If there be two unequal straight lines, and to the greater there be applied a parallelogram equal to the fourth part of the square on the less and deficient by a square figure, and if it divide it into parts which are commensurable in length, then the square on the greater will be greater than the square on the less by the square on a straight line commensurable with the greater.
Ἐὰν ὦσι δύο εὐθεῖαι ἄνισοι, τῷ δὲ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ἐλάσσονος ἴσον παρὰ τὴν μείζονα παραβληθῇ ἐλλεῖπον εἴδει τετραγώνῳ καὶ εἰς σύμμετρα αὐτὴν διαιρῇ μήκει, ἡ μείζων τῆς ἐλάσσονος μεῖζον δυνήσεται τῷ ἀπὸ συμμέτρου ἑαυτῇ [ μήκει ]. καὶ ἐὰν ἡ μείζων τῆς ἐλάσσονος μεῖζον δύνηται τῷ ἀπὸ συμμέτρου ἑαυτῇ [ μήκει ], τῷ δὲ τετάρτῳ τοῦ ἀπὸ τῆς ἐλάσσονος ἴσον παρὰ τὴν μείζονα παραβληθῇ ἐλλεῖπον εἴδει τετραγώνῳ, εἰς σύμμετρα αὐτὴν διαιρεῖ μήκει. Ἔστωσαν δύο εὐθεῖαι ἄνισοι αἱ Α, ΒΓ, ὧν μείζων ἡ ΒΓ, τῷ δὲ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ἐλάσσονος τῆς Α, τουτέστι τῷ ἀπὸ τῆς ἡμισείας τῆς Α, ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώνῳ, καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ, ΔΓ, σύμμετρος δὲ ἔστω ἡ ΒΔ τῇ ΔΓ μήκει: λέγω, ὅτι ἡ ΒΓ τῆς Α μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ. Τετμήσθω γὰρ ἡ ΒΓ δίχα κατὰ τὸ Ε σημεῖον, καὶ κείσθω τῇ ΔΕ ἴση ἡ ΕΖ. λοιπὴ ἄρα ἡ ΔΓ ἴση ἐστὶ τῇ ΒΖ. καὶ ἐπεὶ εὐθεῖα ἡ ΒΓ τέτμηται εἰς μὲν ἴσα κατὰ τὸ Ε, εἰς δὲ ἄνισα κατὰ τὸ Δ, τὸ ἄρα ὑπὸ ΒΔ, ΔΓ περιεχόμενον ὀρθογώνιον μετὰ τοῦ ἀπὸ τῆς ΕΔ τετραγώνου ἴσον ἐστὶ τῷ ἀπὸ τῆς ΕΓ τετραγώνῳ: καὶ τὰ τετραπλάσια: τὸ ἄρα τετράκις ὑπὸ τῶν ΒΔ, ΔΓ μετὰ τοῦ τετραπλασίου τοῦ ἀπὸ τῆς ΔΕ ἴσον ἐστὶ τῷ τετράκις ἀπὸ τῆς ΕΓ τετραγώνῳ. ἀλλὰ τῷ μέν τετραπλασίῳ τοῦ ὑπὸ τῶν ΒΔ, ΔΓ ἴσον ἐστὶ τὸ ἀπὸ τῆς Α τετράγωνον, τῷ δὲ τετραπλασίῳ τοῦ ἀπὸ τῆς ΔΕ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΔΖ τετράγωνον: διπλασίων γάρ ἐστιν ἡ ΔΖ τῆς ΔΕ. τῷ δὲ τετραπλασίῳ τοῦ ἀπὸ τῆς ΕΓ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΒΓ τετράγωνον: διπλασίων γάρ ἐστι πάλιν ἡ ΒΓ τῆς ΓΕ. τὰ ἄρα ἀπὸ τῶν Α, ΔΖ τετράγωνα ἴσα ἐστὶ τῷ ἀπὸ τῆς ΒΓ τετραγώνῳ: ὥστε τὸ ἀπὸ τῆς ΒΓ τοῦ ἀπὸ τῆς Α μεῖζόν ἐστι τῷ ἀπὸ τῆς ΔΖ: ἡ ΒΓ ἄρα τῆς Α μεῖζον δύναται τῇ ΔΖ. δεικτέον, ὅτι καὶ σύμμετρός ἐστιν ἡ ΒΓ τῇ ΔΖ. ἐπεὶ γὰρ σύμμετρός ἐστιν ἡ ΒΔ τῇ ΔΓ μήκει, σύμμετρος ἄρα ἐστὶ καὶ ἡ ΒΓ τῇ ΓΔ μήκει. ἀλλὰ ἡ ΓΔ ταῖς ΓΔ, ΒΖ ἐστι σύμμετρος μήκει: ἴση γάρ ἐστιν ἡ ΓΔ τῇ ΒΖ. καὶ ἡ ΒΓ ἄρα σύμμετρός ἐστι ταῖς ΒΖ, ΓΔ μήκει: ὥστε καὶ λοιπῇ τῇ ΖΔ σύμμετρός ἐστιν ἡ ΒΓ μήκει: ἡ ΒΓ ἄρα τῆς Α μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ. Ἀλλὰ δὴ ἡ ΒΓ τῆς Α μεῖζον δυνάσθω τῷ ἀπὸ συμμέτρου ἑαυτῇ, τῷ δὲ τετάρτῳ τοῦ ἀπὸ τῆς Α ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώνῳ, καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ, ΔΓ. δεικτέον, ὅτι σύμμετρός ἐστιν ἡ ΒΔ τῇ ΔΓ μήκει. Τῶν γὰρ αὐτῶν κατασκευασθέντων ὁμοίως δείξομεν, ὅτι ἡ ΒΓ τῆς Α μεῖζον δύναται τῷ ἀπὸ τῆς ΖΔ. δύναται δὲ ἡ ΒΓ τῆς Α μεῖζον τῷ ἀπὸ συμμέτρου ἑαυτῇ. σύμμετρος ἄρα ἐστὶν ἡ ΒΓ τῇ ΖΔ μήκει: ὥστε καὶ λοιπῇ συναμφοτέρῳ τῇ ΒΖ, ΔΓ σύμμετρός ἐστιν ἡ ΒΓ μήκει. ἀλλὰ συναμφότερος ἡ ΒΖ, ΔΓ σύμμετρός ἐστι τῇ ΔΓ [ μήκει ]. ὥστε καὶ ἡ ΒΓ τῇ ΓΔ σύμμετρός ἐστι μήκει: καὶ διελόντι ἄρα ἡ ΒΔ τῇ ΔΓ ἐστι σύμμετρος μήκει. Ἐὰν ἄρα ὦσι δύο εὐθεῖαι ἄνισοι, καὶ τὰ ἑξῆς. | If there be two unequal straight lines, and to the greater there be applied a parallelogram equal to the