If a first magnitude have to a second the same ratio as a third to a fourth, and the third have to the fourth a greater ratio than a fifth has to a sixth, the first will also have to the second a greater ratio than the fifth to the sixth.
Ἐὰν πρῶτον πρὸς δεύτερον τὸν αὐτὸν ἔχῃ λόγον καὶ τρίτον πρὸς τέταρτον, τρίτον δὲ πρὸς τέταρτον μείζονα λόγον ἔχῃ ἢ πέμπτον πρὸς ἕκτον, καὶ πρῶτον πρὸς δεύτερον μείζονα λόγον ἕξει ἢ πέμπτον πρὸς ἕκτον. Πρῶτον γὰρ τὸ Α πρὸς δεύτερον τὸ Β τὸν αὐτὸν ἐχέτω λόγον καὶ τρίτον τὸ Γ πρὸς τέταρτον τὸ Δ, τρίτον δὲ τὸ Γ πρὸς τέταρτον τὸ Δ μείζονα λόγον ἐχέτω ἢ πέμπτον τὸ Ε πρὸς ἕκτον τὸ Ζ. λέγω, ὅτι καὶ πρῶτον τὸ Α πρὸς δεύτερον τὸ Β μείζονα λόγον ἕξει ἤπερ πέμπτον τὸ Ε πρὸς ἕκτον τὸ Ζ. Ἐπεὶ γὰρ ἔστι τινὰ τῶν μὲν Γ, Ε ἰσάκις πολλαπλάσια, τῶν δὲ Δ, Ζ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια, καὶ τὸ μὲν τοῦ Γ πολλαπλάσιον τοῦ τοῦ Δ πολλαπλασίου ὑπερέχει, τὸ δὲ τοῦ Ε πολλαπλάσιον τοῦ τοῦ Ζ πολλαπλασίου οὐχ ὑπερέχει, εἰλήφθω, καὶ ἔστω τῶν μὲν Γ, Ε ἰσάκις πολλαπλάσια τὰ Η, Θ, τῶν δὲ Δ, Ζ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια τὰ Κ, Λ, ὥστε τὸ μὲν Η τοῦ Κ ὑπερέχειν, τὸ δὲ Θ τοῦ Λ μὴ ὑπερέχειν: καὶ ὁσαπλάσιον μέν ἐστι τὸ Η τοῦ Γ, τοσαυταπλάσιον ἔστω καὶ τὸ Μ τοῦ Α, ὁσαπλάσιον δὲ τὸ Κ τοῦ Δ, τοσαυταπλάσιον ἔστω καὶ τὸ Ν τοῦ Β. Καὶ ἐπεί ἐστιν ὡς τὸ Α πρὸς τὸ Β, οὕτως τὸ Γ πρὸς τὸ Δ, καὶ εἴληπται τῶν μὲν Α, Γ ἰσάκις πολλαπλάσια τὰ Μ, Η, τῶν δὲ Β, Δ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια τὰ Ν, Κ, εἰ ἄρα ὑπερέχει τὸ Μ τοῦ Ν, ὑπερέχει καὶ τὸ Η τοῦ Κ, καὶ εἰ ἴσον, ἴσον, καὶ εἰ ἔλαττον, ἔλαττον. ὑπερέχει δὲ τὸ Η τοῦ Κ: ὑπερέχει ἄρα καὶ τὸ Μ τοῦ Ν. τὸ δὲ Θ τοῦ Λ οὐχ ὑπερέχει: καί ἐστι τὰ μὲν Μ, Θ τῶν Α, Ε ἰσάκις πολλαπλάσια, τὰ δὲ Ν, Λ τῶν Β, Ζ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια: τὸ ἄρα Α πρὸς τὸ Β μείζονα λόγον ἔχει ἤπερ τὸ Ε πρὸς τὸ Ζ. Ἐὰν ἄρα πρῶτον πρὸς δεύτερον τὸν αὐτὸν ἔχῃ λόγον καὶ τρίτον πρὸς τέταρτον, τρίτον δὲ πρὸς τέταρτον μείζονα λόγον ἔχῃ ἢ πέμπτον πρὸς ἕκτον, καὶ πρῶτον πρὸς δεύτερον μείζονα λόγον ἕξει ἢ πέμπτον πρὸς ἕκτον: ὅπερ ἔδει δεῖξαι. | If a first magnitude have to a second the same ratio as a third to a fourth, and the third have to the fourth a greater ratio than a fifth has to a sixth, the first will also have to the second a greater ratio than the fifth to the sixth. For let a first magnitude A have to a second B the same ratio as a third C has to a fourth D, and let the third C have to the fourth D a greater ratio than a fifth E has to a sixth F; I say that the first A will also have to the second B a greater ratio than the fifth E to the sixth F. For, since there are some equimultiples of C, E, and of D, F other, chance, equimultiples, such that the multiple of C is in excess of the multiple of D, while the multiple of E is not in excess of the multiple of F, [V. Def. 7] let them be taken, and let G, H be equimultiples of C, E, and K, L other, chance, equimultiples of D, F, so that G is in excess of K, but H is not in excess of L; and, whatever multiple G is of C, let M be also that multiple of A, and, whatever multiple K is of D, let N be also that multiple of B. Now, since, as A is to B, so is C to D, and of A, C equimultiples M, G have been taken, and of B, D other, chance, equimultiples N, K, therefore, if M is in excess of N, G is also in excess of K, if equal, equal, and if less, less. [V. Def. 5] But G is in excess of K; therefore M is also in excess of N. But H is not in excess of L; and M, H are equimultiples of A, E, and N, L other, chance, equimultiples of B, F; therefore A has to B a greater ratio than E has to F. [V. Def. 7] |