
PREPARTORY NOTES ON p-ADIC HODGE THEORY

OLIVIER BRINON AND BRIAN CONRAD

• Everyone should learn the basic formalism of Witt vectors before arriving in Hawaii.
A nice succinct development of this circle of ideas is given in notes of Benji Fisher
that are provided in a separate file, along with the first half of §4.2 below (up through
and including Remark 4.2.4).
• Please try to at least skim over §1–§2 and §5 before the summer school begins. The

course will go much further into the theory than do these preparatory notes (e.g.,
(φ,Γ)-modules, overconvergence, integral methods, etc.). You are not expected to
have mastered §1, §2, and §5 beforehand, but the course will begin with a quick
overview of that stuff, so prior awareness with the style of thinking in those sections
will be very helpful.
• Don’t worry – you are NOT expected to have read all of these notes before Hawaii

(but feel free to do so if time permits). The material in §3–§4 and §6 is where things
really get off the ground, but that stuff is harder to digest. The hardest part for a
beginner is probably §4 after Remark 4.2.4, especially the main constructions there
(the ring R and the ring BdR).
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1. Motivation

1.1. Tate modules. Let E be an elliptic curve over a number field F , and fix an algebraic
closure F/F and a prime number p. A fundamental arithmetic invariant of E is the Z-rank of
its finitely generated Mordell-Weil group E(F ) of rational points over F . This is conjecturally
encoded in (and most fruitfully studied via) the p-adic representation of GF := Gal(F/F )
associated to E. Let us review where this representation comes from, as well as some of its
interesting properties.

For each n ≥ 1 we can choose an isomorphism of abelian groups

ιE,n : E(F )[pn] ' (Z/pnZ)2

in which GF acts on the left side through the finite Galois group quotient Gal(F (E[pn])/F )
associated to the field generated by coordinates of pn-torsion points of E. By means of ιE,n we
get a representation of this finite Galois group (and hence of GF ) in GL2(Z/pnZ). As n grows,
the open kernel of this representation shrinks in GF . It is best to package this collection of
representations into a single object: we can choose the ιE,n’s to be compatible with respect
to reduction modulo p-powers on the target and the multiplication map E[pn+1]→ E[pn] by
p on the source to get an isomorphism of Zp-modules

Tp(E) := lim←−E(F )[pn] ' Z2
p

on which GF acts through a continuous representation

ρ : GF → GL2(Zp);
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passing to the quotient modulo pn recovers the representations on torsion points as considered
above.

For any prime ℘ of F we choose an embedding of algebraic closures F ↪→ F℘ (i.e., we
lift the ℘-adic place of F to one of F ) to get a decomposition subgroup GF℘ ⊆ GF , so we
may restrict ρ to this subgroup to get a continuous representation ρ℘ : GF℘ → GL2(Zp)
that encodes local information about E at ℘. More specifically, if I℘ ⊆ GF℘ denotes the
inertia subgroup and we identify the quotient GF℘/I℘ with the Galois group Gk(℘) of the
finite residue field k(℘) at ℘ then we say that ρ℘ (or ρ) is unramified at ℘ if it is trivial on I℘,
in which case it factors through a continuous representation Gk(℘) → GL2(Zp). In such cases
it is natural to ask about the image of the (arithmetic) Frobenius element Frob℘ ∈ Gk(℘)

that acts on k(℘) by x 7→ xq℘ , where q℘ := #k(℘).

Theorem 1.1.1. If ℘ - p then E has good reduction at ℘ (with associated reduction over k(℘)
denoted as E) if and only if ρ℘ is unramified at ℘. In such cases, ρ℘(Frob℘) acts on Tp(E)
with characteristic polynomial X2− aE,℘X + q℘, where aE,℘ = q℘ + 1−#E(k(℘)) ∈ Z ⊆ Zp.

Remark 1.1.2. Observe that aE,℘ is a rational integer that is independent of the choice of
p (away from ℘). By Hasse’s theorem, |aE,℘| ≤ 2

√
q℘. If we had only worked with the

representation ρ mod pn on pn-torsion points rather than with the representation ρ that
encodes all p-power torsion levels at once then we would only obtain aE,℘ mod pn rather
than aE,℘ ∈ Z. By the Hasse bound, this sufficies to recover aE,℘ when q℘ is “small” relative
to pn (i.e., 4

√
q℘ < pn).

It was conjectured by Birch and Swinnerton-Dyer that rankZ(E(F )) is encoded in the
behavior at s = 1 of the Euler product

Lgood(s, E/F ) =
∏

good℘

(1− aE,℘q−s℘ + q1−2s
℘ )−1;

this product is only known to make sense for Re(s) > 3/2 in general, but it has been
meromorphically continued to the entire complex plane in many special cases (by work of
Taylor-Wiles and its generalizations). For each p, theGF -representation on Tp(E) encodes all
Euler factors at primes ℘ of good reduction away from p by Theorem 1.1.1. For this reason,
the theory of p-adic representations of Galois groups turns out to be a very convenient
framework for studying the arithmetic of L-functions.

Question 1.1.3. Since the notion of good reduction makes sense at ℘ without any reference
to p, it is natural to ask if there is an analogue of Theorem 1.1.1 when ℘|p.

This question was first answered by Grothendieck using p-divisible groups, and his answer
can be put in a more useful form by means of some deep results in p-adic Hodge theory: the
property of being unramified at ℘ (for ℘ - p) winds up being replaced with the property of
being a crystalline representation at ℘ (when ℘|p). This latter notion will be defined much
later, but for now we wish to indicate why unramifiedness cannot be the right criterion when
℘|p. The point is that the determinant character det ρ℘ : GF℘ → Z×p is infinitely ramified
when ℘|p. In fact, this character is equal to the p-adic cyclotomic character of F℘, a character
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that will be ubiquitous in all that follows. We therefore now recall its definition in general
(and by Example 1.1.5 below this character is infinitely ramified on GF℘).

Let F be a field with a fixed separable closure Fs/F and let p be a prime distinct from
char(F ). Let µpn = µpn(Fs) denote the group of pnth roots of unity in F×s , and let µp∞

denote the rising union of these subgroups. The action of GF on µp∞ is given by g(ζ) = ζχ(g)

for a unique χ(g) ∈ Z×p : for ζ ∈ µpn the exponent χ(g) only matters modulo pn, and
χ(g) mod pn ∈ (Z/pnZ)× describes the action of g on the finite cyclic group µpn of order pn.
Thus, χ mod pn has open kernel (corresponding to the finite extension F (µpn)/F ) and χ is
continuous. We call χ the p-adic cyclotomic character of F .

Remark 1.1.4. Strictly speaking we should denote the character χ as χF,p, but it is permissible
to just write χ because p is always understood from context and if F ′/F is an extension
(equipped with a compatible embedding Fs → F ′s of separable closures) then χF,p|GF ′

= χF ′,p.

Example 1.1.5. Let F be the fraction field of a complete discrete valuation ring R with
characteristic 0 and residue characteristic p. Hence, Zp ⊆ R, so we may view Qp ⊆ F . In
this case F (µp∞)/F is infinitely ramified, or in other words χ : GF → Z×p has infinite image
on the inertia subgroup IF ⊆ GF . Indeed, since e := ordF (p) is finite F (µpn) has ramification
degree en over F satisfying en · e ≥ ordQp(µpn )(p) = pn−1(p− 1), so en →∞.

1.2. Galois lattices and Galois deformations. Moving away from elliptic curves, we now
consider a wider class of examples of p-adic representations arising from algebraic geometry,
and we shall formulate a variant on Question 1.1.3 in this setting.

Let X be an algebraic scheme over a field F ; the case of smooth projective X is already
very interesting. For a prime p 6= char(F ), the étale cohomology groups Hi

ét(XFs ,Zp) are
finitely generated Zp-modules that admit a natural action by GF = Gal(Fs/F ) (via pullback-
functoriality of cohomology and the natural GF -action on XFs = X⊗FFs), and these modules
not be torsion-free. Hence, the GF -action on them is not described via matrices in general,
but satisfies a continuity condition in the sense of the following definition.

Definition 1.2.1. Let Γ be a profinite group. A continuous representation of Γ on a finitely
generated Zp-module Λ is a Zp[Γ]-module structure on Λ such that the action map Γ×Λ→ Λ
is continuous (or, equivalently, such that the Γ-action on the finite set Λ/pnΛ has open kernel
for all n ≥ 1). These form a category denoted RepZp

(Γ), and RepFp
(Γ) is defined similarly.

Example 1.2.2. If a Zp[Γ]-module Λ is finite free as a Zp-module then Λ ∈ RepZp
(Γ) if and

only if the matrix representation Γ → GLn(Zp) defined by a choice of Zp-basis of Λ is a
continuous map.

Example 1.2.3. Let F be a number field and consider the action by GF on Hi
ét(XFs ,Zp) for a

smooth proper scheme X over F . This is unramified at all but finitely many primes ℘ of F
(i.e., I℘ ⊆ GF acts trivially) due to “good reduction” properties for X at all but finitely many
primes (and some general base change theorems for étale cohomology). However, if X has
good reduction (appropriately defined) at a prime ℘ over p then this p-adic representation
is rarely unramified at ℘. Is there a nice property satisfied by this p-adic representation at
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primes ℘|p of good reduction for X, replacing unramifiedness? Such a replacement will be
provided by p-adic Hodge theory.

Galois representations as in Example 1.2.3 are the source of many interesting representa-
tions, such as those associated to modular forms, and Wiles developed techniques to prove
that various continuous representations ρ : GF → GLn(Zp) not initially related to modular
forms in fact arise from them in a specific manner. His technique rests on deforming ρ; the
simplest instance of a deformation is a continuous representation

ρ̃ : GF → GLn(Zp[[x]])

that recovers ρ at x = 0 and is unramified at all but finitely many primes of F . A crucial
part of Wiles’ method is to understand deformations of ρ|GF℘

when ℘|p, and some of the

most important recent improvements on Wiles’ method (e.g., in work of Kisin [4], [5]) focus
on precisely such ℘. For these purposes it is essential to work with Galois representations
having coefficients in Zp or Fp, a necessary prelude to many such considerations is a solid
understanding of the case of Qp-coefficients, and much of p-adic Hodge theory is focused on
this latter case. This leads us to make the following definition.

Definition 1.2.4. A p-adic representation of a profinite group Γ is a representation ρ : Γ→
AutQp(V ) of Γ on a finite-dimensional Qp-vector space V such that ρ is continuous (viewing
AutQp(V ) as GLn(Qp) upon choosing a basis of V ). The category of such representations is
denoted RepQp

(Γ).

Exercise 1.2.5. For Λ ∈ RepZp
(Γ), prove that the scalar extension Qp⊗Zp Λ lies in RepQp

(Γ).

The example in Exercise 1.2.5 is essentially the universal example, due to the next lemma.

Lemma 1.2.6. For V ∈ RepQp
(Γ), there exists a Γ-stable Zp-lattice Λ ⊆ V (i.e., Λ is a

finite free Zp-submodule of V and Qp ⊗Zp Λ ' V ).

Proof. Let ρ : Γ → AutQp(V ) be the continuous action map. Choose a Zp-lattice Λ0 ⊆ V .
Since V = Qp⊗ZpΛ0, we naturally have AutZp(Λ0) ⊆ AutQp(V ) and this is an open subgroup.
Hence, the preimage Γ0 = ρ−1(AutZp(Λ)) of this subgroup in Γ is open in Γ. Such an open
subgroup has finite index since Γ is compact, so Γ/Γ0 has a finite set of coset representatives
{γi}. Thus, the finite sum Λ =

∑
i ρ(γi)Λ0 is a Zp-lattice in V , and it is Γ-stable since Λ0 is

Γ0-stable and Γ =
∐
γiΓ0. �

1.3. Aims of p-adic Hodge theory. In the study of p-adic representations of GF =
Gal(F/F ) for F of finite degree over Qp, it is very convenient in many proofs if we can
pass to the case of an algebraically closed residue field. In practice this amounts to replacing

F with the completion F̂ un of its maximal unramified extension inside of F (and replacing
GF with its inertia subgroup IF ; see Exercise 1.3.2(1) below). Hence, it is convenient to
permit the residue field k to be either finite or algebraically closed, and so allowing perfect
residue fields provides a good degree of generality.

Definition 1.3.1. A p-adic field is a field K of characteristic 0 that is complete with respect
to a fixed discrete valuation that has a perfect residue field k of characteristic p > 0.
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Exercise 1.3.2. Let K be a p-adic field with residue field k.

(1) Explain why the valuation ring of K is naturally a local extension of Zp, and prove
that [K : Qp] is finite if and only if k is finite.

(2) LetKun ⊆ K denote the maximal unramified extension ofK inside of a fixed algebraic
closure (i.e., it is the compositum of all finite unramified subextensions over K).

Prove that the completion K̂un is naturally a p-adic field with residue field k that
is an algebraic closure of k, and use Krasner’s Lemma to prove that IK := GKun

is naturally isomorphic to GdKun as profinite groups. More specifically, prove that

L L⊗Kun K̂un is an equivalence of categories from finite extensions of Kun to finite

extensions of K̂un.

Most good properties of p-adic representations of GK for a p-adic field K will turn out

to be detected on IK , so replacing K with K̂un is a ubiquitious device in the theory (since
IK := GKun = GdKun via Exercise 1.3.2(2); note thatKun is not complete if k 6= k). The goal of
p-adic Hodge theory is to identify and study various “good” classes of p-adic representations
of GK for p-adic fields K, especially motivated by properties of p-adic representations arising
from algebraic geometry over p-adic fields.

The form that this study often takes in practice is the construction of a dictionary that
relates good categories of p-adic representations of GK to various categories of semilinear
algebraic objects “over K”. By working in terms of semilinear algebra it is often easier
to deform, compute, construct families, etc., than is possible by working solely with Galois
representations. There are two toy examples of this philosophy that are instructive before we
take up the development of the general theory (largely due to Fontaine and his coworkers),
and we now explain both of these toy examples (which are in fact substantial theories in
their own right).

Example 1.3.3. The theory of Hodge–Tate representations was inspired by Tate’s study of
Tp(A) for abelian varieties A with good reduction over p-adic fields, and especially by Tate’s
question as to how the p-adic representation Hn

ét(XK ,Qp) := Qp⊗Zp Hn
ét(XK ,Zp) arising from

a smooth proper K-scheme X is related to the Hodge cohomology ⊕p+q=nHp(X,Ωq
X/K). This

question concerns finding a p-adic analogue of the classical Hodge decomposition

C⊗Q Hn
top(Z(C),Q) '

⊕
p+q=n

Hp(Z,Ωq
Z)

for smooth proper C-schemes Z.

In §2 we will define the notion of a Hodge–Tate representation of GK , and the linear
algebra category over K that turns out to be related to Hodge–Tate representations of GK is
the category GrK,f of finite-dimensional graded K-vector spaces (i.e., finite-dimensional K-
vector spaces V equipped with a direct sum decomposition V = ⊕qVq, and maps T : V ′ → V
that are K-linear and satisfy T (V ′q ) ⊆ Vq for all q).

Example 1.3.4. A more subtle class of representations arises from the Fontaine–Wintenberger
theory of norm fields, and gives rise to the notion of an étale ϕ-module that will arise
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repeatedly (in various guises) throughout p-adic Hodge theory. The basic setup goes as
follows. Fix a p-adic field K and let K∞/K be an infinitely ramified algebraic extension
such that the Galois closure K ′∞/K has Galois group Gal(K ′∞/K) that is a p-adic Lie group.
The simplest such example is K∞ = K ′∞ = K(µp∞), in which case K∞/K is infinitely
ramified by Example 1.1.5 and the infinite subgroup Gal(K∞/K) ⊆ Z×p that is the image of
the continuous p-adic cyclotomic character χ : GK → Z×p is closed and hence open. (Indeed,
the p-adic logarithm identifies 1 + pZp with pZp for odd p and identifies 1 + 4Z2 with 4Z2

for p = 2, and every nontrivial closed subgroup of Zp is open.) Another interesting example
that arose in work of Breuil and Kisin is the non-Galois extension K∞ = K(π1/p∞) generated
by compatible p-power roots of a fixed uniformizer π of K, in which case Gal(K ′∞/K) is an
open subgroup of Z×p n Zp.

For any K∞/K as above, a theorem of Sen ensures that the closed ramification subgroups
of Gal(K ′∞/K) in the upper numbering are of finite index, so in particularK∞ with its natural
absolute value has residue field k′ that is a finite extension of k. The Fontaine–Wintenberger
theory of norm fields [9] provides a remarkable functorial equivalence between the category
of separable algebraic extensions of K∞ and the category of separable algebraic extensions of
an associated local field E of equicharacteristic p (the “field of norms” associated to K∞/K).
The residue field of E is naturally identified with k′, so non-canonically we have E ' k′((u)).

Upon choosing a separable closure of K∞, the Fontaine–Wintenberge equivalence yields a
separable closure for E and an associated canonical topological isomorphism of the associated
absolute Galois groups

(1.3.1) GK∞ ' GE.

