If a point be taken outside a circle and from the point straight lines be drawn through to the circle, one of which is through the centre and the others are drawn at random, then, of the straight lines which fall on the concave circumference, that through the centre is greatest, while of the rest the nearer to that through the centre is always greater than the more remote, but, of the straight lines falling on the convex circumference, that between the point and the diameter is least, while of the rest the nearer to the least is always less than the more remote, and only two equal straight lines will fall on the circle from the point, one on each side of the least.
Ἐὰν κύκλου ληφθῇ τι σημεῖον ἐκτός, ἀπὸ δὲ τοῦ σημείου πρὸς τὸν κύκλον διαχθῶσιν εὐθεῖαί τινες, ὧν μία μὲν διὰ τοῦ κέντρου, αἱ δὲ λοιπαί, ὡς ἔτυχεν, τῶν μὲν πρὸς τὴν κοίλην περιφέρειαν προσπιπτουσῶν εὐθειῶν μεγίστη μέν ἐστιν ἡ διὰ τοῦ κέντρου, τῶν δὲ ἄλλων ἀεὶ ἡ ἔγγιον τῆς διὰ τοῦ κέντρου τῆς ἀπώτερον μείζων ἐστίν, τῶν δὲ πρὸς τὴν κυρτὴν περιφέρειαν προσπιπτουσῶν εὐθειῶν ἐλαχίστη μέν ἐστιν ἡ μεταξὺ τοῦ τε σημείου καὶ τῆς διαμέτρου, τῶν δὲ ἄλλων ἀεὶ ἡ ἔγγιον τῆς ἐλαχίστης τῆς ἀπώτερόν ἐστιν ἐλάττων, δύο δὲ μόνον ἴσαι ἀπὸ τοῦ σημείου προσπεσοῦνται πρὸς τὸν κύκλον ἐφ' ἑκάτερα τῆς ἐλαχίστης. Ἔστω κύκλος ὁ ΑΒΓ, καὶ τοῦ ΑΒΓ εἰλήφθω τι σημεῖον ἐκτὸς τὸ Δ, καὶ ἀπ' αὐτοῦ διήχθωσαν εὐθεῖαί τινες αἱ ΔΑ, ΔΕ, ΔΖ, ΔΓ, ἔστω δὲ ἡ ΔΑ διὰ τοῦ κέντρου. λέγω, ὅτι τῶν μὲν πρὸς τὴν ΑΕΖΓ κοίλην περιφέρειαν προσπιπτουσῶν εὐθειῶν μεγίστη μέν ἐστιν ἡ διὰ τοῦ κέντρου ἡ ΔΑ, μείζων δὲ ἡ μὲν ΔΕ τῆς ΔΖ ἡ δὲ ΔΖ τῆς ΔΓ, τῶν δὲ πρὸς τὴν ΘΛΚΗ κυρτὴν περιφέρειαν προσπιπτουσῶν εὐθειῶν ἐλαχίστη μέν ἐστιν ἡ ΔΗ ἡ μεταξὺ τοῦ σημείου καὶ τῆς διαμέτρου τῆς ΑΗ, ἀεὶ δὲ ἡ ἔγγιον τῆς ΔΗ ἐλαχίστης ἐλάττων ἐστὶ τῆς ἀπώτερον, ἡ μὲν ΔΚ τῆς ΔΛ, ἡ δὲ ΔΛ τῆς ΔΘ. Εἰλήφθω γὰρ τὸ κέντρον τοῦ ΑΒΓ κύκλου καὶ ἔστω τὸ Μ: καὶ ἐπεζεύχθωσαν αἱ ΜΕ, ΜΖ, ΜΓ, ΜΚ, ΜΛ, ΜΘ. Καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΜ τῇ ΕΜ, κοινὴ προσκείσθω ἡ ΜΔ: ἡ ἄρα ΑΔ ἴση ἐστὶ ταῖς ΕΜ, ΜΔ. ἀλλ' αἱ ΕΜ, ΜΔ τῆς ΕΔ μείζονές εἰσιν: καὶ ἡ ΑΔ ἄρα τῆς ΕΔ μείζων ἐστίν. πάλιν, ἐπεὶ ἴση ἐστὶν ἡ ΜΕ τῇ ΜΖ, κοινὴ δὲ ἡ ΜΔ, αἱ ΕΜ, ΜΔ ἄρα ταῖς ΖΜ, ΜΔ ἴσαι εἰσίν: καὶ γωνία ἡ ὑπὸ ΕΜΔ γωνίας τῆς ὑπὸ ΖΜΔ μείζων ἐστίν. βάσις ἄρα ἡ ΕΔ βάσεως τῆς ΖΔ μείζων ἐστίν. ὁμοίως δὴ δείξομεν, ὅτι καὶ ἡ ΖΔ τῆς ΓΔ μείζων ἐστίν: μεγίστη μὲν ἄρα ἡ ΔΑ, μείζων δὲ ἡ μὲν ΔΕ τῆς ΔΖ, ἡ δὲ ΔΖ τῆς ΔΓ. Καὶ ἐπεὶ αἱ ΜΚ, ΚΔ τῆς ΜΔ μείζονές εἰσιν, ἴση δὲ ἡ ΜΗ τῇ ΜΚ, λοιπὴ ἄρα ἡ ΚΔ λοιπῆς τῆς ΗΔ μείζων ἐστίν: ὥστε ἡ ΗΔ τῆς ΚΔ ἐλάττων ἐστίν: καὶ ἐπεὶ τριγώνου τοῦ ΜΛΔ ἐπὶ μιᾶς τῶν πλευρῶν τῆς ΜΔ δύο εὐθεῖαι ἐντὸς συνεστάθησαν αἱ ΜΚ, ΚΔ, αἱ ἄρα ΜΚ, ΚΔ τῶν ΜΛ, ΛΔ ἐλάττονές εἰσιν: ἴση δὲ ἡ ΜΚ τῇ ΜΛ: λοιπὴ ἄρα ἡ ΔΚ λοιπῆς τῆς ΔΛ ἐλάττων ἐστίν. ὁμοίως δὴ δείξομεν, ὅτι καὶ ἡ ΔΛ τῆς ΔΘ ἐλάττων ἐστίν: ἐλαχίστη μὲν ἄρα ἡ ΔΗ, ἐλάττων δὲ ἡ μὲν ΔΚ τῆς ΔΛ ἡ δὲ ΔΛ τῆς ΔΘ. Λέγω, ὅτι καὶ δύο μόνον ἴσαι ἀπὸ τοῦ Δ σημείου προσπεσοῦνται πρὸς τὸν κύκλον ἐφ' ἑκάτερα τῆς ΔΗ ἐλαχίστης: συνεστάτω πρὸς τῇ ΜΔ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Μ τῇ ὑπὸ ΚΜΔ γωνίᾳ ἴση γωνία ἡ ὑπὸ ΔΜΒ καὶ ἐπεζεύχθω ἡ ΔΒ. καὶ ἐπεὶ ἴση ἐστὶν ἡ ΜΚ τῇ ΜΒ, κοινὴ δὲ ἡ ΜΔ, δύο δὴ αἱ ΚΜ, ΜΔ δύο ταῖς ΒΜ, ΜΔ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ: καὶ γωνία ἡ ὑπὸ ΚΜΔ γωνίᾳ τῇ ὑπὸ ΒΜΔ ἴση: βάσις ἄρα ἡ ΔΚ βάσει τῇ ΔΒ ἴση ἐστίν. λέγω [ δή ], ὅτι τῇ ΔΚ εὐθείᾳ ἄλλη ἴση οὐ προσπεσεῖται πρὸς τὸν κύκλον ἀπὸ τοῦ Δ σημείου. εἰ γὰρ δυνατόν, προσπιπτέτω καὶ ἔστω ἡ ΔΝ. ἐπεὶ οὖν ἡ ΔΚ τῇ ΔΝ ἐστιν ἴση, ἀλλ' ἡ ΔΚ τῇ ΔΒ ἐστιν ἴση, καὶ ἡ ΔΒ ἄρα τῇ ΔΝ ἐστιν ἴση, ἡ ἔγγιον τῆς ΔΗ ἐλαχίστης τῇ ἀπώτερον [ ἐστιν ] ἴση: ὅπερ ἀδύνατον ἐδείχθη. οὐκ ἄρα πλείους ἢ δύο ἴσαι πρὸς τὸν ΑΒΓ κύκλον ἀπὸ τοῦ Δ σημείου ἐφ' ἑκάτερα τῆς ΔΗ ἐλαχίστης προσπεσοῦνται. Ἐὰν ἄρα κύκλου ληφθῇ τι σημεῖον ἐκτός, ἀπὸ δὲ τοῦ σημείου πρὸς τὸν κύκλον διαχθῶσιν εὐθεῖαί τινες, ὧν μία μὲν διὰ τοῦ κέντρου αἱ δὲ λοιπαί, ὡς ἔτυχεν, τῶν μὲν πρὸς τὴν κοίλην περιφέρειαν προσπιπτουσῶν εὐθειῶν μεγίστη μέν ἐστιν ἡ διὰ τοῦ κέντρου, τῶν δὲ ἄλλων ἀεὶ ἡ ἔγγιον τῆς διὰ τοῦ κέντρου τῆς ἀπώτερον μείζων ἐστίν, τῶν δὲ πρὸς τὴν κυρτὴν περιφέρειαν προσπιπτουσῶν εὐθειῶν ἐλαχίστη μέν ἐστιν ἡ μεταξὺ τοῦ τε σημείου καὶ τῆς διαμέτρου, τῶν δὲ ἄλλων ἀεὶ ἡ ἔγγιον τῆς ἐλαχίστης τῆς ἀπώτερόν ἐστιν ἐλάττων, δύο δὲ μόνον ἴσαι ἀπὸ τοῦ σημείου προσπεσοῦνται πρὸς τὸν κύκλον ἐφ' ἑκάτερα τῆς ἐλαχίστης: ὅπερ ἔδει δεῖξαι. | If a point be taken outside a circle and from the point straight lines be drawn through to the circle, one of which is through the centre and the others are drawn at random, then, of the straight lines which fall on the concave circumference, that through the centre is greatest, while of the rest the nearer to that through the centre is always greater than the more remote, but, of the straight lines falling on the convex circumference, that between the point and the diameter is least, while of the rest the nearer to the least is always less than the more remote, and only two equal straight lines will fall on the circle from the point, one on each side of the least. Let ABC be a circle, and let a point D be taken outside ABC; let there be drawn through from it