If from a medial area a rational area be subtracted, there arise two other irrational straight lines, either a first apotome of a medial straight line or a straight line which produces with a rational area a medial whole.
Ἀπὸ μέσου ῥητοῦ ἀφαιρουμένου ἄλλαι δύο ἄλογοι γίνονται ἤτοι μέσης ἀποτομὴ πρώτη ἢ μετὰ ῥητοῦ μέσον τὸ ὅλον ποιοῦσα. Ἀπὸ γὰρ μέσου τοῦ ΒΓ ῥητὸν ἀφῃρήσθω τὸ ΒΔ. λέγω, ὅτι ἡ τὸ λοιπὸν τὸ ΕΓ δυναμένη μία δύο ἀλόγων γίνεται ἤτοι μέσης ἀποτομὴ πρώτη ἢ μετὰ ῥητοῦ μέσον τὸ ὅλον ποιοῦσα. Ἐκκείσθω γὰρ ῥητὴ ἡ ΖΗ, καὶ παραβεβλήσθω ὁμοίως τὰ χωρία. ἔστι δὴ ἀκολούθως ῥητὴ μὲν ἡ ΖΘ καὶ ἀσύμμετρος τῇ ΖΗ μήκει, ῥητὴ δὲ ἡ ΚΖ καὶ σύμμετρος τῇ ΖΗ μήκει: αἱ ΖΘ, ΖΚ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι: ἀποτομὴ ἄρα ἐστὶν ἡ ΚΘ, προσαρμόζουσα δὲ ταύτῃ ἡ ΖΚ. ἤτοι δὴ ἡ ΘΖ τῆς ΖΚ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ ἢ τῷ ἀπὸ ἀσυμμέτρου. Εἰ μὲν οὖν ἡ ΘΖ τῆς ΖΚ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ, καί ἐστιν ἡ προσαρμόζουσα ἡ ΖΚ σύμμετρος τῇ ἐκκειμένῃ ῥητῇ μήκει τῇ ΖΗ, ἀποτομὴ δευτέρα ἐστὶν ἡ ΚΘ. ῥητὴ δὲ ἡ ΖΗ: ὥστε ἡ τὸ ΛΘ, τουτέστι τὸ ΕΓ, δυναμένη μέσης ἀποτομὴ πρώτη ἐστίν. Εἰ δὲ ἡ ΘΖ τῆς ΖΚ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου, καί ἐστιν ἡ προσαρμόζουσα ἡ ΖΚ σύμμετρος τῇ ἐκκειμένῃ ῥητῇ μήκει τῇ ΖΗ, ἀποτομὴ πέμπτη ἐστὶν ἡ ΚΘ: ὥστε ἡ τὸ ΕΓ δυναμένη μετὰ ῥητοῦ μέσον τὸ ὅλον ποιοῦσά ἐστιν: ὅπερ ἔδει δεῖξαι. | If from a medial area a rational area be subtracted, there arise two other irrational straight lines, either a first apotome of a medial straight line or a straight line which produces with a rational area a medial whole. For from the medial area BC let the rational area BD be subtracted. I say that the “side” of the remainder EC becomes one of two irrational straight lines, either a first apotome of a medial straight line or a straight line which produces with a rational area a medial whole. For let a rational straight line FG be set out, and let the areas be similarly applied. It follows then that FH is rational and incommensurable in length with FG, while KF is rational and commensurable in length with FG; therefore FH, FK are rational straight lines commensurable in square only; [X. 13] therefore KH is an apotome, and FK the annex to it. [X. 73] Now the square on HF is greater than the square on FK either by the square on a straight line commensurable with HF or by the square on a straight line incommensurable with it. If then the square on HF is greater than the square on FK by the square on a straight line commensurable with HF, while the annex FK is commensurable in length with the rational straight line FG set out, KH is a second apotome. [X. Deff. III. 2] But FG is rational; so that the “side” of LH, that is, of EC, is a first apotome of a medial straight line. [X. 92] |