Because E has equicharacteristic p, we will see in §3 that the category RepZp
(GE) is equiva-

lent to a category of semilinear algebra objects (over a certain coefficient ring depending on
E) called étale ϕ-modules. This equivalence will provide a concrete illustratration of many
elementary features of the general formalism of p-adic Hodge theory.

If K∞/K is a Galois extension with Galois group Γ then GK-representations can be viewed
as GK∞-representations equipped with an additional “Γ-descent structure” that encodes the
descent to aGK-representation. In this way, (1.3.1) identifies RepZp

(GK) with the category of
(ϕ,Γ)-modules that consists of étale ϕ-modules endowed with a suitable Γ-action encoding
the descent of an object in RepZp

(GE) = RepZp
(GK∞) to an object in RepZp

(GK). The
category of (ϕ,Γ)-modules gives a remarkable and very useful alternative description of the
entire category RepZp

(GK) in terms of objects of semilinear algebra.

2. Hodge–Tate representations

From now on, K will always denote a p-adic field (for a fixed prime p) in the sense of
Definition 1.3.1, and we fix a choice of algebraic closure K/K. The Galois group Gal(K/K)

is denoted GK , and we write CK to denote the completion K̂ of K endowed with its unique
absolute value extending the given absolute value | · | on K. It is a standard fact that CK

is algebraically closed. Sometimes we will normalize the absolute value by the requirement
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that ordK := log | · | on K× satisfies ordK(p) = 1, and we also write | · | and ordK to denote
the unique continuous extensions to CK and C×K respectively.

The p-adic Tate module lim←−µpn(K) of the group GL1 over K is a free Zp-module of rank
1 and we shall denote it as Zp(1). This does not have a canonical basis, and a choice of
basis amounts to a choice of compatible system (ζpn)n≥1 of primitive p-power roots of unity
(satisfying ζppn+1 = ζpn for all n ≥ 1). The natural action of GK on Zp(1) is given by the Z×p -
valued p-adic cyclotomic character χ = χK,p from §1.1, and sometimes it will be convenient
to fix a choice of basis of Zp(1) and to thereby view Zp(1) as Zp endowed with a GK-action
by χ.

For any r ≥ 0 define Zp(r) = Zp(1)⊗r and Zp(−r) = Zp(r)
∨ (linear dual: M∨ =

HomZp(M,Zp) for any finite free Zp-module M) with the naturally associated GK-actions
(from functoriality of tensor powers and duality), so upon fixing a basis of Zp(1) we identify
Zp(r) with the Zp-module Zp endowed with the GK-action χr for all r ∈ Z. If M is an
arbitrary Zp[GK ]-module, we let M(r) = Zp(r)⊗Zp M with its natural GK-action, so upon
fixing a basis of Zp(1) this is simply M with the modified GK-action g.m = χ(g)rg(m) for
g ∈ GK and m ∈M . Elementary isomorphisms such as (M(r))(r′) 'M(r+r′) (with evident
transitivity behavior) for r, r′ ∈ Z and (M(r))∨ 'M∨(−r) for r ∈ Z and M finite free over
Zp or over a p-adic field will be used without comment.

2.1. Theorems of Tate–Sen and Faltings. Let X be a smooth proper scheme over a
p-adic field K. Tate discovered in special cases (abelian varieties with good reduction) that
although the p-adic representation spaces Hn

ét(XK ,Qp) for GK are mysterious, they become
much simpler after we apply the drastic operation

V  CK ⊗Qp V,

with the GK-action on CK ⊗Qp V defined by g(c⊗ v) = g(c)⊗ g(v) for c ∈ CK and v ∈ V .
Before we examine this operation in detail, we introduce the category in which its output
lives.

Definition 2.1.1. A CK-representation of GK is a finite-dimensional CK-vector space W
equipped with a continuous GK-action map GK ×W → W that is semilinear (i.e., g(cw) =
g(c)g(w) for all c ∈ CK and w ∈ W ). The category of such objects (using CK-linear
GK-equivariant morphisms) is denoted RepCK

(GK).

This is a p-adic analogue of the notion of a complex vector space endowed with a conjugate-
linear automorphism. In concrete terms, if we choose a CK-basis {w1, . . . , wn} of W then
we may uniquely write g(wj) =

∑
i aij(g)wi for all j, and µ : GK → Matn×n(CK) defined

by g 7→ (aij(g)) is a continuous map that satisfies µ(1) = id and µ(gh) = µ(g) · g(µ(h)) for
all g, h ∈ GK . In particular, µ takes its values in GLn(CK) (with g(µ(g−1)) as inverse to
µ(g)) but beware that µ is not a homomorphism in general (due to the semilinearity of the
GK-action).

Example 2.1.2. If V ∈ RepQp
(GK) then W := CK ⊗Qp V is an object in RepCK

(GK). We
will be most interested in W that arise in this way, but it clarifies matters at the outset to
work with general W as above.
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The category RepCK
(GK) is an abelian category with evident notions of tensor product,

direct sum, and exact sequence. If we are attentive to the semilinearity then we can also
define a reasonable notion of duality: for any W in RepCK

(GK), the dual W∨ is the usual CK-
linear dual on which GK acts according to the formula (g.`)(w) = g(`(g−1(w))) for all w ∈ W ,
` ∈ W∨, and g ∈ GK . This formula is rigged to ensure that g.` : W → CK is CK-linear (even
though the action of g−1 on W is generally not CK-linear). Since GK acts continuously on
W and on CK , it is easy to check that this action on W∨ is continuous. In concrete terms,
if we choose a basis {wi} of W and describe the GK-action on W via a continuous function
µ : GK → GLn(CK) as above Example 2.1.2 then W∨ endowed with the dual basis is
described by the function g 7→ g(µ(g−1)t) that is visibly continuous. Habitual constructions
from linear algebra such as the isomorphisms W ' W∨∨ and W∨⊗W ′∨ ' (W ⊗W ′)∨ as well
as the evaluation morphism W ⊗W∨ → CK are easily seen to be morphisms in RepCK

(GK).

The following deep result of Faltings answers a question of Tate.

Theorem 2.1.3 (Faltings). Let K be a p-adic field. For smooth proper K-schemes X, there
is a canonical isomorphism

(2.1.1) CK ⊗Qp Hn
ét(XK ,Qp) '

⊕
q

(CK(−q)⊗K Hn−q(X,Ωq
X/K))

in RepCK
(GK), where the GK-action on the right side is defined through the action on each

CK(−q) = CK ⊗Qp Qp(−q). In particular, non-canonically

CK ⊗Qp Hn
ét(XK ,Qp) '

⊕
q

CK(−q)hn−q,q

in RepCK
(GK), with hp,q = dimK Hp(X,Ωq

X/K).

This is a remarkable theorem for two reasons: it says that CK ⊗Qp Hn
ét(XK ,Qp) as a

CK-representation space of GK is a direct sum of extremely simple pieces (the CK(−q)’s
with suitable multiplicity), and we will see that this isomorphism enables us to recover the
K-vector spaces Hn−q(X,Ωq

X/K) from CK⊗Qp Hn
ét(XK ,Qp) by means of operations that make

sense on all objects in RepCK
(GK). This is a basic example of a comparison isomorphism

that relates one p-adic cohomology theory to another. However, of the greatest significance
is that (as we shall soon see) we cannot recover the p-adic representation space Hn

ét(XK ,Qp)
from the Hodge cohomologies Hn−q(X,Ωq

X/K) in (2.1.1). In general, CK ⊗Qp V loses a lot

of information about V . This fact is very fundamental in motivating many of the basic
constructions in p-adic Hodge theory, and it is best illustrated by the following example.

Example 2.1.4. Let E be an elliptic curve over K with split multiplicative reduction, and
consider the representation space Vp(E) = Qp⊗Zp Tp(E) ∈ RepQp

(GK). The theory of Tate
curves provides an exact sequence

(2.1.2) 0→ Qp(1)→ Vp(E)→ Qp → 0

that is non-split in RepQp
(GK′) for all finite extensions K ′/K inside of K.
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If we apply K ⊗Qp (·) to (2.1.2) then we get an exact sequence

0→ K(1)→ K ⊗Qp Vp(E)→ K → 0

in the category RepK(GK) of semilinear representations of GK on K-vector spaces. We claim
that this sequence cannot be split in RepK(GK). Assume it is split. Since K is the directed
union of finite subextensions K ′/K, there would then exist such a K ′ over which the splitting
occurs. That is, applying K ′ ⊗Qp (·) to (2.1.2) would give an exact sequence admitting a
GK-equivariant K ′-linear splitting. Viewing this as a split sequence of K ′[GK′ ]-modules, we
could apply a Qp-linear projection K ′ → Qp that restricts to the identity on Qp ⊆ K ′ so
as to recover (2.1.2) equipped with a Qp[GK′ ]-linear splitting. But (2.1.2) has no splitting
in RepQp

(GK′), so we have a contradiction. Hence, applying K ⊗Qp (·) to (2.1.2) gives a
non-split sequence in RepK(GK), as claimed.

This non-splitting over K makes it all the more remarkable that if we instead apply
CK ⊗Qp (·) to (2.1.2) then the resulting sequence in RepCK

(GK) does (uniquely) split! This
is a special case of the second part of the following fundamental result that pervades all that
follows. It rests on a deep study of the ramification theory of local fields.

Theorem 2.1.5 (Tate–Sen). For any p-adic field K we have K = CGK
K (i.e., there are no

transcendental invariants) and CK(r)GK = 0 for r 6= 0 (i.e., if x ∈ CK and g(x) = χ(g)−rx
for all g ∈ GK and some r 6= 0 then x = 0). Also, H1

cont(GK ,CK(r)) = 0 if r 6= 0 and
H1

cont(GK ,CK) is 1-dimensional over K.

More generally, if η : GK → Z×p is a continuous character and CK(η) denotes CK with

the twisted GK-action g.c = η(g)g(c) then CK(η)GK = 0 if η(IK) is infinite and CK(η)GK

is 1-dimensional over K if η(IK) is finite (i.e., if the splitting field of η over K is finitely
ramified). Also, H1

cont(GK ,CK(η)) = 0 if η(IK) is infinite.

In this theorem, we define H1
cont(GK , ·) using continuous 1-cocycles.

Example 2.1.6. Let η : GK → Z×p be a continuous character. We identify H1
cont(GK ,CK(η))

with the set of isomorphism classes of extensions

(2.1.3) 0→ CK(η)→ W → CK → 0

in RepCK
(GK) as follows: using the matrix description(

η ∗
0 1

)
of such a W , the homomorphism property for the GK-action on W says that the upper
right entry function is a 1-cocycle on GK with values in CK(η), and changing the choice of
CK-linear splitting changes this function by a 1-coboundary. The continuity of the 1-cocycle
says exactly that the GK-action on W is continuous. Changing the choice of CK-basis of
W that is compatible with the filtration in (2.1.3) changes the 1-cocycle by a 1-coboundary.
In this way we get a well-defined continuous cohomology class, and the procedure can be
reversed (up to isomorphism of the extension structure (2.1.3) in RepCK

(GK)).
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Theorem 2.1.5 says that all exact sequences (2.1.3) are split when η(IK) is infinite. More-
over, in such cases the splitting is unique. Indeed, any two splittings CK ⇒ W in RepCK

(GK)
differ by an element of HomRepCK

(GK)(CK ,CK(η)), and by chasing the image of 1 ∈ CK this

Hom-set is identified with CK(η)GK . But by the Tate–Sen theorem this vanishes when η(IK)
is infinite.

The real importance of Theorem 2.1.5 is revealed when we consider an arbitrary W ∈
RepCK

(GK) admitting an isomorphism as in Faltings’ Theorem 2.1.3:

(2.1.4) W '
⊕
q

CK(−q)hq .

Although such a direct sum decomposition is non-canonical in general (in the sense that
the individual lines CK(−q) appearing in the direct sum decomposition are generally not
uniquely determined within W when hq > 1), we shall see that for any such W there is a
canonical decomposition W ' ⊕q(CK(−q)⊗K W{q}) for a canonically associated K-vector
space W{q} with dimension hq.

Example 2.1.7. In (2.1.4) we have WGK ' ⊕q(CK(−q)GK )hq ' Kh0 by the Tate–Sen theo-
rem, so h0 = dimKW

GK . A priori it is not clear that dimKW
GK should be finite for typical

W ∈ RepCK
(GK). Such finiteness holds in much greater generality, as we shall see, and

the W that arise as in (2.1.4) will be intrinsically characterized in terms of such finiteness
properties.

2.2. Hodge–Tate decomposition. The companion to Theorem 2.1.5 that gets p-adic
Hodge theory off the ground is a certain lemma of Serre and Tate that we now state. For
W ∈ RepCK

(GK) and q ∈ Z, consider the K-vector space

(2.2.1) W{q} := W (q)GK ' {w ∈ W | g(w) = χ(g)−qw for all g ∈ GK},
where the isomorphism rests on a choice of basis of Zp(1). In particular, this isomorphism is
not canonical when q 6= 0 and W{q} 6= 0, so W{q} is canonically a K-subspace of W (q) but
it is only non-canonically a K-subspace of W when q 6= 0 and W{q} 6= 0. More importantly,
W{q} is not a CK-subspace of W (q) when it is nonzero. In fact, W{q} contains no CK-lines,
for if x ∈ W{q} is nonzero and cx lies in W{q} for all c ∈ CK then g(c) = c for all c ∈ CK

and all g ∈ GK , which is absurd since K ⊆ CK .

We have a natural GK-equivariant K-linear multiplication map

K(−q)⊗K W{q} ↪→ K(−q)⊗K W (q) ' W,

so extending scalars defines maps

CK(−q)⊗K W{q} → W

in RepCK
(GK) for all q ∈ Z.

Lemma 2.2.1 (Serre–Tate). For W ∈ RepCK
(GK), the natural CK-linear GK-equivariant

map

ξW :
⊕
q

(CK(−q)⊗K W{q})→ W
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is injective. In particular, W{q} = 0 for all but finitely many q and dimKW{q} <∞ for all
q, with

∑
q dimKW{q} ≤ dimCK

W ; equality holds here if and only if ξW is an isomorphism.

Proof. The idea is to consider a hypothetical nonzero element in ker ξW with “shortest length”
in terms of elementary tensors and to use that ker ξW is a CK-subspace yet each W{q}
contains no CK-lines. To carry out this strategy, consider a nonzero v = (vq)q ∈ ker ξW . We
choose such v with minimal length, where the length `(x) for

x = (xq) ∈ ⊕q(CK(−q)⊗K W{q})
is defined as follows. For an element xq of CK ⊗K W{q} we define `(xq) to be the least
integer nq ≥ 0 such that xq is a sum of nq elementary tensors, and for a general x = (xq)
we define `(x) =

∑
`(xq) (which makes sense since `(xq) = 0 for all but finitely many q).

Observe that C×K-scaling preserves length.

There is some q0 such that vq0 is nonzero, so if we rename W (q0) as W then we can arrange
that v0 6= 0. By applying a C×K-scaling we can also arrange that v0 has a minimal-length
expression v0 =

∑
j cj,0 ⊗ yj,0 with cj,0 ∈ C×K , yj,0 ∈ W{0} = WGK , and some cj0,0 = 1.

Clearly g(v)−v ∈ ker ξW , and for each q ∈ Z its qth component is g(vq)−vq. If
∑
cj,q⊗yj,q

is a minimal-length expression for vq then since g(vq) − vq =
∑

(χ(g)−qg(cj,q) − cj,q) ⊗ yj,q
we see that `(g(vq) − vq) ≤ `(vq), so g(vq) − vq has length at most `(vq). But g(v0) −
v0 =

∑
j(g(cj,0) − cj,0) ⊗ yj,0 has strictly smaller length than v0 because cj0,0 = 1. Hence,

g(v) − v ∈ ker ξW has strictly smaller length than v, so it vanishes. Thus, v = g(v) for all
g ∈ GK , so vq ∈ (CK(−q)⊗KW{q})GK = CK(−q)GK ⊗KW{q} = 0 if q 6= 0 and v0 ∈ W{0}
by the Tate–Sen theorem. That is, ker ξW ⊆ W{0}. Thus, ker ξW is a CK-subspace of W{0}
inside of CK ⊗K W , yet W{0} contains no CK-lines, so ker ξW = 0. �

Remark 2.2.2. An alternative formulation of the Serre–Tate lemma can be given in terms of
the K-subspaces

W [q] := {w ∈ W | g(w) = χ(g)−qw for all g ∈ GK} ⊆ W

instead of the K-subspaces W{q} ⊆ W (q) from (2.2.1) for all q ∈ Z. Indeed, since non-
canonically we have W [q] ' W{q}, the Serre–Tate lemma says exactly that the W [q]’s are
finite-dimensional over K and vanish for all but finitely many q, and that these are mutually
CK-linearly independent within W in the sense that the natural map ⊕(CK ⊗KW [q])→ W
in RepCK

(GK) is injective.

In the special case W = CK ⊗Qp Hn(XK ,Qp) for a smooth proper scheme X over K,
Faltings’ Theorem 2.1.3 says that ξW is an isomorphism and W{q} (rather than W [q]!) is
canonically K-isomorphic to Hn−q(X,Ωq

X/K) for all q ∈ Z.

