If in a circle two straight lines cut one another, the rectangle contained by the segments of the one is equal to the rectangle contained by the segments of the other.
Ἐὰν ἐν κύκλῳ δύο εὐθεῖαι τέμνωσιν ἀλλήλας, τὸ ὑπὸ τῶν τῆς μιᾶς τμημάτων περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ὑπὸ τῶν τῆς ἑτέρας τμημάτων περιεχομένῳ ὀρθογωνίῳ. Ἐν γὰρ κύκλῳ τῷ ΑΒΓΔ δύο εὐθεῖαι αἱ ΑΓ, ΒΔ τεμνέτωσαν ἀλλήλας κατὰ τὸ Ε σημεῖον: λέγω, ὅτι τὸ ὑπὸ τῶν ΑΕ, ΕΓ περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ὑπὸ τῶν ΔΕ, ΕΒ περιεχομένῳ ὀρθογωνίῳ. Εἰ μὲν οὖν αἱ ΑΓ, ΒΔ διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου, φανερόν, ὅτι ἴσων οὐσῶν τῶν ΑΕ, ΕΓ, ΔΕ, ΕΒ καὶ τὸ ὑπὸ τῶν ΑΕ, ΕΓ περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ὑπὸ τῶν ΔΕ, ΕΒ περιεχομένῳ ὀρθογωνίῳ. Μὴ ἔστωσαν δὴ αἱ ΑΓ, ΔΒ διὰ τοῦ κέντρου, καὶ εἰλήφθω τὸ κέντρον τοῦ ΑΒΓΔ, καὶ ἔστω τὸ Ζ, καὶ ἀπὸ τοῦ Ζ ἐπὶ τὰς ΑΓ, ΔΒ εὐθείας κάθετοι ἤχθωσαν αἱ ΖΗ, ΖΘ, καὶ ἐπεζεύχθωσαν αἱ ΖΒ, ΖΓ, ΖΕ. Καὶ ἐπεὶ εὐθεῖά τις διὰ τοῦ κέντρου ἡ ΗΖ εὐθεῖάν τινα μὴ διὰ τοῦ κέντρου τὴν ΑΓ πρὸς ὀρθὰς τέμνει, καὶ δίχα αὐτὴν τέμνει: ἴση ἄρα ἡ ΑΗ τῇ ΗΓ. ἐπεὶ οὖν εὐθεῖα ἡ ΑΓ τέτμηται εἰς μὲν ἴσα κατὰ τὸ Η, εἰς δὲ ἄνισα κατὰ τὸ Ε, τὸ ἄρα ὑπὸ τῶν ΑΕ, ΕΓ περιεχόμενον ὀρθογώνιον μετὰ τοῦ ἀπὸ τῆς ΕΗ τετραγώνου ἴσον ἐστὶ τῷ ἀπὸ τῆς ΗΓ: [ κοινὸν ] προσκείσθω τὸ ἀπὸ τῆς ΗΖ: τὸ ἄρα ὑπὸ τῶν ΑΕ, ΕΓ μετὰ τῶν ἀπὸ τῶν ΗΕ, ΗΖ ἴσον ἐστὶ τοῖς ἀπὸ τῶν ΓΗ, ΗΖ. ἀλλὰ τοῖς μὲν ἀπὸ τῶν ΕΗ, ΗΖ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΖΕ, τοῖς δὲ ἀπὸ τῶν ΓΗ, ΗΖ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΖΓ: τὸ ἄρα ὑπὸ τῶν ΑΕ, ΕΓ μετὰ τοῦ ἀπὸ τῆς ΖΕ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΖΓ. ἴση δὲ ἡ ΖΓ τῇ ΖΒ: τὸ ἄρα ὑπὸ τῶν ΑΕ, ΕΓ μετὰ τοῦ ἀπὸ τῆς ΕΖ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΖΒ. διὰ τὰ αὐτὰ δὴ καὶ τὸ ὑπὸ τῶν ΔΕ, ΕΒ μετὰ τοῦ ἀπὸ τῆς ΖΕ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΖΒ. ἐδείχθη δὲ καὶ τὸ ὑπὸ τῶν ΑΕ, ΕΓ μετὰ τοῦ ἀπὸ τῆς ΖΕ ἴσον τῷ ἀπὸ τῆς ΖΒ: τὸ ἄρα ὑπὸ τῶν ΑΕ, ΕΓ μετὰ τοῦ ἀπὸ τῆς ΖΕ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΔΕ, ΕΒ μετὰ τοῦ ἀπὸ τῆς ΖΕ. κοινὸν ἀφῃρήσθω τὸ ἀπὸ τῆς ΖΕ: λοιπὸν ἄρα τὸ ὑπὸ τῶν ΑΕ, ΕΓ περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ὑπὸ τῶν ΔΕ, ΕΒ περιεχομένῳ ὀρθογωνίῳ. Ἐὰν ἄρα ἐν κύκλῳ εὐθεῖαι δύο τέμνωσιν ἀλλήλας, τὸ ὑπὸ τῶν τῆς μιᾶς τμημάτων περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ὑπὸ τῶν τῆς ἑτέρας τμημάτων περιεχομένῳ ὀρθογωνίῳ: ὅπερ ἔδει δεῖξαι. | If in a circle two straight lines cut one another, the rectangle contained by the segments of the one is equal to the rectangle contained by the segments of the other. For in the circle ABCD let the two straight lines AC, BD cut one another at the point E; I say that the rectangle contained by AE, EC is equal to the rectangle contained by DE, EB. If now AC, BD are through the centre, so that E is the centre of the circle ABCD, it is manifest that, AE, EC, DE, EB being equal, the rectangle contained by AE, EC is also equal to the rectangle contained by DE, EB. Next let AC, DB not be through the centre; let the centre of ABCD be taken, and let it be F; from F let FG, FH be drawn perpendicular to the straight lines AC, DB, and let FB, FC, FE be joined. Then, since a straight line GF through the centre cuts a straight line AC not through the centre at right angles, it also bisects it; [III. 3] therefore AG is equal to GC. Since, then, the straight line AC has been cut into equal parts at G and into unequal parts at E, the rectangle contained by AE, EC together with the square on EG is equal to the square on GC; [II. 5] Let the square on GF be added; therefore the rectangle AE, EC together with the squares on GE, GF is equal to the squares on CG, GF. But the square on FE is equal to the squares on EG, GF, and the square on FC is equal to the squares on CG, GF; [I. 47] therefore the rectangle AE, EC together with the square on FE is equal to the square on FC. And FC is equal to FB; therefore the rectangle AE, EC together with the square on EF is equal to the square on FB. For the same reason, also, the rectangle DE, EB together with the square on FE is equal to the square on FB. But the rectangle AE, EC together with the square on FE was also proved equal to the square on FB; therefore the rectangle AE, EC together with the square on FE is equal to the rectangle DE, EB together with the square on FE. Let the square on FE be subtracted from each; therefore the rectangle contained by AE, EC which remains is equal to the rectangle contained by DE, EB. |