fourth part of the square on the less and deficient by a square figure, and if it divide it into parts which are commensurable in length, then the square on the greater will be greater than the square on the less by the square on a straight line commensurable with the greater. And, if the square on the greater be greater than the square on the less by the square on a straight line commensurable with the greater, and if there be applied to the greater a parallelogram equal to the fourth part of the square on the less and deficient by a square figure, it will divide it into parts which are commensurable in length. Let A, BC be two unequal straight lines, of which BC is the greater, and let there be applied to BC a parallelogram equal to the fourth part of the square on the less, A, that is, equal to the square on the half of A, and deficient by a square figure. Let this be the rectangle BD, DC, [cf. Lemma] and let BD be commensurable in length with DC; I say that the square on BC is greater than the square on A by the square on a straight line commensurable with BC. For let BC be bisected at the point E, and let EF be made equal to DE. Therefore the remainder DC is equal to BF. And, since the straight line BC has been cut into equal parts at E, and into unequal parts at D, therefore the rectangle contained by BD, DC, together with the square on ED, is equal to the square on EC; [II. 5] And the same is true of their quadruples; therefore four times the rectangle BD, DC, together with four times the square on DE, is equal to four times the square on EC. But the square on A is equal to four times the rectangle BD, DC; and the square on DF is equal to four times the square on DE, for DF is double of DE. And the square on BC is equal to four times the square on EC, for again BC is double of CE. Therefore the squares on A, DF are equal to the square on BC, so that the square on BC is greater than the square on A by the square on DF. It is to be proved that BC is also commensurable with DF. Since BD is commensurable in length with DC, therefore BC is also commensurable in length with CD. [X. 15] But CD is commensurable in length with CD, BF, for CD is equal to BF. [X. 6] Therefore BC is also commensurable in length with BF, CD, [X. 12] so that BC is also commensurable in length with the remainder FD; [X. 15] therefore the square on BC is greater than the square on A by the square on a straight line commensurable with BC. Next, let the square on BC be greater than the square on A by the square on a straight line commensurable with BC, let a parallelogram be applied to BC equal to the fourth part of the square on A and deficient by a square figure, and let it be the rectangle BD, DC. It is to be proved that BD is commensurable in length with DC. With the same construction, we can prove similarly that the square on BC is greater than the square on A by the square on FD. But the square on BC is greater than the square on A by the square on a straight line commensurable with BC. Therefore BC is commensurable in length with FD, so that BC is also commensurable in length with the remainder, the sum of BF, DC. [X. 15] But the sum of BF, DC is commensurable with DC, [X. 6] so that BC is also commensurable in length with CD; [X. 12] and therefore, separando, BD is commensurable in length with DC. [X. 15] |