Example 2.2.3. Let W = CK(η) for a continuous character η : GK → Z×p . By the Tate–

Sen theorem, W{q} = CK(ηχ−q)GK is 1-dimensional over K if ηχ−q|IK has finite order
(equivalently, if η = χqψ for a finitely ramified character ψ : GK → Z×p ) and W{q} vanishes
otherwise. In particular, there is at most one q for which W{q} can be nonzero, since if
W{q},W{q′} 6= 0 with q 6= q′ then η = χqψ and η = χq

′
ψ′ with finitely ramified ψ, ψ′ :

GK ⇒ Z×p , so χr|IK has finite image for r = q− q′ 6= 0, which is absurd (use Example 1.1.5).
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An interesting special case of Example 2.2.3 is when K contains Qp(µp), so χ(GK) is
contained in the pro-p group 1 + pZp. Hence, η = χs makes sense for all s ∈ Zp, and for
W = CK(η) with such η the space W{q} vanishes for all q when s 6∈ Z whereas W{−s} is
1-dimensional over K if s ∈ Z. Thus for s ∈ Zp the map ξCK(χs) vanishes if s 6∈ Z and it
is an isomorphism if s ∈ Z. The case s 6∈ Z is of “non-algebraic” nature, and this property
situation is detected by the map ξCK(χs).

Definition 2.2.4. A representationW in RepCK
(GK) is Hodge–Tate if ξW is an isomorphism.

We say that V in RepQp
(GK) is Hodge–Tate if CK ⊗Qp V ∈ RepCK

(GK) is Hodge–Tate.

Example 2.2.5. If W is Hodge–Tate then by virtue of ξW being an isomorphism we have
a non-canonical isomorphism W ' ⊕CK(−q)hq in RepCK

(GK) with hq = dimKW{q}.
Conversely, consider an object W ∈ RepCK

(GK) admitting a finite direct sum decomposition

W ' ⊕CK(−q)hq in RepCK
(GK) with hq ≥ 0 for all q and hq = 0 for all but finitely many

q. The Tate–Sen theorem gives that W{q} has dimension hq for all q, so
∑

q dimKW{q} =∑
q hq = dimCK

W and hence W is Hodge–Tate. In other words, the intrinsic property of
being Hodge–Tate is equivalent to the concrete property of being isomorphic to a finite direct
sum of various objects CK(ri) (with multiplicity permitted).

For any Hodge–Tate object W in RepCK
(GK) we define the Hodge–Tate weights of W

to be those q ∈ Z such that W{q} := (CK(q) ⊗CK
W )GK is nonzero, and then we call

hq := dimKW{q} ≥ 1 the multiplicity of q as a Hodge–Tate weight of W . Beware that,
according to this definition, q ∈ Z is a Hodge–Tate weight of W precisely when there
is an injection CK(−q) ↪→ W in RepCK

(GK), as opposed to when there is an injection
CK(q) ↪→ W in RepCK

(GK). For example, CK(q) has −q as its unique Hodge–Tate weight.

Obviously (by Example 2.2.5) if W is Hodge–Tate then so is W∨, with negated Hodge–Tate
weights (compatibly with multiplicities), so it is harmless to change the definition of “Hodge–
Tate weight” by a sign. In terms of p-adic Hodge theory, this confusion about signs comes
down to later choosing to use covariant or contravariant functors when passing between
p-adic representations and semilinear algebra objects (as replacing a representation space
with its dual will be the mechanism by which we pass between covariant and contravariant
versions of various functors on categories of representations).

2.3. Formalism of Hodge–Tate representations. We saw via Example 2.2.5 that for
any W in RepCK

(GK), W is Hodge–Tate if and only if its dual W∨ is Hodge–Tate. By the
same reasoning, since(

⊕qCK(−q)hq
)
⊗CK

(
⊕q′CK(−q′)h

′
q′
)
' ⊕rCK(−r)

P
i hih

′
r−i

in RepCK
(GK) we see that if W and W ′ are Hodge–Tate then so is W⊗W ′ (with Hodge–Tate

weights that are suitable sums of products of those of W and W ′); it is clear that W ⊕W ′

is also Hodge–Tate. To most elegantly express how the Hodge–Tate property interacts with
tensorial and other operations, it is useful to introduce some terminology.

Definition 2.3.1. A (Z-)graded vector space over a field F is an F -vector space D equipped
with direct sum decomposition ⊕q∈ZDq for F -subspaces Dq ⊆ D (and we define the qth
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graded piece of D to be grq(D) := Dq). Morphisms T : D′ → D between graded F -vector
spaces are F -linear maps that respect the grading (i.e., T (D′q) ⊆ Dq for all q). The category
of these is denoted GrF ; we let GrF,f denote the full subcategory of D for which dimF D is
finite.

For any field F , GrF is an abelian category with the evident notions of kernel, cokernel,
and exact sequence (working in separate degrees). We write F 〈r〉 for r ∈ Z to denote the
F -vector space F endowed with the grading for which the unique non-vanishing graded piece
is in degree r. For D,D′ ∈ GrF we define the tensor product D ⊗D′ to have underlying F -
vector space D⊗F D′ and to have qth graded piece ⊕i+j=q(Di⊗F D′j). Likewise, if D ∈ GrF,f
then the dual D∨ has underlying F -vector space given by the F -linear dual and its qth graded
piece is D∨−q.

It is easy to check that with these definitions, F 〈r〉⊗F 〈r′〉 = F 〈r+r′〉, F 〈r〉∨ = F 〈−r〉, and
the natural evaluation mapping D⊗D∨ → F 〈0〉 and double duality isomorphism D ' (D∨)∨

on F -vector spaces for D in GrF,f are morphisms in GrF . Observe also that a map in GrF
is an isomorphism if and only if it is a linear isomorphism in each separate degree.

Definition 2.3.2. The covariant functor D = DK : RepCK
(GK)→ GrK is

D(W ) = ⊕qW{q} = ⊕q(CK(q)⊗CK
W )GK .

This functor is visibly left-exact.

In general, the Serre–Tate lemma says that D takes values in GrK,f and more specifically
that dimK D(W ) ≤ dimCK

W with equality if and only if W is Hodge–Tate. As a simple
example, the Tate–Sen theorem gives that D(CK(r)) = K〈−r〉 for all r ∈ Z. The functor D
satisfies a useful exactness property on Hodge–Tate objects, as follows.

Proposition 2.3.3. If 0 → W ′ → W → W ′′ → 0 is a short exact sequence in RepCK
(GK)

and W is Hodge–Tate then so are W ′ and W ′′, in which case the sequence

0→ D(W ′)→ D(W )→ D(W ′′)→ 0

in GrK,f is short exact (so the multiplicities for each Hodge–Tate weight are additive in short
exact sequences of Hodge–Tate representations).

Proof. We have a left-exact sequence

(2.3.1) 0→ D(W ′)→ D(W )→ D(W ′′)

with dimK D(W ′) ≤ dimCK
(W ′) and similarly for W and W ′′. But equality holds for W by

the Hodge–Tate property, so

dimCK
W = dimK D(W ) ≤ dimK D(W ′) + dimK D(W ′′)

≤ dimCK
W ′ + dimCK

W ′′

= dimCK
W,

forcing equality throughout. In particular, W ′ and W ′′ are Hodge–Tate and so for K-
dimension reasons the left-exact sequence (2.3.1) is right-exact too. �
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Example 2.3.4. Although Proposition 2.3.3 says that any subrepresentation or quotient rep-
resentation of a Hodge–Tate representation is again Hodge–Tate, the converse is false in the
sense that if W ′ and W ′′ are Hodge–Tate then W can fail to have this property. To give a
counterexample, we recall that H1

cont(GK ,CK) 6= 0 by Theorem 2.1.5. This gives a non-split
exact sequence

(2.3.2) 0→ CK → W → CK → 0

in RepCK
(GK), and we claim that such a W cannot be Hodge–Tate. To see this, applying

the left-exact functor D to the exact sequence above gives a left exact sequence

0→ K〈0〉 → D(W )→ K〈0〉

of graded K-vector spaces, so in particular D(W ) = W{0} = WGK . If W were Hodge–Tate
then by Proposition 2.3.3 this left exact sequence of graded K-vector spaces would be short
exact, so there would exist some w ∈ WGK with nonzero image in K〈0〉. We would then get
a CK-linear GK-equivariant section CK → W via c 7→ cw. This splits (2.3.2) in RepCK

(GK),
contradicting the non-split property of (2.3.2). Hence, W cannot be Hodge–Tate.

The functor D = DK is useful when studying how the Hodge–Tate property interacts
with basic operations such as a finite scalar extension on K, tensor products, duality, and

replacing K with K̂un (i.e., replacing GK with IK), as we now explain.

Theorem 2.3.5. For any W ∈ RepCK
(GK), the natural map K ′ ⊗K DK(W )→ DK′(W ) in

GrK′,f is an isomorphism for all finite extensions K ′/K contained in K ⊆ CK. Likewise,

the natural map K̂un ⊗K DK(W )→ D dKun(W ) in Gr dKun,f is an isomorphism.

In particular, for any finite extension K ′/K inside of K, an object W in RepCK
(GK) is

Hodge–Tate if and only if it is Hodge–Tate when viewed in RepCK
(GK′), and similarly W is

Hodge–Tate in RepCK
(GK) if and only if it is Hodge–Tate when viewed in RepCK

(GdKun) =
RepCK

(IK).

This theorem says that the Hodge–Tate property is insensitive to replacing K with a finite

extension or restricting to the inertia group (i.e., replacing K with K̂un). This is a prototype
for a class of results that will arise in several later contexts (with properties that refine
the Hodge–Tate property). The insensitivity to inertial restriction is a good feature of the
Hodge–Tate property, but the insensitivity to finite (possibly ramified) extensions is a bad
feature, indicating that the Hodge–Tate property is not sufficiently fine (e.g., to distinguish
between good reduction and potentially good reduction for elliptic curves).

Proof. By a transitivity argument, the case of finite extensions is easily reduced to the
case when K ′/K is Galois. We first treat the finite Galois case, and then will need to

do some work to adapt the method to handle the extension K̂un/K that is generally not
algebraic but should be thought of as being approximately algebraic (with Galois group
GK/IK = Gk). Observe that Gal(K ′/K) naturally acts semilinearly on the finite-dimensional
K ′-vector space DK′(W ) with invariant subspace DK(W ) over K, and likewise GK/IK =
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Gk naturally acts semilinearly on the finite-dimensional K̂un-vector space D dKun(W ) with
invariant subspace DK(W ) over K.

Hence, for the case of finite (Galois) extensions our problem is a special case of classical
Galois descent for vector spaces: if F ′/F is a finite Galois extension of fields and D′ is a
finite-dimensional F ′-vector space endowed with a semilinear action by Gal(F ′/F ) then the
natural map

(2.3.3) F ′ ⊗F (D′
Gal(F ′/F )

)→ D′

is an isomorphism. (See [8, Ch. II, Lemma 5.8.1] for a proof, resting on the non-vanishing
of discriminants for finite Galois extensions.) This has an easy generalization to arbitrary
Galois extensions F ′/F with possibly infinite degree: we just need to impose the additional
“discreteness” hypothesis that each element of D′ has an open stabilizer in Gal(F ′/F ) (so
upon choosing an F ′-basis of D′ there is an open normal subgroup Gal(F ′/F1) that fixes the
basis vectors and hence reduces our problem to the finite case via the semilinear Gal(F1/F )-
action on the F1-span of the chosen F ′-basis of D′).

For the case of K̂un, we have to modify the preceding argument since K̂un/K is generally

not algebraic and the group of isometric automorphisms Aut(K̂un/K) = Gal(Kun/K) =
GK/IK = Gk generally acts on the space of IK-invariants in W with stabilizer groups that
are closed but not open. Hence, we require a variant of the Galois descent isomorphism
(2.3.3) subject to a (necessary) auxiliary continuity hypothesis.

First we check that the natural semilinear action on D′ := DdKun(W ) by the profinite group
Gk = GK/IK is continuous relative to the natural topology on D′ as a finite-dimensional

K̂un-vector space. It suffices to check such continuity on the finitely many nonzero graded
pieces D′q separately, and CK(−q)⊗dKun D′q with its GK-action is naturally embedded in W
(by the Serre–Tate injection ξW ). Since GK acts continuously on W by hypothesis and the
natural topology on D′q coincides with its subspace topology from naturally sitting in the
CK-vector space CK(−q)⊗dKun D′q, we get the asserted continuity property for the action of
Gk = GK/IK on D′q.

Although Gk acts K̂un-semilinearly rather than K̂un-linearly on D′, since K̂un is the frac-
tion field of a complete discrete valuation ring O := O dKun the proof of Lemma 1.2.6 easily
adapts (using continuity of the semilinear Gk-action on D′) to construct a Gk-stable O-lattice
Λ ⊆ D′. Consider the natural O-linear Gk-equivariant map

(2.3.4) O ⊗OK
ΛGk → Λ.

We shall prove that this is an isomorphism with ΛGk a finite free OK-module. Once this is

proved, inverting p on both sides will give the desired isomorphism K̂un ⊗K DK(W ) ' D′ =
D dKun(W ).

To verify the isomorphism property for (2.3.4), we shall argue via successive approxima-

tion by lifting from the residue field k of K̂un. Let π ∈ OK be a uniformizer, so it is also a
uniformizer of O = O dKun and Gk acts trivially on π. The quotient Λ/πΛ is a vector space

over k with dimension equal to d = rankOΛ = dim dKun D′ and it is endowed with a natural



PREPARTORY NOTES ON p-ADIC HODGE THEORY 17

semilinear action by Gk = Gal(k/k) that has open stabilizers for all vectors (due to the con-
tinuity of the Gk-action on D′ and the fact that Λ gets the π-adic topology as its subspace
topology from D′). Hence, classical Galois descent in (2.3.3) (applied to k/k) gives that
Λ/πΛ = k⊗k ∆ in Repk(Gk) for the d-dimensional k-vector space ∆ = (Λ/πΛ)Gk . In partic-

ular, Λ/πΛ ' k
d

compatibly with Gk-actions, so H1(Gk,Λ/πΛ) vanishes since H1(Gk, k) = 0.
Since π is Gk-invariant, a successive approximation argument with continuous 1-cocycles (see
[6, §1.2, Lemma 3], applied successively to increasing finite quotients of Gk) then gives that
H1

cont(Gk,Λ) = 0. Hence, passing to Gk-invariants on the exact sequence

0→ Λ
π→ Λ→ Λ/πΛ→ 0

gives an exact sequence

0→ ΛGk
π→ ΛGk → (Λ/πΛ)Gk → 0.

That is, we have ΛGk/π · ΛGk ' (Λ/πΛ)Gk as k-vector spaces.

Since ΛGk is a closed OK-submodule of the finite free O dKun-module Λ of rank d and we
have just proved that ΛGk/πΛGk is finite-dimensional of dimension d over k = OK/(π), a
simple approximation argument gives that any lift of a k-basis of ΛGk/πΛGk to a subset of
ΛGk is an OK-spanning set of ΛGk of size d. Thus, ΛGk is a finitely generated torsion-free
OK-module, so it is free of rank d since its reduction modulo π is d-dimensional over k. Our
argument shows that the map (2.3.4) is a map between finite free O-modules of the same
rank and that this map becomes an isomorphism modulo π, so it is an isomorphism. �

Further properties of D are best expressed by recasting the definition of D in terms of
a “period ring” formalism. This rests on the following innocuous-looking definition whose
mathematical (as opposed to linguistic) importance will only be appreciated after some later
developments.

Definition 2.3.6. The Hodge–Tate ring of K is the CK-algebra BHT = ⊕q∈ZCK(q) in which
multiplication is defined via the natural maps CK(q)⊗CK

CK(q′) ' CK(q + q′).

Observe that BHT is a graded CK-algebra in the sense that its graded pieces are CK-
subspaces with respect to which multiplication is additive in the degrees, and that the
natural GK-action respects the gradings and the ring structure (and is semilinear over CK).
Concretely, if we choose a basis t of Zp(1) then we can identify BHT with the Laurent
polynomial ring CK [t, t−1] with the evident grading (by monomials in t) and GK-action (via
g(ti) = χ(g)iti for i ∈ Z and g ∈ GK).

By the Tate–Sen theorem, we have BGK
HT = K. For any W ∈ RepCK

(GK), we have

D(W ) = ⊕q(CK(q)⊗CK
W )GK = (BHT ⊗CK

W )GK

in GrK , where the grading is induced from the one on BHT. Since BHT compatibly admits
all three structures of interest (CK-vector space structure, GK-action, grading), we can go in
the reverse direction (from graded K-vector spaces to CK-representations of GK) as follows.
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Let D be in GrK,f , so BHT ⊗K D is a graded CK-vector space with typically infinite
CK-dimension:

grn(BHT ⊗K D) = ⊕q grq(BHT)⊗K Dn−q = ⊕qCK(q)⊗K Dn−q.

