In a given circle to inscribe an equilateral and equiangular hexagon.
Εἰς τὸν δοθέντα κύκλον ἑξάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγράψαι. Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕΖ: δεῖ δὴ εἰς τὸν ΑΒΓΔΕΖ κύκλον ἑξάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγράψαι. Ἤχθω τοῦ ΑΒΓΔΕΖ κύκλου διάμετρος ἡ ΑΔ, καὶ εἰλήφθω τὸ κέντρον τοῦ κύκλου τὸ Η, καὶ κέντρῳ μὲν τῷ Δ διαστήματι δὲ τῷ ΔΗ κύκλος γεγράφθω ὁ ΕΗΓΘ, καὶ ἐπιζευχθεῖσαι αἱ ΕΗ, ΓΗ διήχθωσαν ἐπὶ τὰ Β, Ζ σημεῖα, καὶ ἐπεζεύχθωσαν αἱ ΑΒ, ΒΓ, ΓΔ, ΔΕ, ΕΖ, ΖΑ: λέγω, ὅτι τὸ ΑΒΓΔΕΖ ἑξάγωνον ἰσόπλευρόν τέ ἐστι καὶ ἰσογώνιον. Ἐπεὶ γὰρ τὸ Η σημεῖον κέντρον ἐστὶ τοῦ ΑΒΓΔΕΖ κύκλου, ἴση ἐστὶν ἡ ΗΕ τῇ ΗΔ. πάλιν, ἐπεὶ τὸ Δ σημεῖον κέντρον ἐστὶ τοῦ ΗΓΘ κύκλου, ἴση ἐστὶν ἡ ΔΕ τῇ ΔΗ. ἀλλ' ἡ ΗΕ τῇ ΗΔ ἐδείχθη ἴση: καὶ ἡ ΗΕ ἄρα τῇ ΕΔ ἴση ἐστίν: ἰσόπλευρον ἄρα ἐστὶ τὸ ΕΗΔ τρίγωνον: καὶ αἱ τρεῖς ἄρα αὐτοῦ γωνίαι αἱ ὑπὸ ΕΗΔ, ΗΔΕ, ΔΕΗ ἴσαι ἀλλήλαις εἰσίν, ἐπειδήπερ τῶν ἰσοσκελῶν τριγώνων αἱ πρὸς τῇ βάσει γωνίαι ἴσαι ἀλλήλαις εἰσίν: καί εἰσιν αἱ τρεῖς τοῦ τριγώνου γωνίαι δυσὶν ὀρθαῖς ἴσαι: ἡ ἄρα ὑπὸ ΕΗΔ γωνία τρίτον ἐστὶ δύο ὀρθῶν. ὁμοίως δὴ δειχθήσεται καὶ ἡ ὑπὸ ΔΗΓ τρίτον δύο ὀρθῶν. καὶ ἐπεὶ ἡ ΓΗ εὐθεῖα ἐπὶ τὴν ΕΒ σταθεῖσα τὰς ἐφεξῆς γωνίας τὰς ὑπὸ ΕΗΓ, ΓΗΒ δυσὶν ὀρθαῖς ἴσας ποιεῖ, καὶ λοιπὴ ἄρα ἡ ὑπὸ ΓΗΒ τρίτον ἐστὶ δύο ὀρθῶν: αἱ ἄρα ὑπὸ ΕΗΔ, ΔΗΓ, ΓΗΒ γωνίαι ἴσαι ἀλλήλαις εἰσίν: ὥστε καὶ αἱ κατὰ κορυφὴν αὐταῖς αἱ ὑπὸ ΒΗΑ, ΑΗΖ, ΖΗΕ ἴσαι εἰσίν [ ταῖς ὑπὸ ΕΗΔ, ΔΗΓ, ΓΗΒ ]. αἱ ἓξ ἄρα γωνίαι αἱ ὑπὸ ΕΗΔ, ΔΗΓ, ΓΗΒ, ΒΗΑ, ΑΗΖ, ΖΗΕ ἴσαι ἀλλήλαις εἰσίν. αἱ δὲ ἴσαι γωνίαι ἐπὶ ἴσων περιφερειῶν βεβήκασιν: αἱ ἓξ ἄρα περιφέρειαι αἱ ΑΒ, ΒΓ, ΓΔ, ΔΕ, ΕΖ, ΖΑ ἴσαι ἀλλήλαις εἰσίν. ὑπὸ δὲ τὰς ἴσας περιφερείας αἱ ἴσαι εὐθεῖαι ὑποτείνουσιν: αἱ ἓξ ἄρα εὐθεῖαι ἴσαι ἀλλήλαις εἰσίν: ἰσόπλευρον ἄρα ἐστὶ τὸ ΑΒΓΔΕΖ ἑξάγωνον. λέγω δή, ὅτι καὶ ἰσογώνιον. ἐπεὶ γὰρ ἴση ἐστὶν ἡ ΖΑ περιφέρεια τῇ ΕΔ περιφερείᾳ, κοινὴ προσκείσθω ἡ ΑΒΓΔ περιφέρεια: ὅλη ἄρα ἡ ΖΑΒΓΔ ὅλῃ τῇ ΕΔΓΒΑ ἐστιν ἴση: καὶ βέβηκεν ἐπὶ μὲν τῆς ΖΑΒΓΔ περιφερείας ἡ ὑπὸ ΖΕΔ γωνία, ἐπὶ δὲ τῆς ΕΔΓΒΑ περιφερείας ἡ ὑπὸ ΑΖΕ γωνία: ἴση ἄρα ἡ ὑπὸ ΑΖΕ γωνία τῇ ὑπὸ ΔΕΖ. ὁμοίως δὴ δειχθήσεται, ὅτι καὶ αἱ λοιπαὶ γωνίαι τοῦ ΑΒΓΔΕΖ ἑξαγώνου κατὰ μίαν ἴσαι εἰσὶν ἑκατέρᾳ τῶν ὑπὸ ΑΖΕ, ΖΕΔ γωνιῶν: ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΓΔΕΖ ἑξάγωνον. ἐδείχθη δὲ καὶ ἰσόπλευρον: καὶ ἐγγέγραπται εἰς τὸν ΑΒΓΔΕΖ κύκλον. Εἰς ἄρα τὸν δοθέντα κύκλον ἑξάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγέγραπται: ὅπερ ἔδει ποιῆσαι. Πόρισμα Ἐκ δὴ τούτου φανερόν, ὅτι ἡ τοῦ ἑξαγώνου πλευρὰ ἴση ἐστὶ τῇ ἐκ τοῦ κέντρου τοῦ κύκλου. Ὁμοίως δὲ τοῖς ἐπὶ τοῦ πενταγώνου ἐὰν διὰ τῶν κατὰ τὸν κύκλον διαιρέσεων ἐφαπτομένας τοῦ κύκλου ἀγάγωμεν, περιγραφήσεται περὶ τὸν κύκλον ἑξάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἀκολούθως τοῖς ἐπὶ τοῦ πενταγώνου εἰρημένοις. καὶ ἔτι διὰ τῶν ὁμοίων τοῖς ἐπὶ τοῦ πενταγώνου εἰρημένοις εἰς τὸ δοθὲν ἑξάγωνον κύκλον ἐγγράψομέν τε καὶ περιγράψομεν: ὅπερ ἔδει ποιῆσαι. | In a given circle to inscribe