If from an even number an even number be subtracted, the remainder will be even.
Ἐὰν ἀπὸ ἀρτίου ἀριθμοῦ ἄρτιος ἀφαιρεθῇ, ὁ λοιπὸς ἄρτιος ἔσται. Ἀπὸ γὰρ ἀρτίου τοῦ ΑΒ ἄρτιος ἀφῃρήσθω ὁ ΒΓ: λέγω, ὅτι ὁ λοιπὸς ὁ ΓΑ ἄρτιός ἐστιν. Ἐπεὶ γὰρ ὁ ΑΒ ἄρτιός ἐστιν, ἔχει μέρος ἥμισυ. διὰ τὰ αὐτὰ δὴ καὶ ὁ ΒΓ ἔχει μέρος ἥμισυ: ὥστε καὶ λοιπὸς [ ὁ ΓΑ ἔχει μέρος ἥμισυ ] ἄρτιος [ ἄρα ] ἐστὶν ὁ ΑΓ: ὅπερ ἔδει δεῖξαι. | If from an even number an even number be subtracted, the remainder will be even. For from the even number AB let the even number BC be subtracted: I say that the remainder CA is even. For, since AB is even, it has a half part. [VII. Def. 6] |