Moreover, the GK-action on BHT ⊗K D arising from that on BHT respects the grading since
such compatibility holds in BHT, so we get the object

V (D) := gr0(BHT ⊗K D) = ⊕qCK(−q)⊗K Dq ∈ RepCK
(GK)

since Dq vanishes for all but finitely many q and is finite-dimensional over K for all q (as
D ∈ GrK,f ). By inspection V (D) is a Hodge–Tate representation, and obviously V : GrK,f →
RepCK

(GK) is a covariant exact functor.

Example 2.3.7. For each r ∈ Z, recall that K〈r〉 denotes the 1-dimensional K-vector space K
endowed with unique nontrivial graded piece in degree r. It is easy to check that V (K〈r〉) =
CK(−r). In particular, V (K〈0〉) = CK .

For any W in RepCK
(GK), the multiplicative structure on BHT defines a natural BHT-

linear composite comparison morphism

(2.3.5) γW : BHT ⊗K D(W ) ↪→ BHT ⊗K (BHT ⊗CK
W )→ BHT ⊗CK

W

that respects the GK-actions (from BHT on both sides and from W ) and the gradings (from
BHT on both sides and from D(W )) since the second step in (2.3.5) rests on the multiplication
in BHT which is GK-equivariant and respects the grading of BHT. The Serre–Tate lemma
admits the following powerful reformulation:

Lemma 2.3.8. For W in RepCK
(GK), the comparison morphism γW is injective. It is an

isomorphism if and only if W is Hodge–Tate, in which case there is a natural isomorphism

V (D(W )) = gr0(BHT ⊗K D(W ))
γW' gr0(BHT ⊗CK

W ) = gr0(BHT)⊗CK
W = W

in RepCK
(GK).

Proof. The map γW on grn’s is the Qp(n)-twist of ξW . �

We have seen above that if D is an object in GrK,f then V (D) is a Hodge–Tate object in
RepCK

(GK), so by Lemma 2.3.8 we obtain a BHT-linear comparison isomorphism

γV (D) : BHT ⊗K D(V (D)) ' BHT ⊗CK
V (D)

respecting GK-actions and gradings. Since BGK
HT = K and the GK-action on the target of

γV (D) respects the grading induced by BHT = ⊕CK(r), by passing to GK-invariants on the
source and target of γV (D) we get an isomorphism

D(V (D)) ' ⊕r(V (D)(r))GK

in GrK with V (D)(r) ' ⊕qCK(r − q) ⊗K Dq. Hence, (V (D)(r))GK = Dr by the Tate–Sen
theorem, so we get an isomorphism

D(V (D)) ' ⊕rDr = D

in GrK . This proves the first part of:
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Theorem 2.3.9. The covariant functors D and V between the categories of Hodge–Tate rep-
resentations in RepCK

(GK) and finite-dimensional objects in GrK are quasi-inverse equiva-
lences.

For any W,W ′ in RepCK
(GK) the natural map

D(W )⊗D(W ′)→ D(W ⊗W ′)

in GrK induced by the GK-equivariant map

(BHT ⊗CK
W )⊗CK

(BHT ⊗CK
W ′)→ BHT ⊗CK

(W ⊗CK
W ′)

defined by multiplication in BHT is an isomorphism when W and W ′ are Hodge–Tate. Like-
wise, if W is Hodge–Tate then the natural map

D(W )⊗K D(W∨)→ D(W ⊗W∨)→ D(CK) = K〈0〉

in GrK is a perfect duality (between W{q} and W∨{−q} for all q), so the induced map
D(W∨)→ D(W )∨ is an isomorphism in GrK,f . In other words, D is compatible with tensor
products and duality on Hodge–Tate objects.

Similar compatibilities hold for V with respect to tensor products and duality.

Proof. For the tensor product and duality claims for D, one first checks that both sides have
compatible evident functorial behavior with respect to direct sums in RepCK

(GK). Hence, we
immediately reduce to the special case W = CK(q) and W ′ = CK(q′) for some q, q′ ∈ Z, and
this case is an easy calculation. Likewise, to analyze the natural map V (D) ⊗CK

V (D′) →
V (D ⊗ D′) we can reduce to the easy special case of the graded objects D = K〈r〉 and
D′ = K〈r′〉 for r, r′ ∈ Z; the case of duality goes similarly. �

Definition 2.3.10. Let RepHT(GK) ⊆ RepQp
(GK) be the full subcategory of objects V

that are Hodge–Tate (i.e., CK ⊗Qp V is Hodge–Tate in RepCK
(GK)), and define the functor

DHT : RepQp
(GK)→ GrK,f by

DHT(V ) = DK(CK ⊗Qp V ) = (BHT ⊗Qp V )GK

with grading induced by that on BHT.

Our results in RepCK
(GK) show that RepHT(GK) is stable under tensor product, duality,

subrepresentations, and quotients (but not extensions) in RepQp
(GK), and that the formation

of DHT naturally commutes with finite extension on K as well as with scalar extension to

K̂un. Also, our preceding results show that on RepHT(GK) the functor DHT is exact and is
compatible with tensor products and duality. The comparison morphism

γV : BHT ⊗K DHT(V )→ BHT ⊗Qp V

for V ∈ RepQp
(GK) is an isomorphism precisely when V is Hodge–Tate (apply Lemma 2.3.8

to W = CK ⊗Qp V ), and hence DHT : RepHT(GK)→ GrK,f is a faithful functor.

Example 2.3.11. Theorem 2.1.3 can now be written in the following more appealing form:
if X is a smooth proper K-scheme then for n ≥ 0 the representation V := Hn

ét(XK ,Qp) is



20 OLIVIER BRINON AND BRIAN CONRAD

in RepHT(GK) with DHT(V ) ' Hn
Hodge(X/K) := ⊕qHn−q(X,Ωq

X/K). Thus, the comparison

morphism γV takes the form of a BHT-linear GK-equivariant isomorphism

(2.3.6) BHT ⊗K Hn
Hodge(X/K) ' BHT ⊗Qp Hn(XK ,Qp)

in GrK .

This is reminiscent of the deRham isomorphism

Hn
dR(M) ' R⊗Q Hn(M,Q)∨

for smooth manifolds M , which in the case of finite-dimensional cohomology is described by
the matrix (

∫
σj
ωi) for an R-basis {ωi} of Hn

dR(M) and a Q-basis {σj} of Hn(M,Q). The

numbers
∫
σ
ω are classically called periods of M , and to define the deRham isomorphism

relating deRham cohomology to topological cohomology we must use the coefficient ring R
on the topological side. For this reason, the ring BHT that serves as a coefficient ring for
Faltings’ comparison isomorphism (2.3.6) between Hodge and étale cohomologies is called
a period ring. Likewise, the more sophisticated variants on BHT introduced by Fontaine as
a means of passing between other pairs of p-adic cohomology theories are all called period
rings.

Whereas D on the category of Hodge–Tate objects in RepCK
(GK) is fully faithful into

GrK,f , DHT on the category RepHT(GK) of Hodge–Tate representations of GK over Qp is
not fully faithful. For example, if η : GK → Z×p has finite order then DHT(Qp(η)) '
K〈0〉 = DHT(Qp) by the Tate–Sen theorem, but Qp(η) and Qp have no nonzero maps
between them when η 6= 1. This lack of full faithfulness is one reason that the functor
RepHT(GK)→ RepCK

(GK) given by V  CK ⊗Qp V is a drastic operation and needs to be
replaced by something more sophisticated.

To improve on DHT so as to get a fully faithful functor from a nice category of p-adic
representations of GK into a category of semilinear algebra objects, we need to do two
things: we must refine BHT to a ring with more structure (going beyond a mere grading
with a compatible GK-action) and we need to introduce a target semilinear algebra category
that is richer than GrK,f . As a warm-up, we will next turn to the category of étale ϕ-
modules. This involves a digression away from studying p-adic representations of GK (it
really involves representations of the closed subgroup GK∞ for certain infinitely ramified
algebraic extensions K∞/K inside of K), but it will naturally motivate some of the objects
of semilinear algebra that have to be considered in any reasonable attempt to refine the
theory of Hodge–Tate representations.

3. Étale ϕ-modules

We now switch themes to describe p-adic representations of GE for arbitrary fields E
of characteristic p > 0; later this will be applied with E = k((u)) for a perfect field k
of characteristic p, so in particular E must be allowed to be imperfect. The reason such
Galois groups will be of interest to us was sketched in Example 1.3.4. In contrast with the
case of Hodge–Tate representations in RepCK

(GK), for which there was an equivalence with
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the relatively simple category GrK,f of finite-dimensional graded K-vector spaces, in our
new setting we will construct an equivalence between various categories of representations
of GE and some interesting categories of modules equipped with an endomorphism that is
semilinear over a “Frobenius” operator on the coefficient ring.

We shall work our way up to Qp-representation spaces for GE by first studying Fp-
representation spaces for GE, then general torsion Zp-representation spaces for GE, and
finally Zp-lattice representations of GE (from which the Qp-case will be analyzed via Lemma
1.2.6).

Throughout this section we work with a fixed field E that is arbitrary with char(E) = p > 0
and we fix a separable closure Es. We let GE = Gal(Es/E). We emphasize that E is
not assumed to be perfect, so the p-power endomorphisms of E and Es are generally not
surjective.

3.1. p-torsion representations. We are first interested in the category RepFp
(GE) of con-

tinuous representations of GE on finite-dimensional Fp-vector spaces V0 (so continuity means
that the GE-action on V0 factors through an action by Gal(E ′/E) for some finite Galois ex-
tension E ′/E contained in Es that may depend on V0). The role of the ring BHT in §2.3
will now be played by Es, and the relevant structures that this ring admits are twofold: a
GE-action and the p-power endomorphism ϕEs : Es → Es (i.e., x 7→ xp). These two struc-
tures on Es respectively play roles analogous to the GK-action on BHT and the grading on
BHT, and the properties BGK

HT = K and gr0(BHT) = CK have as their respective analogues

the identities EGE
s = E and E

ϕEs=1
s = Fp. The compatibility of the GK-action and grading

on BHT has as its analogue the evident fact that the GE-action on Es commutes with the
endomorphism ϕEs : x 7→ xp (i.e., g(xp) = g(x)p for all x ∈ Es and g ∈ GE). We write
ϕE : E → E to denote the p-power endomorphism of E, so ϕEs|E = ϕE.

Whereas in Theorem 2.3.9 we used BHT to set up inverse equivalences D and V between the
category of Hodge–Tate objects in RepCK

(GK) and the category GrK,f of graded K-vector
spaces, now we will use Es to set up an equivalence between the category RepFp

(GE) and
a certain category of finite-dimensional E-vector spaces equipped with a suitable Frobenius
semilinear endomorphism.

The following category of semilinear algebra objects to later be identified with RepFp
(GE)

looks complicated at first, but we will soon see that it is not too bad. Below, we write ϕ∗E(M0)
for an E-vector space M0 to denote the scalar extension E⊗ϕE ,EM0 with its natural E-vector
space structure via the left tensor factor.

Definition 3.1.1. An étale ϕ-module over E is a pair (M0, ϕM0) where M0 is a finite-
dimensional E-vector space and ϕM0 : M0 → M0 is a ϕE-semilinear endomorphism that is
étale in the sense that its E-linearization ϕ∗E(M0) → M0 is an isomorphism (i.e., ϕM0(M0)
spans M0 over E, or equivalently the “matrix” of ϕM0 relative to a choice of E-basis of M0

is invertible). The notion of morphism between étale ϕ-modules over E is defined in the
evident manner, and the category of étale ϕ-modules over E is denoted ΦM ét

E .



22 OLIVIER BRINON AND BRIAN CONRAD

Remark 3.1.2. The reason for the word “étale” in the terminology is that an algebraic scheme
X over a field k of characteristic p > 0 is étale if and only if the relative Frobenius map
FX/k : X → X(p) = k ⊗ϕk,k X over k is an isomorphism.

We often write M0 rather than (M0, ϕM0) to denote an object in the category ΦM ét
E . The

simplest interesting example of an object in ΦM ét
E is M0 = E endowed with ϕM0 = ϕE; this

object will simply be denoted as E. It may not be immediately evident how to make more
interesting objects in ΦM ét

E , but shortly we will associate such an object to every object in
RepFp

(GE).

We now give some basic constructions for making new objects out of old ones. There is
an evident notion of tensor product in ΦM ét

E . The notion of duality is defined as follows.
For M0 ∈ ΦM ét

E , the dual M∨
0 has as its underlying E-vector space the usual E-linear dual

of M0, and ϕM∨0 : M∨
0 → M∨

0 carries an E-linear functional ` : M0 → E to the composite
of the E-linear pullback functional ϕ∗E(`) : ϕ∗E(M0) → E and the inverse M0 ' ϕ∗E(M0) of
the E-linearized isomorphism ϕ∗E(M0) ' M0 induced by ϕM0 . To show that this is an étale
Frobenius structure, the problem is to check that ϕM∨0 linearizes to an isomorphism. A slick
method to establish this is via the alternative description of ϕM∨0 that is provided in the
following exercise.

Exercise 3.1.3. Prove that ϕM∨0 : M∨
0 →M∨

0 is the ϕE-semilinear map whose E-linearization
is the isomorphism

ϕ∗E(M∨
0 ) ' (ϕ∗E(M0))∨ 'M∨

0

with the final isomorphism defined to be inverse to the linear dual of the E-linear isomorphism
ϕ∗E(M0) 'M0 induced by linearization of ϕM0 .

In concrete terms, if we choose an E-basis for M0 and use the dual basis for M∨
0 , then

the resulting “matrices” that describe the ϕE-semilinear endomorphisms ϕM0 and ϕM∨0 are
transpose to each other. It is easy to check that the notions of tensor product and duality
as defined in ΦM ét

E satisfy the usual relations (e.g., the natural double duality isomorphism
M0 ' M∨∨

0 is an isomorphism in ΦM ét
E , and the evaluation pairing M0 ⊗ M∨

0 → E is a
morphism in ΦM ét

E ).

Lemma 3.1.4. The category ΦM ét
E is abelian. More specifically, if h : M ′ → M is a

morphism in ΦM ét
E then the induced Frobenius endomorphisms of kerh, imh, and cokerh

are étale (i.e., have E-linearization that is an isomorphism).

Proof. Consider the commutative diagram

ϕ∗E(M ′)
ϕ∗E(h)

//

'
��

ϕ∗E(M)

'
��

M ′
h

// M

This induces isomorphisms between kernels, cokernels and images formed in the horizontal
directions, and the formation of kernels, cokernels, and images of linear maps commutes
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with arbitrary ground field extension (such as ϕE : E → E). Hence, the desired étaleness
properties are obtained. �

We now use Es equipped with its compatible GE-action and ϕE-semilinear endomorphism
ϕEs to define covariant functors DE and VE between RepFp

(GE) and ΦM ét
E .

Definition 3.1.5. For any V0 ∈ RepFp
(GE), define DE(V0) to be the E-vector space (Es⊗Fp

V0)GE equipped with the ϕE-semilinear endomorphism ϕDE(V0) induced by ϕEs ⊗ 1. (This
makes sense since ϕEs commutes with the GE-action on Es.)

For any M0 ∈ ΦM ét
E we define VE(M0) to be the Fp-vector space (Es ⊗E M0)ϕ=1 with its

evident GE-action induced by the GE-action on Es; here, ϕ = ϕEs ⊗ ϕM0 .

Some work is needed to check that DE takes values in ΦM ét
E and that VE takes values

in RepFp
(GE). Indeed, it is not at all obvious that DE(V0) is finite-dimensional over E in

general, nor that that E-linearization of ϕDE(V0) is an isomorphism (so DE(V0) ∈ ΦM ét
E ).

Likewise, it is not obvious that VE(M0) is finite-dimensional over Fp, though it is clear from
the definition that each element of VE(M0) has an open stabilizer in GE (since such an
element is a finite sum of elementary tensors in Es ⊗E M0, and a finite intersection of open
subgroups is open). Thus, once finite-dimensionality over Fp is established then VE(M0)
will be an object in RepFp

(GE).

Example 3.1.6. There are two trivial examples that can be worked out by hand. We have
DE(Fp) = E with Frobenius endomorphism ϕE and VE(E) = Fp with trivial GE-action.

Remark 3.1.7. It is sometimes convenient to use contravariant versions D∗E and V∗E of the
functors DE and VE. These may be initially defined in an ad hoc way via

D∗E(V0) = DE(V ∨0 ), V∗E(M0) = VE(M∨
0 )

but the real usefulness is due to an alternative formulation: since Es⊗FpV
∗

0 ' HomFp(V0, Es)
compatibly with the ϕEs-actions and the GE-actions (defined in the evident way on the Hom-
space, namely (g.`)(v) = g(`(g−1v))), by passing to GE-invariants we naturally get D∗E(V0) '
HomFp[GE ](V0, Es) as E-vector spaces equipped with a ϕE-semilinear endomorphism. Like-
wise, we naturally have an Fp[GE]-linear identification V∗E(M0) ' HomE,ϕ(M0, Es) onto the
space of E-linear Frobenius-compatible maps from M0 into Es.

