ἐστὶν ἡ ΓΖ. Λέγω δή, ὅτι καὶ πέμπτη. Ὁμοίως γὰρ δείξομεν, ὅτι τὸ ὑπὸ τῶν ΓΚΜ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΝΜ, τουτέστι τῷ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΖΜ. καὶ ἐπεὶ ἀσύμμετρόν ἐστι τὸ ἀπὸ τῆς ΑΗ τῷ ἀπὸ τῆς ΗΒ, ἴσον δὲ τὸ μὲν ἀπὸ τῆς ΑΗ τῷ ΓΘ, τὸ δὲ ἀπὸ τῆς ΗΒ τῷ ΚΛ, ἀσύμμετρον ἄρα τὸ ΓΘ τῷ ΚΛ. ὡς δὲ τὸ ΓΘ πρὸς τὸ ΚΛ, οὕτως ἡ ΓΚ πρὸς τὴν ΚΜ: ἀσύμμετρος ἄρα ἡ ΓΚ τῇ ΚΜ μήκει. ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ, ΜΖ, καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΖΜ ἴσον παρὰ τὴν ΓΜ παραβέβληται ἐλλεῖπον εἴδει τετραγώνῳ καὶ εἰς ἀσύμμετρα αὐτὴν διαιρεῖ, ἡ ἄρα ΓΜ τῆς ΜΖ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ. καί ἐστιν ἡ προσαρμόζουσα ἡ ΖΜ σύμμετρος τῇ ἐκκειμένῃ ῥητῇ τῇ ΓΔ: ἡ ἄρα ΓΖ ἀποτομή ἐστι πέμπτη: ὅπερ ἔδει δεῖξαι. | The square on the straight line which produces with a rational area a medial whole, if applied to a rational straight line, produces as breadth a fifth apotome. Let AB be the straight line which produces with a rational area a medial whole, and CD a rational straight line, and to CD let CE be applied equal to the square on AB and producing CF as breadth; I say that CF is a fifth apotome. For let BG be the annex to AB; therefore AG, GB are straight lines incommensurable in square which make the sum of the squares on them medial but twice the rectangle contained by them rational. [X. 77] To CD let there be applied CH equal to the square on AG, and KL equal to the square on GB; therefore the whole CL is equal to the squares on AG, GB. But the sum of the squares on AG, GB together is medial; therefore CL is medial. And it is applied to the rational straight line CD, producing CM as breadth; therefore CM is rational and incommensurable with CD. [X. 22] And, since the whole CL is equal to the squares on AG, GB, and, in these, CE is equal to the square on AB, therefore the remainder FL is equal to twice the rectangle AG, GB. [II. 7] Let then FM be bisected at N, and through N let NO be drawn parallel to either of the straight lines CD, ML; therefore each of the rectangles FO, NL is equal to the rectangle AG, GB: And, since twice the rectangle AG, GB is rational and equal to FL, therefore FL is rational. And it is applied to the rational straight line EF, producing FM as breadth; therefore FM is rational and commensurable in length with CD. [X. 20] Now, since CL is medial, and FL rational, therefore CL is incommensurable with FL. But, as CL is to FL, so is CM to MF; [VI. 1] therefore CM is incommensurable in length with MF. [X. 11] And both are rational; therefore CM, MF are rational straight lines commensurable in square only; therefore CF is an apotome. [X. 73] I say next that it is also a fifth apotome. For we can prove similarly that the rectangle CK, KM is equal to the square on NM, that is, to the fourth part of the square on FM. And, since the square on AG is incommensurable with the square on GB, while the square on AG is equal to CH, and the square on GB to KL, therefore CH is incommensurable with KL. But, as CH is to KL, so is CK to KM; [VI. 1] therefore CK is incommensurable in length with KM. [X. 11] Since then CM, MF are two unequal straight lines, and a parallelogram equal to the fourth part of the square on FM and deficient by a square figure has been applied to CM, and divides it into incommensurable parts, therefore the square on CM is greater than the square on MF by the square on a straight line incommensurable with CM. [X. 18] |