Book IX, Proposition 20

Prime numbers are more than any assigned multitude of prime numbers.

Οἱ πρῶτοι ἀριθμοὶ πλείους εἰσὶ παντὸς τοῦ προτεθέντος πλήθους πρώτων ἀριθμῶν. Ἔστωσαν οἱ προτεθέντες πρῶτοι ἀριθμοὶ οἱ Α, Β, Γ: λέγω, ὅτι τῶν Α, Β, Γ πλείους εἰσὶ πρῶτοι ἀριθμοί. Εἰλήφθω γὰρ ὁ ὑπὸ τῶν Α, Β, Γ ἐλάχιστος μετρούμενος καὶ ἔστω ὁ ΔΕ, καὶ προσκείσθω τῷ ΔΕ μονὰς ἡ ΔΖ. ὁ δὴ ΕΖ ἤτοι πρῶτός ἐστιν ἢ οὔ. ἔστω πρότερον πρῶτος: εὑρημένοι ἄρα εἰσὶ πρῶτοι ἀριθμοὶ οἱ Α, Β, Γ, ΕΖ πλείους τῶν Α, Β, Γ. Ἀλλὰ δὴ μὴ ἔστω ὁ ΕΖ πρῶτος: ὑπὸ πρώτου ἄρα τινὸς ἀριθμοῦ μετρεῖται. μετρείσθω ὑπὸ πρώτου τοῦ Η: λέγω, ὅτι ὁ Η οὐδενὶ τῶν Α, Β, Γ ἐστιν ὁ αὐτός. εἰ γὰρ δυνατόν, ἔστω. οἱ δὲ Α, Β, Γ τὸν ΔΕ μετροῦσιν: καὶ ὁ Η ἄρα τὸν ΔΕ μετρήσει. μετρεῖ δὲ καὶ τὸν ΕΖ: καὶ λοιπὴν τὴν ΔΖ μονάδα μετρήσει ὁ Η ἀριθμὸς ὤν: ὅπερ ἄτοπον. οὐκ ἄρα ὁ Η ἑνὶ τῶν Α, Β, Γ ἐστιν ὁ αὐτός. καὶ ὑπόκειται πρῶτος. εὑρημένοι ἄρα εἰσὶ πρῶτοι ἀριθμοὶ πλείους τοῦ προτεθέντος πλήθους τῶν Α, Β, Γ οἱ Α, Β, Γ, Η: ὅπερ ἔδει δεῖξαι. Prime numbers are more than any assigned multitude of prime numbers. Let A, B, C be the assigned prime numbers; I say that there are more prime numbers than A, B, C. For let the least number measured by A, B, C be taken, and let it be DE; let the unit DF be added to DE. Then EF is either prime or not. First, let it be prime; then the prime numbers A, B, C, EF have been found which are more than A, B, C. Next, let EF not be prime; therefore it is measured by some prime number. [VII. 31] Let it be measured by the prime number G. I say that G is not the same with any of the numbers A, B, C. For, if possible, let it be so. Now A, B, C measure DE; therefore G also will measure DE. But it also measures EF. Therefore G, being a number, will measure the remainder, the unit DF: which is absurd. Therefore G is not the same with any one of the numbers A, B, C. And by hypothesis it is prime.

index prev next | digilib folio 175

Commentary

  1. JC