Let us begin our study of DE and VE by checking that they take values in the expected
target categories.

Lemma 3.1.8. For any V0 ∈ RepFp
(GE), the E-vector space DE(V0) is finite-dimensional

with dimension equal to dimFp V0, and the E-linearization of ϕDE(V0) is an isomorphism. In
particular, DE(V0) lies in ΦM ét

E with E-rank equal to the Fp-rank of V0.

For any M0 ∈ ΦM ét
E , the Fp-vector space VE(M0) is finite-dimensional with dimension at

most dimEM0. In particular, VE(M0) lies in RepFp
(GE) with Fp-rank at most dimEM0.

The upper bound for dimFp VE(M0) in this lemma will be proved to be an equality in
Theorem 3.1.9, but for now it is simpler (and sufficient) to just prove the upper bound.
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Proof. Observe that Es ⊗Fp V0 equipped with its diagonal GE-action is a finite-dimensional
Es-vector space equipped with a semilinear GE-action that is continuous for the discrete
topology in the sense that each element has an open stabilizer (as this is true for each element
of Es and V0, and hence for finite sums of elementary tensors). Thus, the classical theorem
on Galois descent for vector spaces in (2.3.3) (applied to Es/E) implies that Es ⊗Fp V0 is
naturally identified with the scalar extension to Es of its E-vector subspace of GE-invariant
vectors. That is, the natural Es-linear GE-equivariant map

(3.1.1) Es ⊗E DE(V0) = Es ⊗E (Es ⊗Fp V0)GE → Es ⊗Fp V0

induced by multiplication in Es is an isomorphism. In particular, DE(V0) has finite E-
dimension equal to dimFp V0. (This isomorphism is an analogue of the comparison morphism
γW in (2.3.5) defined via multiplication in BHT in our study of Hodge–Tate representations.)

A crucial observation is that (3.1.1) satisfies a further compatibility property beyond the
Es-linearity and GE-actions, namely that it respects the natural Frobenius endomorphisms
of both sides (as is clear from the definition). To exploit this, we first recall that for any
vector space D over any field F of characteristic p > 0, if ϕD : D → D is a ϕF -semilinear
endomorphism (with ϕF : F → F denoting x 7→ xp) then the F -linearization ϕ∗F (D)→ D of
ϕD is compatible with arbitrary extension of the ground field j : F → F ′ (as the reader may
easily check, ultimately because ϕF and ϕF ′ are compatible via j). Applying this to the field
extension E → Es, we see that the E-linearization of ϕDE(V0) is an isomorphism if and only if
the Es-linearization of ϕEs ⊗ϕDE(V0) is an isomorphism. But Frobenius-compatibility of the
Es-linear isomorphism (3.1.1) renders this property equivalent to the assertion that for any
finite-dimensional Fp-vector space V0 the Es-linearization of the Frobenius endomorphism
ϕEs ⊗ 1 of Es ⊗Fp V0 is an isomorphism. By unravelling definitions we see that this Es-
linearization is naturally identified with the identity map of Es ⊗Fp V0, so it is indeed an
isomorphism. Hence, we have proved the claims concerning DE(V0).

Now we turn to the task of proving that VE(M0) has finite Fp-dimension at most dimEM0

(and in particular, it is finite). To do this, we will prove that the natural Es-linear GE-
compatible and Frobenius-compatible map

(3.1.2) Es ⊗Fp VE(M0) = Es ⊗Fp (Es ⊗E M0)ϕ=1 → Es ⊗E M0

induced by multiplication in Es is injective. (This map is another analogue of the comparison
morphism for Hodge–Tate representations.) Such injectivity will give dimFp VE(M0) ≤
dimEM0 as desired.

Since any element in the left side of (3.1.2) is a finite sum of elementary tensors, even
though VE(M0) is not yet known to be finite-dimensional over Fp it suffices to prove that if
v1, . . . , vr ∈ VE(M0) = (Es ⊗E M0)ϕ=1 are Fp-linearly independent then in Es ⊗E M0 they
are Es-linearly independent. We assume to the contrary and choose a least r ≥ 1 for which
there is a counterexample, say

∑
aivi = 0 with ai ∈ Es not all zero. By minimality we have

ai 6= 0 for all i, and we may therefore apply E×s -scaling to arrange that a1 = 1. Hence,
v1 = −

∑
i>1 aivi. But v1 = ϕ(v1) since v1 ∈ VE(M0), so

v1 = −
∑
i>1

ϕEs(ai)ϕ(vi) = −
∑
i>1

ϕEs(ai)vi
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since vi ∈ VE(M0) for all i > 1. Hence,∑
i>1

(ai − ϕEs(ai))vi = 0.

By minimality of r we must have ai = ϕEs(ai) for all i > 1, so ai ∈ E
ϕEs=1
s = Fp for all

i > 1. Thus, the identity v1 = −
∑

i>1 aivi has coefficients in Fp, so we have contradicted
the assumption that the vj’s are Fp-linearly independent. �

By Lemma 3.1.8, we have covariant functors DE : RepFp
(GE)→ ΦM ét

E and VE : ΦM ét
E →

RepFp
(GE), and DE is rank-preserving. Also, since

(Es ⊗Fp V0)ϕ=1 = Eϕ=1
s ⊗Fp V0 = V0, (Es ⊗E M0)GE = EGE

s ⊗E M0 = M0

(use an Fp-basis of V0 and an E-basis of M0 respectively), passing to Frobenius-invariants
on the isomorphism (3.1.1) defines an isomorphism VE(DE(V0)) → V0 in RepFp

(GE) and
passing to GE-invariants on the injection (3.1.2) defines an injection DE(VE(M0)) ↪→M0 in
ΦM ét

E .

Theorem 3.1.9. Via the natural map VE◦DE ' id and the functorial inclusion DE◦VE ↪→
id, the covariant functors DE and VE are exact rank-preserving quasi-inverse equivalences
of categories, and each functor is naturally compatible with tensor products and duality.

Proof. The isomorphism (3.1.1) implies that DE is an exact functor (as it becomes exact
after scalar extension from E to Es). For any two objects V0 and V ′0 in RepFp

(GE), the
natural map

DE(V0)⊗E DE(V ′0)→ DE(V0 ⊗Fp V
′

0)

induced by the Frobenius-compatible and GE-equivariant map

(Es ⊗Fp V0)⊗E (Es ⊗Fp V
′

0)→ Es ⊗E (V0 ⊗ V ′0)

arising from multiplication on Es is a map in ΦM ét
E . This map is an isomorphism (and so DE

is naturally compatible with the formation of tensor products) because we may apply scalar
extension from E to Es and use the isomorphism (3.1.1) to convert this into the obvious
claim that the natural map

(Es ⊗Fp V0)⊗Es (Es ⊗Fp V
′

0)→ Es ⊗Fp (V0 ⊗Fp V
′

0)

is an isomorphism.

Similarly we get that DE is compatible with the formation of duals: we claim that the
natural map

(3.1.3) DE(V0)⊗E DE(V ∨0 ) ' DE(V0 ⊗Fp V
∨

0 )→ DE(Fp) = E

(with second step induced by functoriality of DE relative to the evaluation morphism V0 ⊗
V ∨0 → Fp in RepFp

(GE)) is a perfect E-bilinear duality between DE(V0) and DE(V ∨0 ),
or equivalently the induced morphism DE(V ∨0 ) → DE(V0)∨ that is easily checked to be a
morphism in ΦM ét

E is an isomorphism. To verify this perfect duality claim it suffices to check
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it after scalar extension from E to Es, in which case via (3.1.1) the pairing map is identified
with the natural map

(Es ⊗Fp V0)⊗Es (Es ⊗Fp V
∨

0 ) ' Es ⊗Fp (V0 ⊗Fp V
∨

0 )→ Es

that is obviously a perfect Es-bilinear duality pairing.

To carry out our analysis of VE and DE ◦VE, the key point is to check that VE is rank-
preserving. That is, we have to show that if dimEM0 = d then dimFp V(M0) = d. Once
this is proved, the injective map (3.1.2) is an isomorphism for Es-dimension reasons and so
passing to GE-invariants on this isomorphism gives that DE ◦VE → id is an isomorphism.
The compatibility of VE with respect to tensor products and duality can then be verified
exactly as we did for DE by replacing (3.1.1) with (3.1.2) and using VE(E) = Fp to replace
the above use of the identification DE(Fp) = E.

Our problem is now really one of counting: we must prove that the inequality #VE(M0) ≤
pd for d := dimEM0 is an equality. Arguing as in Remark 3.1.7 with M∨

0 in the role of M0

and using double duality gives VE(M0) ' HomE,ϕ(M∨
0 , Es). The key idea is to interpret this

set of maps in terms of a system of étale polynomial equations in d variables. Choose a basis
{m1, . . . ,md} of M0, so M∨

0 has a dual basis {m∨i } and ϕM∨0 (m∨j ) =
∑

i cijm
∨
i with (cij) ∈

Matd×d(E) an invertible matrix. A general E-linear map M∨
0 → Es is given by m∨i 7→ xi ∈ Es

for each i, and Frobenius-compatibility for this map amounts to the system of equations
xpj =

∑
i cijxi for all j. Hence, we have the identification VE(M0) = Hom

E-alg(A,Es),

where

A = E[X1, . . . , Xd]/(X
p
j −

∑
i

cijXi)1≤j≤d.

Clearly A is a finite E-algebra with rank pd, and we wish to prove that its set of Es-valued
points has size equal to pd = dimE A. In other words, we claim that A is an étale E-algebra
in the sense of commutative algebra. This property amounts to the vanishing of Ω1

A/E, and
by direct calculation

Ω1
A/E = (⊕AdXi)/(

∑
j

cijdXj)1≤j≤d.

Since det(cij) ∈ E× ⊆ A×, the vanishing is clear. �

3.2. Torsion and lattice representations. We wish to improve on the results in §3.1
by describing the entire category RepZp

(GE) of continuous GE-representations on finitely
generated (not necessarily free) Zp-modules, and then passing to RepQp

(GE) by a suitable
localization process. The basic strategy is to first handle torsion objects using Zp-length
induction (and using the settled p-torsion case from §3.1 to get inductive arguments off
the ground), and then pass to the inverse limit to handle general objects in RepZp

(GE)
(especially those that are finite free as Zp-modules). One difficulty at the outset is that since
we are lifting our coefficients from Fp to Zp on the GE-representation side, we need to lift the
E-coefficients in characteristic p on the semilinear algebra side to some ring of characteristic
0 admitting a natural endomorphism lifting ϕE (as well as an analogue for Es so as to get
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a suitable lifted “period ring”). Since E is generally not perfect, we cannot work with the
Witt ring W (E) (which is generally quite bad if E is imperfect).

Thus, we impose the following hypothesis involving additional auxiliary data that will be
fixed for the remainder of the present discussion: we assume that we are given a complete
discrete valuation ring OE with characteristic 0, uniformizer p, and residue field E, and we
assume moreover that there is specified an endomorphism ϕ : OE → OE lifting ϕE on the
residue field E. We write E to denote the fraction field OE [1/p] of OE . Abstract commutative
algebra (the theory of Cohen rings) ensures that if we drop the Frobenius-lifting hypothesis
then there is such an OE and it is unique up to non-canonical isomorphism. It can be
proved via a direct analysis with explicit Cohen rings that such a pair (OE , ϕ) always exists.
However, the present discussion is generally only applied with a special class of fields E for
which we can write down an explicit such pair (OE , ϕ), and such an explicit pair is useful
for some purposes. Hence, we shall now construct such a pair in a special case, and then for
the remainder of this section we return to the general case and assume that such an abstract
pair (OE , ϕ) has been given to us.

Example 3.2.1. Assume that E = k((u)) with k perfect of characteristic p > 0. Let W (k)
denote the ring of Witt vectors of k. This is the unique absolutely unramified complete
discrete valuation ring with mixed characteristic (0, p) and residue field k; see §4.2. (If k is
finite, W (k) is the valuation ring of the corresponding finite unramified extension of Qp.) In
this case an explicit pair (OE , ϕ) satisfying the above axioms can be constructed as follows.

Let S = W (k)[[u]]; this is a 2-dimensional regular local ring in which (p) is a prime ideal
at which the residue field is k((u)) = E. Since the localization S(p) at the prime ideal (p) is
a 1-dimensional regular local ring, it is a discrete valuation ring with uniformizer p. But u is
a unit in this localized ring (since u 6∈ (p) in S), so S(p) is identified with the localization of
the Dedekind domain S[1/u] at the prime ideal generated by p. Hence, the completion S∧(p)
of this discrete valuation ring is identified with the p-adic completion of the Laurent-series
ring S[1/u] over W (k). In other words, this completion is a ring of Laurent series over W (k)
with a decay condition on coefficients in the negative direction:

S∧(p) '

{∑
n∈Z

anu
n | an ∈ W (k) and an → 0 as n→ −∞

}
.

We define OE = S∧(p). The endomorphism
∑
anu

n 7→
∑
σ(an)unp of S (with σ the unique

Frobenius-lift on W (k)) uniquely extends to a local endomorphism of S(p) and hence to a
local endomorphism ϕ of the completion OE .

Fix a choice of a pair (OE , ϕ) as required above. Since OE is a complete discrete valua-
tion ring with residue field E and we have fixed a separable closure Es of E, the maximal
unramified extension (i.e., strict henselization) Oun

E of OE with residue field Es makes sense
and is unique up to unique isomorphism. It is a strictly henselian (generally not complete)
discrete valuation ring with uniformizer p, so its fraction field E un is Oun

E [1/p]. By the uni-
versal property of the maximal unramified extension (or rather, of the strict henselization),
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if f : OE → OE is a local map (such as ϕ or the identity) whose reduction f : E → E is en-

dowed with a specified lifting f
′
: Es → Es then there is a unique local map f ′ : Oun

E → Oun
E

over f lifting f
′
. By uniqueness, the formation of such an f ′ is compatible with composition.

By taking f = ϕ and f
′

= ϕEs , we get a unique local endomorphism of Oun
E again

denoted ϕ that extends the given abstract endomorphism ϕ of OE and lifts the p-power
map on Es. Additionally, by taking f to be the identity map and considering varying

f
′ ∈ GE = Gal(Es/E) we get an induced action of GE on Oun

E that is simply the classical
identification of AutOE

(Oun
E ) = Gal(E un/E ) with the Galois group GE of the residue field.

Moreover, this GE-action on Oun
E is clearly continuous and it commutes with ϕ on Oun

E

because the uniqueness of our lifting procedure reduces this to the obvious compatibility of
the GE-action and Frobenius endomorphism on both OE and Es. In particular, the induced

GE-action on Ôun
E is continuous and commutes with the induced Frobenius endomorphism.

Definition 3.2.2. The category ΦM ét
OE

of étale ϕ-modules over OE consists of pairs (M , ϕM )
where M is a finitely generated OE -module and ϕM is a ϕ-semilinear endomorphism of M
whose OE -linearization ϕ∗(M )→M is an isomorphism.

Obviously ΦM ét
E is the full subcategory of p-torsion objects in ΦM ét

OE
. Note that in the

preceding definition we do not require M to be a finite free module over OE or over one
of its artinian quotients OE /(p

n); this generality is essential for the category ΦM ét
OE

to have
nice stability properties. In particular, the étaleness condition in Definition 3.2.2 that ϕM

linearize to an isomorphism cannot generally be described by a matrix condition. Since
ϕ∗(M ) and M have the same OE -rank and the same invariant factors (due to the uniformizer
p being fixed by ϕ), the linearization of ϕM is a linear map between two abstractly isomorphic
finitely generated OE -modules, whence it is an isomorphism if and only if it is surjective. But
surjectivity can be checked modulo p, so we conclude that the étaleness property on ϕM can
be checked by working with the finite-dimensional vector space M /pM over OE /(p) = E.

The category RepZp
(GE) has a good notion of tensor product, as well as duality functors

HomZp(·,Qp/Zp) and HomZp(·,Zp) on the respective full subcategories of objects that are
of finite Zp-length and finite free over Zp.

There are similar tensor and duality functors in the category ΦM ét
OE

. Indeed, tensor

products M ⊗M ′ are defined in the evident manner using the OE -module tensor prod-
uct M ⊗OE

M ′ and the Frobenius endomorphism ϕM ⊗ϕM ′ , and it is easy to check that this
really is an étale ϕ-module; i.e., the OE -linearization of the tensor product Frobenius endo-
morphism is an isomorphism (since this OE -linearization is identified with the tensor product
of the OE -linearizations of ϕM and ϕM ′). For duality, we use the functor HomOE

(·,OE ) on ob-
jects that are finite free over OE and the Frobenius endomorphism of this linear dual is defined
similarly to the p-torsion case over E. That is, for ` ∈ M ∨ = HomOE

(M ,OE ) the element
ϕM∨(`) ∈ M ∨ is the composite of the OE -linear pullback functional ϕ∗(`) : ϕ∗(M ) → OE

and the inverse M ' ϕ∗(M ) of the OE -linearization of ϕM . To verify that this Frobenius
structure is étale (i.e., it linearizes to an isomorphism ϕ∗(M ) ' M ) one can establish an
alternative description of ϕM∨ exactly as in Exercise 3.1.3.
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Likewise, on the full subcategory ΦM ét,tor
OE

of objects of finite OE -length we use the duality
functor HomOE

(·,E /OE ) on which we define a ϕ-semilinear endomorphism akin to the finite
free case, now using the natural Frobenius structure on E /OE to identify E /OE with its own
scalar extension by ϕ : OE → OE . To see that this is really an étale Frobenius structure one
again works out an alternative description akin to Exercise 3.1.3, but now it is necessary to
give some thought (left to the reader) to justifying that scalar extension by ϕ : OE → OE

commutes with the formation of the E /OE -valued dual (hint: the scalar extension ϕ is flat
since it is a local map between discrete valuation rings with a common uniformizer).

