Search Clay Mathematics Institute

  • About
    About
    • About
    • History
    • Principal Activities
    • Who’s Who
    • CMI Logo
    • Policies
  • Programs & Awards
    Programs & Awards
    • Programs & Awards
    • Funded programs
    • Fellowship Nominations
    • Clay Research Award
    • Dissemination Award
  • People
  • The Millennium Prize Problems
    The Millennium Prize Problems
    • The Millennium Prize Problems
    • Birch and Swinnerton-Dyer Conjecture
    • Hodge Conjecture
    • Navier-Stokes Equation
    • P vs NP
    • Poincaré Conjecture
    • Riemann Hypothesis
    • Yang-Mills & the Mass Gap
    • Rules for the Millennium Prize Problems
  • Online resources
    Online resources
    • Online resources
    • Books
    • Video Library
    • Lecture notes
    • Collections
      Collections
      • Collections
      • Euclid’s Elements
      • Ada Lovelace’s Mathematical Papers
      • Collected Works of James G. Arthur
      • Klein Protokolle
      • Notes of the talks at the I.M.Gelfand Seminar
      • Quillen Notebooks
      • Riemann’s 1859 Manuscript
  • Events
  • News

Home — Collections — Riemann’s 1859 Manuscript

Riemann’s 1859 Manuscript

Bernhard Riemann’s paper, Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse (On the number of primes less than a given quantity), was first published in the Monatsberichte der Berliner Akademie, in November 1859. Just six manuscript pages in length, it introduced radically new ideas to the study of prime numbers — ideas which led, in 1896, to independent proofs by Hadamard and de la Vallée Poussin of the prime number theorem. This theorem, first conjectured by Gauss when he was a young man, states that the number of primes less than x is asymptotic to x/log(x). Very roughly speaking, this means that the probability that a randomly chosen number of magnitude x is a prime is 1/log(x).

Riemann gave a formula for the number of primes less than x in terms the integral of 1/log(x) and the roots (zeros) of the zeta function, defined by  

ζ(s) = 1 + 1/2s + 1/3s + 1/4s + … .

He also formulated a conjecture about the location of these zeros, which fall into two classes: the “obvious zeros” -2, -4, -6, etc., and those whose whose real part lies between 0 and 1. Riemann’s conjecture was that the real part of the nonobvious zeros is exactly 1/2. That is, they all lie on a specific vertical line in the complex plane.

Riemann checked the first few zeros of the zeta function by hand. They satisfy his hypothesis. By now over 1.5 billion zeros have been checked by computer. Very strong experimental evidence. But in mathematics we require a proof. A proof gives certainty, but, just as important, it gives understanding: it helps us understand why a result is true.

Why is the Riemann hypothesis interesting? The closer the real part of the zeros lies to 1/2, the more regular the distribution of the primes. To draw a statistical analogy, if the prime number theorem tells us something about the average distribution of the primes along the number line, then the Riemann hypothesis tells us something about the deviation from the average.

The Riemann hypothesis was one of the famous Hilbert problems — number eight of twenty-three. It is also one of the seven Clay Millennium Prize Problems.

© Clay Mathematics Institute 2005 except for Riemann’s 1859 manuscript, used by permission of Niedersächsische Staats- und Universitätsbibliothek Göttingen and its transcription and translation, used by permission of David Wilkins. 

The photos of Riemann’s manuscript on this site are courtesy of the Goettingen Library.

Related Documents

The 1859 Manuscript

Wolfgang Gabcke: On a fair copy of Riemann’s 1859 publications created by Alfred Clebsch

German transcription by David Wilkins

English translation by David Wilkins

Related Links

The Riemann Hypothesis by Chris K. Caldwell

Biography at St Andrews

See also

Notes on the 1859 Manuscript

  • Privacy Policy
  • Contact CMI

© 2025 Clay Mathematics Institute

Site by One