Of all the parallelograms applied to the same straight line and deficient by parallelogrammic figures similar and similarly situated to that described on the half of the straight line, that parallelogram is greatest which is applied to the half of the straight line and is similar to the defect.
Πάντων τῶν παρὰ τὴν αὐτὴν εὐθεῖαν παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι παραλληλογράμμοις ὁμοίοις τε καὶ ὁμοίως κειμένοις τῷ ἀπὸ τῆς ἡμισείας ἀναγραφομένῳ μέγιστόν ἐστι τὸ ἀπὸ τῆς ἡμισείας παραβαλλόμενον [ παραλληλόγραμμον ] ὅμοιον ὂν τῷ ἐλλείμματι. Ἔστω εὐθεῖα ἡ ΑΒ καὶ τετμήσθω δίχα κατὰ τὸ Γ, καὶ παραβεβλήσθω παρὰ τὴν ΑΒ εὐθεῖαν τὸ ΑΔ παραλληλόγραμμον ἐλλεῖπον εἴδει παραλληλογράμμῳ τῷ ΔΒ ἀναγραφέντι ἀπὸ τῆς ἡμισείας τῆς ΑΒ, τουτέστι τῆς ΓΒ: λέγω, ὅτι πάντων τῶν παρὰ τὴν ΑΒ παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι [ παραλληλογράμμοις ] ὁμοίοις τε καὶ ὁμοίως κειμένοις τῷ ΔΒ μέγιστόν ἐστι τὸ ΑΔ. παραβεβλήσθω γὰρ παρὰ τὴν ΑΒ εὐθεῖαν τὸ ΑΖ παραλληλόγραμμον ἐλλεῖπον εἴδει παραλληλογράμμῳ τῷ ΖΒ ὁμοίῳ τε καὶ ὁμοίως κειμένῳ τῷ ΔΒ: λέγω, ὅτι μεῖζόν ἐστι τὸ ΑΔ τοῦ ΑΖ. Ἐπεὶ γὰρ ὅμοιόν ἐστι τὸ ΔΒ παραλληλόγραμμον τῷ ΖΒ παραλληλογράμμῳ, περὶ τὴν αὐτήν εἰσι διάμετρον. ἤχθω αὐτῶν διάμετρος ἡ ΔΒ, καὶ καταγεγράφθω τὸ σχῆμα. Ἐπεὶ οὖν ἴσον ἐστὶ τὸ ΓΖ τῷ ΖΕ, κοινὸν δὲ τὸ ΖΒ, ὅλον ἄρα τὸ ΓΘ ὅλῳ τῷ ΚΕ ἐστιν ἴσον. ἀλλὰ τὸ ΓΘ τῷ ΓΗ ἐστιν ἴσον, ἐπεὶ καὶ ἡ ΑΓ τῇ ΓΒ. καὶ τὸ ΗΓ ἄρα τῷ ΕΚ ἐστιν ἴσον. κοινὸν προσκείσθω τὸ ΓΖ: ὅλον ἄρα τὸ ΑΖ τῷ ΛΜΝ γνώμονί ἐστιν ἴσον: ὥστε τὸ ΔΒ παραλληλόγραμμον, τουτέστι τὸ ΑΔ, τοῦ ΑΖ παραλληλογράμμου μεῖζόν ἐστιν. Πάντων ἄρα τῶν παρὰ τὴν αὐτὴν εὐθεῖαν παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι παραλληλογράμμοις ὁμοίοις τε καὶ ὁμοίως κειμένοις τῷ ἀπὸ τῆς ἡμισείας ἀναγραφομένῳ μέγιστόν ἐστι τὸ ἀπὸ τῆς ἡμισείας παραβληθέν: ὅπερ ἔδει δεῖξαι. | Of all the parallelograms applied to the same straight line and deficient by parallelogrammic figures similar and similarly situated to that described on the half of the straight line, that parallelogram is greatest which is applied to the half of the straight line and is similar to the defect. Let AB be a straight line and let it be bisected at C; let there be applied to the straight line AB the parallelogram AD deficient by the parallelogrammic figure DB described on the half of AB, that is, CB; I say that, of all the parallelograms applied to AB and deficient by parallelogrammic figures similar and similarly situated to DB, AD is greatest. For let there be applied to the straight line AB the parallelogram AF deficient by the parallelogrammic figure FB similar and similarly situated to DB; I say that AD is greater than AF. For, since the parallelogram DB is similar to the parallelogram FB, they are about the same diameter. [VI. 26] Let their diameter DB be drawn, and let the figure be described. Then, since CF is equal to FE, [I. 43] and FB is common, therefore the whole CH is equal to the whole KE. But CH is equal to CG, since AC is also equal to CB. [I. 36] Therefore GC is also equal to EK. Let CF be added to each; therefore the whole AF is equal to the gnomon LMN; so that the parallelogram DB, that is, AD, is greater than the parallelogram AF. |