It is an important point to check at the outset that ΦM ét
OE

is an abelian category. The
content of this verification is to check the étaleness property for the linearized Frobenius
maps between kernels, cokernels, and images. Since the formation of cokernels is right exact
(and so commutes with reduction modulo p), the case of cokernels follows from Lemma
3.1.4 and the observed sufficiency of checking the étaleness property modulo p. Thus, if
f : M ′ →M is a map in ΦM ét

OE
then coker f has an étale Frobenius endomorphism. Since

ϕ : OE → OE is flat, the formation of im f and ker f commutes with scalar extension by ϕ.
That is, imϕ∗(f) ' ϕ∗(im f) and similarly for kernels. Since the image of a linear map in a
“module category” is naturally identified with the kernel of projection to the cokernel, the
known isomorphism property for the linearizations of the Frobenius endomorphisms of M
and coker f thereby implies the same for im f . Repeating the same trick gives the result for
ker f due to the étaleness property for M ′ and im f .

Fontaine discovered that by using the completion Ôun
E as a “period ring”, one can de-

fine inverse equivalences of categories between RepZp
(GE) and ΦM ét

OE
recovering the inverse

equivalences DE and VE between p-torsion subcategories in Theorem 3.1.9. To make sense
of this, we first require a replacement for the basic identities EGE

s = E and E
ϕEs=1
s = Fp

that lay at the bottom of our work in the p-torsion case in §3.1.

Lemma 3.2.3. The natural inclusions OE → Ôun
E

GE

and E → (Ê un)GE are equalities, and

likewise Zp = (Ôun
E )ϕ=1 and Qp = (Ê un)ϕ=1.

The successive approximation method used to prove this lemma will arise again later, but
for now we hold off on axiomatizing it to a wider context.

Proof. Since GE and ϕ fix p, and Ê un = ÔE [1/p], the integral claims imply the field claims.

Hence, we focus on the integral claims. The evident inclusions OE → Ôun
E

GE

and Zp →
(Ôun

E )ϕ=1 are local maps between p-adically separated and complete rings, so it clearly suffices
to prove surjectivity modulo pn for all n ≥ 1. We shall verify this by induction on n, so we
first check the base case n = 1.

By left-exactness of the formation of GE-invariants, the exact sequence

0→ Ôun
E

p→ Ôun
E → Es → 0

of OE -modules gives a linear injection (Ôun
E )GE/(p) ↪→ EGE

s = E of nonzero modules over
OE /(p) = E, so this injection is bijective for E-dimension reasons. In particular, the natural
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map OE → (Ôun
E )GE/(p) is surjective. Since E

ϕEs=1
s = Fp = Zp/(p), a similar argument gives

that Zp → (Ôun
E )ϕ=1/(p) is surjective. This settles the case n = 1.

Now consider n > 1 and assume that OE → (Ôun
E )GE/(pn−1) is surjective. Choose any

ξ ∈ (Ôun
E )GE ; we seek x ∈ OE such that ξ ≡ x mod pn. We can choose c ∈ OE such that

ξ ≡ c mod pn−1, so ξ − c = pn−1ξ′ with ξ′ ∈ (Ôun
E )GE . By the settled case n = 1 there exists

c′ ∈ OE such that ξ′ ≡ c′ mod p, so ξ ≡ c+ pn−1c′ mod pn with c+ pn−1c′ ∈ OE . The case of
ϕ-invariants goes similarly. �

Theorem 3.2.4 (Fontaine). There are covariant naturally quasi-inverse equivalences of
abelian categories

DE : RepZp
(GE)→ ΦM ét

OE
, VE : ΦM ét

OE
→ RepZp

(GE)

defined by

DE (V ) = (Ôun
E ⊗Zp V )GE , VE (M) = (Ôun

E ⊗OE
M)ϕ=1.

(The operator ϕDE (V ) is induced by ϕ on Oun
E .) These functors preserve rank and invariant

factors over OE and Zp (in particular, they are length-preserving over OE and Zp for torsion
objects and preserve the property of being finite free modules over OE and Zp), and are
compatible with tensor products.

The functors DE and VE are each naturally compatible with the formation of the duality
functors HomOE

(·,E /OE ) and HomZp(·,Qp/Zp) on torsion objects, as well as with the for-
mation of the duality functors HomOE

(·,OE ) and HomZp(·,Zp) on finite free module objects.

We emphasize that it is not evident from the definitions that DE (V ) is finitely generated
over OE for every V in RepZp

(GE), let alone that its Frobenius endomorphism (induced by

the Frobenius of Ôun
E ) is étale. Likewise, it is not evident that VE (M) is finitely generated

over Zp for every M in ΦM ét
OE

, nor that the GE-action on this (arising from the GE-action

on Ôun
E ) is continuous for the p-adic topology. These properties will be established in the

course of proving Theorem 3.2.4.

Before we prove Theorem 3.2.4 we dispose of the problem of OE -module finiteness of
DE (V ) for V ∈ RepZp

(GE) via the following lemma that is a generalization of the completed
unramified descent for finite free modules that was established in the course of proving
Theorem 2.3.4.

Lemma 3.2.5. Let R be a complete discrete valuation ring with residue field k. Choose

a separable closure ks of k and let R′ = R̂un be the completion of the associated maximal
unramified extension Run of R (with residue field ks). Let Gk = Gal(ks/k) act on R′ over R
in the canonical manner.

Let M be a finitely generated R′-module equipped with a semilinear Gk-action that is con-
tinuous with respect to the natural topology on M . The R-module MGk is finitely generated,
and the natural map

αM : R′ ⊗R (MGk)→M
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is an isomorphism, so MGk has the same rank and invariant factors over R as M does over
R′. In particular, M  MGk is an exact functor and MGk is a free R-module if and only if
M is a free R′-module.

This lemma goes beyond the completed unramified descent result that was established
(for the special case R = OK but using general methods) in the proof of Theorem 2.3.4
because we now allow M to have nonzero torsion. This requires some additional steps in the
argument.

Proof. Once the isomorphism result is established, the exactness of MGk in M follows from
the faithful flatness of R→ R′.

Let π be a uniformizer of R, so it is also a uniformizer of R′ and is fixed by the Gk-action.
We first treat the case when M has finite R′-length, which is to say that it is killed by πr

for some r ≥ 1. We shall induct on r in this case. If r = 1 then M is a finite-dimensional
ks-vector space equipped with a semilinear action of Gk having open stabilizers, so classical
Galois descent for vector spaces as in (2.3.3) implies that the natural map ks ⊗kMGk →M
is an isomorphism. (In particular, MGk is a finite-dimensional k-vector space.) This is the
desired result in the π-torsion case.

Now suppose r > 1 and that the result is known in the πr−1-torsion case. Let M ′ = πr−1M
and M ′′ = M/M ′′. Clearly M ′ is π-torsion and M ′′ is πr−1-torsion. In particular, the settled
π-torsion case gives that M ′ is Gk-equivariantly isomorphic to a product of finitely many
copies of ks, so H1(Gk,M

′) = 0. Hence, the left-exact sequence of R-modules

0→M ′Gk →MGk →M ′′Gk → 0

is exact. The flat extension of scalars R→ R′ gives exactness of the top row in the following
commutative diagram of exact sequences

0 // R′ ⊗RM ′Gk

αM′'
��

// R′ ⊗RMGk

αM

��

// R′ ⊗RM ′′Gk

'αM′′

��

// 0

0 // M ′ // M // M ′′ // 0

in which the outer vertical maps αM ′ and αM ′′ are isomorphisms by the inductive hypothesis.
Thus, the middle map αM is an isomorphism. This settles the case when M is a torsion
R′-module. In particular, the functor M  MGk is exact in the torsion case.

In the general case we shall pass to inverse limits from the torsion case. Fix n ≥ 1. For
all m ≥ n we have an R′-linear Gk-equivariant right exact sequence

(3.2.1) M/(πm)
πn

→M/(πm)→M/(πn)→ 0

of torsion objects, so applying the exact functor of Gk-invariants gives a right-exact sequence
of finite-length R-modules. But MGk ' lim←−(M/(πm))Gk since M = lim←−(M/(πm)), and
passage to inverse limits is exact on sequences of finite-length R-modules, so passing to
the inverse limit (over m) on the right-exact sequence of Gk-invariants of (3.2.1) gives the
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right-exact sequence

MGk
πn

→MGk → (M/(πn))Gk → 0

for all n ≥ 1. In other words, the natural R-module map MGk/(πn) → (M/(πn))Gk is an
isomorphism for all n ≥ 1.

In the special case n = 1, we have just shown that MGk/(π) ' (M/(π))Gk , and our results
in the π-torsion case ensure that (M/(π))Gk is finite-dimensional over k. Hence, MGk/(π)
is finite-dimensional over k = R/(π) in general. Since MGk is a closed R-submodule of the
finitely generated R′-module M , the R-module MGk is π-adically separated and complete.
Thus, if we choose elements of MGk lifting a finite k-basis of MGk/(π) then a π-adic successive
approximation argument shows that such lifts span MGk over R. In particular, MGk is a
finitely generated R-module in general.

Now consider the natural map αM : R′ ⊗R MGk → M . This is a map between finitely
generated R′-modules, so to show that it is an isomorphism it suffices to prove that the
reduction modulo πn is an isomorphism for all n ≥ 1. But αM mod πn is identified with
αM/(πn) due to the established isomorphism MGk/(πn) ' (M/(πn))Gk . Hence, the settled
isomorphism result in the general torsion case completes the argument. �

Now we are ready to take up the proof of Theorem 3.2.4.

Proof. For V ∈ RepZp
(GE), consider the natural Ôun

E -linear “comparison morphism”

(3.2.2) Ôun
E ⊗OE

DE (V ) = Ôun
E ⊗OE

(Ôun
E ⊗Zp V )GE → Ôun

E ⊗Zp V.

This is clearly compatible with the natural GE-action and Frobenius endomorphism on both

sides. Setting M = Ôun
E ⊗Zp V , the semilinear action of GE on M is clearly continuous (due

to the hypothesis that GE acts continuously on V and the evident continuity of its action

on Ôun
E ). Thus, we can apply Lemma 3.2.5 with R = OE to deduce that DE (V ) = MGE is a

finitely generated OE -module and that (3.2.2) is an isomorphism.

We immediately obtain some nice consequences. First of all, the Frobenius structure on
DE (V ) is étale (i.e., its OE -linearization is an isomorphism) because it suffices to check

this after the faithfully flat Frobenius-compatible scalar extension OE → Ôun
E , whereupon

the isomorphism (3.2.2) reduces this étaleness claim to the obvious fact that the Frobenius
endomorphism ϕ ⊗ 1 on the target of (3.2.2) linearizes to an isomorphism. Hence, have
shown that DE does indeed take values in the category ΦM ét

OE
. As such, we claim that

DE is an exact functor that preserves rank and invariant factors (of Zp-modules and OE -
modules) and is naturally compatible with tensor products (in a manner analogous to the
tensor compatibility that we have already established in the p-torsion case in Theorem 3.1.9).

It suffices to check these properties after faithfully flat scalar extension to Ôun
E , and after

applying such a scalar extension we may use (3.2.2) to transfer the claims to their analogues

for the functor V  Ôun
E ⊗Zp V , all of which are obvious.

Now we can establish half of the claim concerning inverse functors: for any V in RepZp
(GE)

we claim that VE (DE (V )) is naturally Zp[GE]-linearly isomorphic to V (but we have not
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yet proved that VE carries general étale ϕ-modules over OE into RepZp
(GE)!). By passing

to ϕ-invariants on the isomorphism (3.2.2) we get a natural Zp[GE]-linear isomorphism

VE (DE (V )) ' (Ôun
E ⊗Zp V )ϕ=1,

so we just have to show that the natural Zp[GE]-linear map

V → (Ôun
E ⊗Zp V )ϕ=1

defined by v 7→ 1⊗ v is an isomorphism. To justify this, it suffices to show that the diagram

0→ Zp → Ôun
E

ϕ−1→ Ôun
E → 0

is an exact sequence, since the rightmost term is Zp-flat (so applying V ⊗Zp (·) then yields
an exact sequence, giving the desired identification of V with a space of ϕ-invariants).

The identification of Zp with ker(ϕ− 1) in Ôun
E follows from Lemma 3.2.3, so we just have

to show that ϕ−1 is surjective as a Zp-linear endomorphism of Ôun
E . By p-adic completeness

and separatedness of Ôun
E , along with the fact that ϕ−1 commutes with multiplication by p,

we can use successive approximation to reduce to checking the surjectivity on Ôun
E /(p) = Es.

But on Es the self-map ϕ− 1 becomes x 7→ xp − x, which is surjective since Es is separably
closed.

We now turn our attention to properties of VE , the first order of business being to show
that it takes values in the category RepZp

(GE). Our analysis of VE rests on an analogue of
Lemma 3.2.5:

Lemma 3.2.6. For any D in ΦM ét
OE

, the Zp-module VE (D) is finitely generated and the

natural Ôun
E -linear GE-equivariant Frobenius-compatible map

Ôun
E ⊗Zp VE (D) = Ôun

E ⊗Zp (Ôun
E ⊗OE

D)ϕ=1 → Ôun
E ⊗OE

D

is an isomorphism. In particular, VE (D) is exact in D, it has the same rank and invariant
factors as D, and its formation is naturally compatible with tensor products.

Proof. We will handle the case when D is a torsion object, and then the general case is
deduced from this by passage to inverse limits as in the proof of Lemma 3.2.5. Hence, we
assume that D is killed by pr for some r ≥ 1, and we shall induct on r. The case r = 1
is the known case of étale ϕ-modules over E that we worked out in the proof of Theorem
3.1.9. To carry out the induction, consider r > 1 such that the desired isomorphism result
is known in the general pr−1-torsion case. Letting D′ = pr−1D and D′′ = D/D′, we have an
exact sequence

0→ D′ → D → D′′ → 0

in ΦM ét
OE

with D′ killed by p and D′′ killed by pr−1. Applying the flat scalar extension

OE → Ôun
E gives an exact sequence, and we just need to check that the resulting left-exact

sequence

0→ VE (D′)→ VE (D)→ VE (D′′)
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of ϕ-invariants is actually surjective on the right, for then we can do a diagram chase to infer
the desired isomorphism property for D from the settled cases of D′ and D′′ much like in
the proof of Lemma 3.2.5.

Consider the commutative diagram of exact sequences of Zp-modules

0 // Ôun
E ⊗OE

D′

ϕ−1

��

// Ôun
E ⊗OE

D

ϕ−1

��

// Ôun
E ⊗OE

D′′

ϕ−1

��

// 0

0 // Ôun
E ⊗OE

D′ // Ôun
E ⊗OE

D // Ôun
E ⊗OE

D′′ // 0

The kernels of the maps ϕ−1 are the submodules of ϕ-invariants, so the induced diagram of
kernels is the left-exact sequence that we wish to prove is short exact. Hence, by the snake
lemma it suffices to show that the cokernel along the left side vanishes. Since D′ is p-torsion,
the left vertical map is the self-map ϕ− 1 of Es ⊗E D′, and we just need to show that this
self-map is surjective. But D′ is an étale ϕ-module over E, so our work in the p-torsion case
(see (3.1.1)) gives the Frobenius-compatible Fp[GE]-linear comparison isomorphism

Es ⊗E D′ ' Es ⊗Fp V
′

with V ′ = VE(D′) ∈ RepFp
(GE). Hence, the surjectivity problem is reduced to the surjec-

tivity of ϕEs − 1 : x 7→ xp − x on Es, which is clear since Es is separably closed. �

Returning to the proof of Theorem 3.2.4, as an immediate application of Lemma 3.2.6
we can prove that the GE-action on the finitely generated Zp-module VE (D) is continuous
(for the p-adic topology). It just has to be shown that the action is discrete (i.e., has open
stabilizers) modulo pn for all n ≥ 1, but the exactness in Lemma 3.2.6 gives VE (D)/(pn) '
VE (D/(pn)), so it suffices to treat the case when D is pn-torsion for some n ≥ 1. In this

case VE (D) is the space of ϕ-invariants in Ôun
E ⊗OE

D = Oun
E /(pn)⊗OE /(pn)D, so it suffices to

prove that the GE-action on Oun
E /(pn) has open stabilizers. Even the action on Oun

E has open
stabilizers, since Oun

E is the rising union of finite étale extensions OE → O ′E corresponding
to finite separable extensions E ′/E inside of Es (with O ′E /(p) = E ′) and such a finite étale
extension is invariant by the action of the open subgroup GE′ ⊆ GE (as can be checked by
inspecting actions on the residue field). Thus, we have shown that VE takes values in the
expected category RepZp

(GE).