straight lines DA, DE, DF, DC, and let DA be through the centre; I say that, of the straight lines falling on the concave circumference AEFC, the straight line DA through the centre is greatest, while DE is greater than DF and DF than DC.; but, of the straight lines falling on the convex circumference HLKG, the straight line DG between the point and the diameter AG is least; and the nearer to the least DG is always less than the more remote, namely DK than DL, and DL than DH. For let the centre of the circle ABC be taken [III. 1], and let it be M; let ME, MF, MC, MK, ML, MH be joined. Then, since AM is equal to EM, let MD be added to each; therefore AD is equal to EM, MD. But EM, MD are greater than ED; [I. 20] therefore AD is also greater than ED. Again, since ME is equal to MF, and MD is common, therefore EM, MD are equal to FM, MD; and the angle EMD is greater than the angle FMD; therefore the base ED is greater than the base FD. [I. 24] Similarly we can prove that FD is greater than CD; therefore DA is greatest, while DE is greater than DF, and DF than DC. Next, since MK, KD are greater than MD, [I. 20] and MG is equal to MK, therefore the remainder KD is greater than the remainder GD, so that GD is less than KD. And, since on MD, one of the sides of the triangle MLD, two straight lines MK, KD were constructed meeting within the triangle, therefore MK, KD are less than ML, LD; [I. 21] and MK is equal to ML; therefore the remainder DK is less than the remainder DL. Similarly we can prove that DL is also less than DH; therefore DG is least, while DK is less than DL, and DL than DH. I say also that only two equal straight lines will fall from the point D on the circle, one on each side of the least DG. On the straight line MD, and at the point M on it, let the angle DMB be constructed equal to the angle KMD, and let DB be joined. Then, since MK is equal to MB, and MD is common, the two sides KM, MD are equal to the two sides BM, MD respectively; and the angle KMD is equal to the angle BMD; therefore the base DK is equal to the base DB. [I. 4] I say that no other straight line equal to the straight line DK will fall on the circle from the point D. For, if possible, let a straight line so fall, and let it be DN. Then, since DK is equal to DN, while DK is equal to DB, DB is also equal to DN, that is, the nearer to the least DG equal to the more remote: which was proved impossible. Therefore no more than two equal straight lines will fall on the circle ABC from the point D, one on each side of DG the least. |