an equilateral and equiangular hexagon. Let ABCDEF be the given circle; thus it is required to inscribe an equilateral and equiangular hexagon in the circle ABCDEF. Let the diameter AD of the circle ABCDEF be drawn; let the centre G of the circle be taken, and with centre D and distance DG let the circle EGCH be described; let EG, CG be joined and carried through to the points B, F, and let AB, BC, CD, DE, EF, FA be joined. I say that the hexagon ABCDEF is equilateral and equiangular. For, since the point G is the centre of the circle ABCDEF, GE is equal to GD. Again, since the point D is the centre of the circle GCH, DE is equal to DG. But GE was proved equal to GD; therefore GE is also equal to ED; therefore the triangle EGD is equilateral; and therefore its three angles EGD, GDE, DEG are equal to one another, inasmuch as, in isosceles triangles, the angles at the base are equal to one another. [I. 5] And the three angles of the triangle are equal to two right angles; [I. 32] therefore the angle EGD is one-third of two right angles. Similarly, the angle DGC can also be proved to be onethird of two right angles. And, since the straight line CG standing on EB makes the adjacent angles EGC, CGB equal to two right angles, therefore the remaining angle CGB is also one-third of two right angles. Therefore the angles EGD, DGC, CGB are equal to one another; so that the angles vertical to them, the angles BGA, AGF, FGE are equal. [I. 15] Therefore the six angles EGD, DGC, CGB, BGA, AGF, FGE are equal to one another. But equal angles stand on equal circumferences; [III. 26] therefore the six circumferences AB, BC, CD, DE, EF, FA are equal to one another. And equal circumferences are subtended by equal straight lines; [III. 29] therefore the six straight lines are equal to one another; therefore the hexagon ABCDEF is equilateral. I say next that it is also equiangular. For, since the circumference FA is equal to the circumference ED, let the circumference ABCD be added to each; therefore the whole FABCD is equal to the whole EDCBA; and the angle FED stands on the circumference FABCD, and the angle AFE on the circumference EDCBA; therefore the angle AFE is equal to the angle DEF. [III. 27] Similarly it can be proved that the remaining angles of the hexagon ABCDEF are also severally equal to each of the angles AFE, FED; therefore the hexagon ABCDEF is equiangular. But it was also proved equilateral; and it has been inscribed in the circle ABCDEF. Therefore in the given circle an equilateral and equiangular hexagon has been inscribed. Q. E. F. PORISM. From this it is manifest that the side of the hexagon is equal to the radius of the circle. And, in like manner as in the case of the pentagon, if through the points of division on the circle we draw tangents to the circle, there will be circumscribed about the circle an equilateral and equiangular hexagon in conformity with what was explained in the case of the pentagon. |