If we pass to GE-invariants on the isomorphism in Lemma 3.2.6 then we get an OE -linear
Frobenius-compatible isomorphism

DE (VE (D)) ' (Ôun
E ⊗OE

D)GE

for any D ∈ ΦM ét
OE

. Let us now check that the target of this isomorphism is naturally

isomorphic to D via the OE -linear Frobenius-compatible map h : D → (Ôun
E ⊗OE

D)GE

defined by d 7→ 1 ⊗ d. It suffices to check the isomorphism property after the faithfully

flat scalar extension OE → Ôun
E . By Lemma 3.2.5 with M = Ôun

E ⊗OE
D and R = OE ,

the OE -module MGE is finitely generated and the natural map Ôun
E ⊗OE

MGE → M is an

isomorphism. But this isomorphism carries the scalar extension Ôun
E ⊗OE

h of h over to the
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identity map Ôun
E ⊗OE

D = M . Hence, the scalar extension of h is an isomorphism, so h is as
well. This completes the verification that VE and DE are naturally quasi-inverse functors.

It remains to check the behavior of DE and VE with respect to duality functors. First
consider the full subcategories RepZp

(GE)tor and ΦM ét,tor
OE

of torsion objects, on which we
use the respective duality functors V ∨ = HomZp(V,Qp/Zp) and D∨ = HomOE

(D,E /OE ). In
this torsion case the already established tensor compatibility of DE gives a natural OE -linear
Frobenius-compatible map

DE (V )⊗DE (V ∨) ' DE (V ⊗ V ∨)→ DE (Qp/Zp),

where (i) we use the evaluation mapping V ⊗V ∨ → Qp/Zp in the category of Zp[GE]-modules

and (ii) for any Zp[GE]-module W (such as Qp/Zp) we define DE (W ) = (Ôun
E ⊗Zp W )GE as

an OE -module endowed with a ϕ-semilinear Frobenius endomorphism via the GE-equivariant

Frobenius endomorphism of Ôun
E . Clearly DE (Qp/Zp) = (Ê un/Ôun

E )GE = (E un/Oun
E )GE , and

the following lemma identifies this space of GE-invariants.

Lemma 3.2.7. The natural Frobenius-compatible map E /OE → (E un/Oun
E )GE is an isomor-

phism.

Proof. If we express E un/Oun
E as the direct limit of its pn-torsion levels (Oun

E · p−n)/Oun
E for

n→∞, it suffices to prove the analogous claim for the pn-torsion level for each n ≥ 1, and
using multiplication by pn converts this into the claim that OE /(p

n) → (Oun
E /(pn))GE is an

isomorphism for all n ≥ 1. The injectivity is clear, and the surjectivity was shown in the
proof of Lemma 3.2.3. �

By Lemma 3.2.7, we get a natural OE -linear Frobenius compatible map

(3.2.3) DE (V )⊗DE (V ∨)→ E /OE

for V ∈ RepZp
(GE)tor, so this in turn defines a natural OE -linear Frobenius-compatible

duality comparison morphism
DE (V ∨)→ DE (V )∨.

We claim that this latter map in ΦM ét
OE

is an isomorphism (or equivalently the OE -bilinear
E /OE -valued duality pairing (3.2.3) is a perfect pairing), thereby expressing the natural
compatibility of DE with respect to duality functors on torsion objects. To establish this
isomorphism property for torsion V , we observe that both sides of the duality comparison
morphism are exact functors in V , whence we can reduce the isomorphism problem to the
p-torsion case. But in this case it is easy to check that our duality pairing is precisely the
one constructed for DE in our study of étale ϕ-modules over E in the proof of Theorem 3.1.9
(using the natural Frobenius-compatible E-linear identification of (E /OE )[p] with E via the
basis 1/p), and in that earlier work we already established the perfectness of the duality
pairing.

In a similar manner we can establish the compatibility of VE with duality functors on
torsion objects, by considering the functor

VE : D  (Ôun
E ⊗OE

D)ϕ=1
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from the category of OE -modules endowed with a ϕ-semilinear endomorphism to the category
of Zp[GE]-modules and verifying that

VE (E /OE ) = (Ê un/Ôun
E )ϕ=1 ' Qp/Zp

via an analogue of Lemma 3.2.7. The details are left to the reader.

Finally, we consider the behavior with respect to duality on objects with finite free module
structures over Zp and OE . In this case we use the duality functors V ∨ = HomZp(V,Zp) and
D∨ = HomOE

(D,OE ) (endowed with the evident GE and Frobenius structures), and the
tensor compatibility enables us to define duality pairings similarly to the torsion case, now
resting on the identifications DE (Zp) = OE and VE (OE ) = Zp from Lemma 3.2.3. We then
get morphisms

DE (V ∨)→ DE (V )∨, VE (D∨)→ VE (D)∨

in ΦM ét
OE

and RepZp
(GE) respectively which we want to prove are isomorphisms. In view

of the finite freeness of the underlying module structures it suffices to check that these are
isomorphisms modulo p, and the exactness of VE and DE identifies these mod-p reductions
with the corresponding duality comparison morphisms from the p-torsion theory for V/pV ∈
RepFp

(GE) and D/pD ∈ ΦM ét
E . But we proved in our study of p-torsion objects that such

p-torsion duality comparison morphisms are isomorphisms. �

3.3. Qp-representations of GE. We conclude our study of p-adic representations of GE by
using our results for RepZp

(GE) to describe the category RepQp
(GE) in a similar Frobenius-

semilinear manner. Inspired by Lemma 1.2.6, the idea is that we should use finite-dimensional
E -vector spaces (equipped with suitable Frobenius semilinear automorphisms) rather than
finite free OE -modules. However, we will see that there is a subtlety, namely that we need
to impose some integrality requirements on the Frobenius structure (whereas in the Galois
case the analogous integrality condition, the existence of a Galois-stable Zp-lattice, is always
automatically satisfied: Lemma 1.2.6). For clarity, we now write ϕOE

to denote the Frobenius
endomorphism of OE and ϕE to denote the induced endomorphism of its fraction field E =
OE [1/p].

To motivate the correct definition of an étale ϕ-module over E , consider V ∈ RepQp
(GE)

and define the E -vector space

DE (V ) = (Ê un ⊗Qp V )GE

equipped with the ϕE -semilinear endomorphism ϕDE (V ) induced by theGE-equivariant Frobe-

nius endomorphism of Ê un. It may not be immediately evident if DE (V ) is finite-dimensional
over E or if its Frobenius structure E -linearizes to an isomorphism, but by Lemma 1.2.6 both
of these properties and more can be readily deduced from our work in the integral case:

Proposition 3.3.1. For V ∈ RepQp
(GE) D = DE (V ) has finite E -dimension dimE D =

dimQp V , and the E -linearization ϕ∗E (D)→ D of ϕD is an isomorphism. Moreover, there is
a ϕD-stable OE -lattice L ⊆ D such that the OE -linearization ϕ∗OE

(L)→ L is an isomorphism.
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Proof. By Lemma 1.2.6, we have V = Qp ⊗Zp Λ for Λ ∈ RepZp
(GE) that is finite free as a

Zp-module. Thus, from the definition it is clear that

DE (V ) = DE (Λ)[1/p] ' E ⊗OE
DE (Λ)

as E -vector spaces endowed with a ϕE -semilinear endomorphism. Since DE (Λ) ∈ ΦM ét
OE

and
this is finite free as an OE -module with rank equal to rankZp(Λ) = dimQp(V ), we are done
(take L = DE (Λ)). �

Proposition 3.3.1 motivates the following definition.

Definition 3.3.2. An étale ϕ-module over E is a finite-dimensional E -vector space D
equipped with a ϕE -semilinear endomorphism ϕD : D → D whose linearization ϕ∗E (D)→ D
is an isomorphism and which admits a ϕD-stable OE -lattice L ⊆ D such that (L, ϕD|L) ∈
ΦM ét

OE
(i.e., the linearization ϕ∗OE

(L)→ L induced by ϕD is an isomorphism). The category

of such pairs (D,ϕD) is denoted ΦM ét
E .

The lattice L in Definition 3.3.2 is auxiliary data and is not at all canonical. In Definition
3.3.2 the existence of the ϕD-stable L ∈ ΦM ét

OE
forces ϕD to E -linearize to an isomorphism,

but it seems more elegant to impose this latter étaleness property on ϕD before we mention
the hypothesis concerning the existence of the non-canonical L. Such OE -lattices L are
analogous to Galois-stable Zp-lattices in an object of RepQp

(Γ) for a profinite group Γ: their
existence is a useful device in proofs, but they are not part of the intrinsic structure of
immediate interest.

Example 3.3.3. The naive definition one may have initially imagined for an étale ϕ-module
over E is a finite-dimensional E -vector space D equipped with a ϕE -semilinear endomorphism
ϕD whose E -linearization is an isomorphism. However, this is insufficient for getting an
equivalence with RepQp

(GE) because such objects (D,ϕD) can fail to admit a Frobenius-
stable (let alone étale) OE -lattice L as in Proposition 3.3.1. The problem is that the Frobenius
endomorphism ϕD can lack good integrality properties; there is no analogue of Lemma 1.2.6
on the Frobenius-semilinear module side.

To give a concrete example, let D = E and define ϕD = p−1 · ϕE . In this case for any
nonzero x ∈ D we have

ϕD(x) = p−1 · ϕE (x) = p−1 · ϕE (x)

x
· x.

Since the multiplier ϕE (x)/x lies in O×E , the additional factor of 1/p prevents ϕD(x) from
being an OE -multiple of x. The OE -lattices in E are precisely the OE -modules OE · x for
x ∈ E ×, so we conclude that there is no ϕD-stable OE -lattice L in D (let alone one whose
Frobenius endomorphism linearizes to a lattice isomorphism).

There is an evident functor ΦM ét
OE
→ ΦM ét

E given by L L[1/p] = E ⊗OE
L, and clearly

HomΦM ét
OE

(L,L′)[1/p] = HomΦM ét
E

(L[1/p], L′[1/p]),

so ΦM ét
E is identified with the “isogeny category” of ΦM ét

OE
. In particular, ΦM ét

E is abelian.
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Theorem 3.3.4. The functors DE (V ) := (Ê un⊗Qp V )ϕ=1 and VE (D) := (Ê un⊗E D)GE are
rank-preserving exact quasi-inverse equivalences between RepQp

(GE) and ΦM ét
E that naturally

commute with the formation of tensor products and duals.

Proof. If Λ is a GE-stable Zp-lattice in V then we have seen that DE (V ) = DE (Λ)[1/p], and
likewise if we choose (as we may by definition) an étale ϕ-module L that is a Frobenius-
stable OE -lattice in a chosen D ∈ ΦM ét

E then VE (D) = VE (L)[1/p]. Thus, everything
is immediately obtained by p-localization on our results comparing RepZp

(GE) and ΦM ét
OE

(using the full subcategories of objects with finite free module structures over Zp and OE ). �

4. First steps toward better period rings

4.1. From gradings to filtrations. The ring BHT provides a convenient mechanism for
working with Hodge–Tate representations, but the Hodge–Tate condition on a p-adic repre-
sentation of the Galois group GK of a p-adic field K is too weak to be really useful. What we
seek is a class of p-adic representations that is broad enough to include the representations
arising from algebraic geometry but also small enough to permit the existence of an equiv-
alence of categories with (or at least a fully faithful exact tensor functor to) a category of
semilinear algebra objects. Based on our experience with Hodge–Tate representations and
étale ϕ-modules, we can expect that on the semilinear algebra side we will need to work with
modules admitting some kind of structures like Frobenius endomorphisms and gradings (or
filtrations). We also want the functor relating our “good” p-adic representations of GK to
semilinear algebra to be defined by a period ring that is “better” than BHT and allows us
to recover BHT (i.e., whatever class of good representations we study should at least be of
Hodge–Tate type).

The ring BHT = ⊕qCK(q) is a graded CK-algebra endowed with a compatible semilinear
GK-action. In view of the isomorphism (2.3.6) in GrK , the grading on BHT is closely related
to the grading on the Hodge cohomology Hn

Hodge(X) = ⊕p+q=nHp(X,Ωq
X/K) for smooth proper

K-schemes X. To motivate how we should refine BHT, we can get a clue from the refinement
of Hn

Hodge(X) given by the algebraic deRham cohomology Hn
dR(X/K). This is not the place

to enter into the definition of algebraic deRham cohomology, but it is instructive to record
some of its properties.

For any proper scheme X over any field k whatsoever, the algebraic deRham cohomologies
Hn(X) = Hn

dR(X/k) are finite-dimensional k-vector spaces endowed with a natural decreasing
(Hodge) filtration

Hn(X) = Fil0(Hn(X)) ⊇ Fil1(Hn(X)) ⊇ · · · ⊇ Filn+1(Hn(X)) = 0

by k-subspaces and Filq(Hn(X))/Filq+1(Hn(X)) is naturally a subquotient of Hn−q(X,Ωq
X/k),

with a natural equality

Filq(Hn(X))/Filq+1(Hn(X)) = Hn−q(X,Ωq
X/k)

if char(k) = 0.
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Definition 4.1.1. A filtered module over a commutative ring R is an R-module M endowed
with a collection {FiliM}i∈Z of submodules that is decreasing in the sense that Fili+1(M) ⊆
Fili(M) for all i ∈ Z. If ∪Fili(M) = M then the filtration is exhaustive and if ∩Fili(M) = 0
then the filtration is separated. For any filtered R-module M , the associated graded module
is gr•(M) = ⊕i(Fili(M)/Fili+1(M)).

A filtered ring is a ring R equipped with an exhaustive and separated filtration {Ri} by
additive subgroups such that 1 ∈ R0 and Ri · Rj ⊆ Ri+j for all i, j ∈ Z. The associated
graded ring is gr•(R) = ⊕iRi/Ri+1. If k is a ring then a filtered k-algebra is a k-algebra A
equipped with a structure of filtered ring such that the filtered pieces Ai are k-submodules
of A, and the associated graded k-algebra is gr•(A) = ⊕iAi/Ai+1.

Example 4.1.2. Let R be a discrete valuation ring with maximal ideal m and residue field
k, and let A = Frac(R). There is a natural structure of filtered ring on A via Ai = mi for
i ∈ Z. In this case the associated graded ring gr•(A) is a k-algebra that is non-canonically
isomorphic to a Laurent polynomial ring k[t, 1/t] upon choosing a k-basis of m/m2. Note

that canonically gr•(A) = gr•(Â), where Â denotes the fraction field of the completion R̂ of
R.

For a smooth proper C-scheme X, Grothendieck constructed a natural C-linear isomor-
phism Hn

dR(X/C) ' C ⊗Q Hn
top(X(C),Q). Complex conjugation on the left tensor factor

of the target defines a conjugate-linear automorphism v 7→ v of Hn
dR(X/C), and by Hodge

theory this determines a canonical splitting of the Hodge filtration on Hn
dR(X/C) via the

C-subspaces Hn−q,q := F n−q ∩ F q where F j = Filj(Hn
dR(X/C)); i.e., Hn−q,q ' F q/F q+1 for

all q, so F j = ⊕q≥jHn−q,q. Moreover, in Hodge theory one constructs a natural isomor-
phism Hn−q,q ' Hn−q(X,Ωq

X/C). In particular, complex conjugation gives rise to a canonical

splitting of the Hodge filtration when the ground field is C.

In the general algebraic case over an arbitrary field k of characteristic 0, the best one
has canonically is that for any smooth proper k-scheme X, the k-vector space Hn

dR(X/k)
is naturally endowed with an exhaustive and separated filtration whose associated graded
vector space

gr•(Hn
dR(X/k)) :=

⊕
q

Filq(Hn
dR(X/k))/Filq+1(Hn

dR(X/k))

is the Hodge cohomology ⊕qHn−q(X,Ωq
X/k) of X.

A natural idea for improving Faltings’ comparison isomorphism (2.3.6) between p-adic
étale and graded Hodge cohomology via BHT is to replace the graded CK-algebra BHT

with a filtered K-algebra BdR endowed with a GK-action respecting the filtration such that
Fil0(BdR)/Fil1(BdR) ' CK as rings and such that there is a canonical GK-equivariant iso-
morphism gr•(BdR) ' BHT as graded CK-algebras. In this way we can hope that the functor
DdR(V ) = (BdR⊗Qp V )GK on RepQp

(GK) with values in (exhaustive and separated) filtered
K-vector spaces is a finer invariant than DHT(V ) in the sense that on a reasonable class of
V (within the Hodge–Tate class) the evident natural map

gr•(DdR(V ))→ (gr•(BdR)⊗Qp V )GK = (BHT ⊗Qp V )GK = DHT(V )
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of graded K-vector spaces is an isomorphism.

