If a straight line touch a circle, and from the point of contact a straight line be drawn at right angles to the tangent, the centre of the circle will be on the straight line so drawn.
Ἐὰν κύκλου ἐφάπτηταί τις εὐθεῖα, ἀπὸ δὲ τῆς ἁφῆς τῇ ἐφαπτομένῃ πρὸς ὀρθὰς [ γωνίας ] εὐθεῖα γραμμὴ ἀχθῇ, ἐπὶ τῆς ἀχθείσης ἔσται τὸ κέντρον τοῦ κύκλου. Κύκλου γὰρ τοῦ ΑΒΓ ἐφαπτέσθω τις εὐθεῖα ἡ ΔΕ κατὰ τὸ Γ σημεῖον, καὶ ἀπὸ τοῦ Γ τῇ ΔΕ πρὸς ὀρθὰς ἤχθω ἡ ΓΑ: λέγω, ὅτι ἐπὶ τῆς ΑΓ ἐστι τὸ κέντρον τοῦ κύκλου. Μὴ γάρ, ἀλλ' εἰ δυνατόν, ἔστω τὸ Ζ, καὶ ἐπεζεύχθω ἡ ΓΖ. Ἐπεὶ [ οὖν ] κύκλου τοῦ ΑΒΓ ἐφάπτεταί τις εὐθεῖα ἡ ΔΕ, ἀπὸ δὲ τοῦ κέντρου ἐπὶ τὴν ἁφὴν ἐπέζευκται ἡ ΖΓ, ἡ ΖΓ ἄρα κάθετός ἐστιν ἐπὶ τὴν ΔΕ: ὀρθὴ ἄρα ἐστὶν ἡ ὑπὸ ΖΓΕ. ἐστὶ δὲ καὶ ἡ ὑπὸ ΑΓΕ ὀρθή: ἴση ἄρα ἐστὶν ἡ ὑπὸ ΖΓΕ τῇ ὑπὸ ΑΓΕ ἡ ἐλάττων τῇ μείζονι: ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα τὸ Ζ κέντρον ἐστὶ τοῦ ΑΒΓ κύκλου. ὁμοίως δὴ δείξομεν, ὅτι οὐδ' ἄλλο τι πλὴν ἐπὶ τῆς ΑΓ. Ἐὰν ἄρα κύκλου ἐφάπτηταί τις εὐθεῖα, ἀπὸ δὲ τῆς ἁφῆς τῇ ἐφαπτομένῃ πρὸς ὀρθὰς εὐθεῖα γραμμὴ ἀχθῇ, ἐπὶ τῆς ἀχθείσης ἔσται τὸ κέντρον τοῦ κύκλου: ὅπερ ἔδει δεῖξαι. | If a straight line touch a circle, and from the point of contact a straight line be drawn at right angles to the tangent, the centre of the circle will be on the straight line so drawn. For let a straight line DE touch the circle ABC at the point C, and from C let CA be drawn at right angles to DE; I say that the centre of the circle is on AC. For suppose it is not, but, if possible, let F be the centre, and let CF be joined. Since a straight line DE touches the circle ABC, and FC has been joined from the centre to the point of contact, FC is perpendicular to DE; [III. 18] therefore the angle FCE is right. But the angle ACE is also right; therefore the angle FCE is equal to the angle ACE, the less to the greater: which is impossible. Therefore F is not the centre of the circle ABC. Similarly we can prove that neither is any other point except a point on AC. |