Inspired by Example 4.1.2, we are led to seek a complete discrete valuation ring B+
dR

over K (with maximal ideal denoted m) endowed with a GK-action such that the residue
field is naturally GK-equivariantly isomorphic to CK and the Zariski cotangent space m/m2

is naturally isomorphic to CK(1) in RepCK
(GK). Since there is a canonical isomorphism

mi/mi+1 ' (m/m2)⊗i in RepCK
(GK) for all i ∈ Z, for the fraction field BdR of such a ring

B+
dR we would then canonically have gr•(BdR) ' BHT as graded CK-algebras with GK-action.

A naive guess is to take B+
dR = CK [[t]] with a continuous GK-action given by g(

∑
ant

n) =∑
g(an)χ(g)ntn. However, this does not lead to new concepts refining the theory of Hodge–

Tate representations since the CK-algebra structure on CK [[t]] and the powers of the generator
t of the maximal ideal m allow us to canonically define a GK-equivariant splitting of the
filtration on mi/mj for any i, j ∈ Z with j > i. In other words, for such a naive choice
of complete discrete valuation ring the filtration is too closely related to a grading to give
anything interesting (beyond what we already get from the Hodge–Tate theory).

A more promising idea is to imitate the procedure in commutative algebra whereby for
perfect fields k of characteristic p > 0 there is a functorially associated complete discrete
valuation ringW (k) (of Witt vectors) that has uniformizer p and residue field k. (See §4.2.) A
big difference is that now we want to functorially build a complete discrete valuation ring with
residue field CK of characteristic 0 (and we will not expect to have a canonical uniformizer).
Thus, we cannot use a naive Witt construction (as in §4.2). Nonetheless, we shall see that an
artful application of Witt-style ideas will give rise to the right equicharacteristic-0 complete
discrete valuation ring B+

dR for our purposes (and though any complete discrete valuation
ring with residue field F of characteristic 0 is abstractly isomorphic to F [[t]] by commutative
algebra, such a structure will not exist for B+

dR in a GK-equivariant manner).

We should emphasize at the outset that B+
dR will differ from CK [[t]] (as complete discrete

valuation rings with GK-action and residue field CK) in at least two key respects. First, as
we just noted, there will be no GK-equivariant ring-theoretic section to the reduction map
from B+

dR onto its residue field CK . Second, even the quotient B+
dR/m

2 as an extension of
CK by CK(1) will have no GK-equivariant additive splitting.

Roughly speaking, the idea behind the construction of B+
dR is as follows. Rather than

try to directly make a canonical complete discrete valuation ring with residue field CK , we
observe that CK = OCK

[1/p] with OCK
= lim←−OCK

/(pn) = lim←−OK/(p
n) closely related to p-

power torsion rings. Hence, it is more promising to try to adapt Witt-style constructions for
OCK

than for CK . We will make a certain height-1 valuation ring RK of equicharacteristic
p whose fraction field Frac(RK) is algebraically closed (hence perfect) such that there is a
natural GK-action on RK and a natural surjective GK-equivariant map

θ : W (RK)� OCK
.

(Note that W (RK) ⊆ W (Frac(RK)), so W (RK) is a domain of characteristic 0.) We would
then get a surjective GK-equivariant map θK : W (RK)[1/p] � OCK

[1/p] = CK . Since
RK is like a 1-dimensional ring, W (RK) is like a 2-dimensional ring and so W (RK)[1/p] is
like a 1-dimensional ring. The ring structure of W (A) is generally pretty bad if A is not
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a perfect field of characteristic p, but as long as the maximal ideal ker θK is principal and
nonzero we can replace W (RK)[1/p] with its ker θK-adic completion to obtain a canonical
complete discrete valuation ring B+

dR having residue field CK (and it will satisfy all of the
other properties that we shall require).

4.2. Witt vectors and universal Witt constructions. Let k be a finite field of charac-
teristic p and let A be the valuation ring of the finite unramified extension of Zp with residue
field k. Let [·] : k → A be the multiplicative Teichmüller lifting (carrying 0 to 0 and sending
k× isomorphically onto µq−1(A) with q = #k), so every element a ∈ A admits a unique
expansion a =

∑
n≥0[cn]pn with cn ∈ k. For any such a ∈ A and a′ =

∑
n≥0[c′n]pn ∈ A, it is

natural to ask if we can compute the Teichmüller expansions of a+ a′ and aa′ by “universal
formulas” (independent of k beyond the specification of the characteristic as p) involving
only algebraic operations over Fp on the sequences {cn} and {c′n} in k. Since A is functori-
ally determined by k it is not unreasonable to seek this kind of reconstruction of A in such
a direct manner in terms of k.

One can work out such formulas in some low-degree Teichmüller coefficients, and then
it becomes apparent that what really matters about k is not its finiteness but rather its
perfectness. Rather than give a complete development of Witt vectors from scratch, we refer
the reader to [7, Ch. II, §4–§6] for such a development and some aspects of this theory will be
reviewed below as necessary. We assume that the reader has some previous experience with
the ring of Witt vectors W (A) for an arbitrary commutative ring A (not just for Fp-algebras
A).

Let A be a perfect Fp-algebra (i.e., an Fp-algebra for which a 7→ ap is an automorphism
of A). Observe that the additive multiplication map p : W (A) → W (A) is given by (ai) 7→
(0, ap0, a

p
1, . . . ), so it is injective and the subset pnW (A) ⊆ W (A) consists of Witt vectors

(ai) such that a0 = · · · = an−1 = 0 since A is perfect, so we naturally have W (A)/(pn) '
Wn(A) by projection to the first n Witt components. Hence, the natural map W (A) →
lim←−W (A)/(pn) is an isomorphism. Thus, W (A) for perfect Fp-algebras A is a strict p-ring
in the sense of the following definition.

Definition 4.2.1. A p-ring is a ring B that is separated and complete for the topology
defined by a specified decreasing collection of ideals b1 ⊇ b2 ⊇ . . . such that bnbm ⊆ bn+m

for all n,m ≥ 1 and B/b1 is a perfect Fp-algebra (so p ∈ b1).

We say that B is a strict p-ring if moreover bi = piB for all i ≥ 1 (i.e., B is p-adically
separated and complete with B/pB a perfect Fp-algebra) and p : B → B is injective.

In addition to W (A) being a strict p-ring for perfect Fp-algebras A, a wide class of (gen-
erally non-strict) p-rings is given by complete local noetherian rings with a perfect residue
field of characteristic p > 0 (taking bi to be the ith power of the maximal ideal).

Lemma 4.2.2. Let B be a p-ring. There is a unique set-theoretic section rB : B/b1 → B to
the reduction map such that rB(xp) = rB(x)p for all x ∈ B/b1. Moreover, rB is multiplicative
and rB(1) = 1.
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Proof. This proceeds by the same method as used in the development of the theory of Witt
vectors, as follows. By perfectness of the Fp-algebra B/b1, we can make sense of xp

−n
for

all x ∈ B/b1 and all n ≥ 1. For any choice of lift x̂p−n ∈ B of xp
−n

, the sequence of

powers x̂p−n
pn

is Cauchy for the b1-adic topology. Indeed, for n′ ≥ n we have x̂p−n′
pn′−n

≡

x̂p−n mod b1, so raising to the pn-power gives x̂p−n′
pn′

≡ x̂p−n
pn

mod (pbn1 , b
pn

1 ) since in general
if y ≡ y′ mod J for an ideal J in a ring R with p ∈ J (such as J = b1 in R = B) then

yp
n ≡ y′p

n

mod (pJn, Jp
n
) for all n ≥ 1. Since bi1 ⊆ bi for all i ≥ 1 and B is assumed to be

separated and complete for the topology defined by the bi’s, there is a well-defined limit

rB(x) = lim
n→∞

x̂p−n
pn

∈ B

relative to this topology. Obviously rB(xp) = rB(x)p. If we make another choice of lifting

x̃p−n then the congruence x̂p−n ≡ x̃p−n mod b1 implies x̂p−n
pn

≡ x̃p−n
pn

mod (pbn1 , b
pn

1 ) for
all n ≥ 1, whence the limit r̃B(x) constructed using these other liftings satisfies r̃B(x) ≡
rB(x) mod bn for all n ≥ 1, so r̃B(x) = rB(x). In other words, rB(x) is independent of the

choice of liftings x̂p−n .

In particular, if ρB is a p-power compatible section as in the statement of the lemma then

we could choose x̂p−n = ρB(xp
−n

) for all n ≥ 1 in the construction of rB(x), so

x̂p−n
pn

= ρB((xp
−n

)p
n

) = ρB(x).

Passing to the limit gives rB(x) = ρB(x). This proves the uniqueness in the lemma, so it
remains to check that rB is multiplicative and rB(1) = 1. The latter condition is clear from

the construction, and for the multiplicativity we observe that ̂(xy)p−n can be chosen to be
rB(xp

−n
)rB(yp

−n
) in the construction of rB(xy), so passing to pn-powers and then to the limit

gives rB(x)rB(y) = rB(xy). �

An immediate consequence of this lemma is that in a strict p-ring B endowed with the
p-adic topology (relative to which it is separated and complete), each element b ∈ B has the
unique form b =

∑
n≥0 rB(bn)pn with bn ∈ B/b1 = B/pB. This leads to the following useful

universal property of certain Witt rings.

Proposition 4.2.3. If A is a perfect Fp-algebra and B is a p-ring, then the natural “reduc-
tion” map Hom(W (A), B) → Hom(A,B/b1) (which makes sense since A = W (A)/(p) and
p ∈ b1) is bijective. More generally, for any strict p-ring B, the natural map

Hom(B, B)→ Hom(B/(p), B/b1)

is bijective for every p-ring B.

In particular, since B and W (B/(p)) satisfy the same universal property in the category
of p-rings for any strict p-ring B, strict p-rings are precisely the rings of the form W (A) for
perfect Fp-algebras A.
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Proof. Elements β ∈ B have the unique form β =
∑

n rB(βn)pn for βn ∈ B/(p). By
construction, the multiplicative sections rB and rB are functorial with respect to any ring
map h : B → B and the associated reduction h : B/(p)→ B/b1, so

h(β) =
∑

h(rB(βn))pn =
∑

rB(h(βn))pn,

whence h is uniquely determined by h. To go in reverse and lift ring maps, we have to show
that if h : B/(p)→ B/b1 is a given ring map then the map of sets B → B defined by

β =
∑

rB(βn)pn 7→
∑

rB(h(βn))pn

is a ring map. This map obviously respects multiplicative identity elements, so we have
to check additivity and multiplicativity. For this it suffices to prove quite generally that
in an arbitrary p-ring C, the ring structure on a pair of elements c =

∑
rC(cp

−n

n )pn and

c′ =
∑
rC(c′n

p−n

)pn with sequences {cn} and {c′n} in C/c1 is given by formulas

c+ c′ =
∑

rC(Sn(c0, . . . , cn; c′0, . . . , c
′
n)p
−n

)pn, cc′ =
∑

rC(Pn(c0, . . . , cn; c′0, . . . , c
′
n)p
−n

)pn

for universal polynomials Sn, Pn ∈ Z[X0, . . . , Xn;Y0, . . . , Yn]. In fact, we can take Sn and Pn
to be the universal nth Witt addition and multiplication polynomials in the theory of Witt
vectors. The validity of such universal formulas is proved by the same arguments as in the
proof of uniqueness of such Witt polynomials. �

Let us give two important applications of Proposition 4.2.3. First of all, for a p-adic field
K with (perfect) residue field k we recover the theory of its maximal unramified subex-
tension. Indeed, since OK endowed with the filtration by powers {mi}i≥1 of its maximal
ideal m is a p-ring, there is a unique map of rings W (k) → OK lifting the identification
W (k)/(p) = k = OK/m. Since p has nonzero image in the maximal ideal m of the domain
OK , this map W (k) → OK is local and injective. Moreover, OK/(p) is thereby a vector
space over W (k)/(p) = k with basis {1, π, . . . , πe−1} for a uniformizer π and e = ordK(p),
so by successive approximation and p-adic completeness and separatedness of OK it follows
that {πi}0≤i<e is a W (k)-basis of OK . In particular, OK is a finite free module over W (k) of
rank e, so likewise K = OK [1/p] is a finite extension of K0 = W (k)[1/p] of degree e, and it
must be totally ramified as such since the residue fields coincide. We call K0 the maximal
unramified subfield of K, and for finite k this coincides with the classical notion that goes
by the same name.

Remark 4.2.4. Let k denote the algebraic closure of k given by the residue field of OK .
Although OK is not p-adically complete – so we cannot generally embed W (k) into OK –
the (non-noetherian) valuation ring OCK

is p-adically separated and complete and there is
a canonical local embedding W (k)→ OCK

. However, this is not directly constructed by the
general formalism of p-rings since no quotient of OCK

modulo a proper ideal containing p
is a perfect Fp-algebra. Rather, since K0 ⊆ K with [K : K0] < ∞, we have CK = CK0

and W (k) is the valuation ring of the completion K̂un
0 of the maximal unramified extension

of K0 (with residue field k). In particular, OK/(p) = OCK
/(p) is not only an algebra over

W (k)/(p) = k in a canonical manner, but also over W (k)/(p) = k (as can also be proved by
other methods, such as Hensel’s lemma).
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For a second application of Proposition 4.2.3, we require some preparations. If A is any
Fp-algebra whatsoever (e.g., A = OK/(p)) then we can construct a canonically associated
perfect Fp-algebra R(A) as follows:

R(A) = lim←−
x 7→xp

A = {(x0, x1, . . . ) ∈
∏
n≥0

A | xpi+1 = xi for all i}

with the product ring structure. This is perfect because the additive pth power map on
R(A) is clearly surjective and it is injective since if (xi) ∈ R(A) satisfies (xi)

p = (0) then
xi−1 = xpi = 0 for all i ≥ 1, so (xi) = 0. In terms of universal properties, observe that the
map R(A)→ A defined by (xi) 7→ x0 is a map to A from a perfect Fp-algebra, and it is easy
to check that this is final among all maps to A from perfect Fp-algebras. For example, if
A is a perfect Fp-algebra then the canonical map R(A) → A is an isomorphism (as is also
clear by inspection in such cases). The functoriality of R(A) in A is exhibited in the evident
manner in terms of compatible p-power sequences.

We will be particularly interested in the perfect Fp-algebra

R = RK = R(OK/(p)) = R(OCK
/(p))

endowed with its natural GK-action via functoriality. Since OK/(p) is canonically an algebra
over the perfect field k, likewise by functoriality we have a ring map

(4.2.1) k = R(k)→ R(OK/(p)) = R

described concretely by c 7→ (j(c), j(c1/p), j(c1/p2
), . . . ) where j : k → OK/(p) is the canonical

(even unique) k-algebra section to the reduction map OK/(p) � k. Although OCK
is p-

adically separated and complete, OCK
/(p) is not perfect. If we ignore this for a moment,

then the canonical GK-equivariant map R→ OCK
/(p) defined by (xn) 7→ x0 would uniquely

lift to a ring map

θ : W (R)→ OCK

due to the universal property of W (R) in Proposition 4.2.3. It will later be shown how
to actually construct a canonical such GK-equivariant surjection θ despite the fact that we
actually cannot apply Proposition 4.2.3 in this way (due to OCK

/(p) not being perfect).
The induced GK-equivariant surjection W (R)[1/p] → CK via θ then solves our original
motivating problem of expressing CK as a GK-equivariant quotient of a “one-dimensional”
ring, and further work will enable us to replace W (R)[1/p] with a canonical complete discrete
valuation ring.

To proceed further (e.g., to prove that R is a valuation ring with algebraically closed
fraction field and to actually construct θ as above), it is necessary to investigate the properties
of the ring R. This is taken up in the next section.

4.3. Properties of R. Although R = R(OCK
/(p)) for a p-adic field K is defined ring-

theoretically in characteristic p as a ring of p-power compatible sequences, it is important
that such sequences can be uniquely lifted to p-power compatible sequences in OCK

(but
possibly not in OK). This lifting process behaves well with respect to multiplication in R,
but it expresses the additive structure of R in a slightly complicated manner. To explain
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how this lifting works, it is convenient to work more generally with any p-adically separated
and complete ring (e.g., OCK

but not OK).

Proposition 4.3.1. Let O be a p-adically separated and complete ring. The multiplicative
map of sets

(4.3.1) lim←−
x 7→xp

O → R(O/pO)

defined by (x(n))n≥0 7→ (x(n) mod p) is bijective. Also, for any x = (xn) ∈ R(O/pO) and

arbitrary lifts x̂r ∈ O of xr ∈ O/pO for all r ≥ 0, the limit `n(x) = limm→∞ x̂n+m
pm

exists in
O for all n ≥ 0 and is independent of the choice of lifts x̂r. Moreover, the inverse to (4.3.1)
is given by x 7→ (`n(x)).

In particular, R(O/pO) is a domain if O is a domain.

Proof. The given map of sets lim←−O → R(O/pO) makes sense and is multiplicative, and to
make sense of the proposed inverse map we observe that for each n ≥ 0 and m′ ≥ m ≥ 0 we
have

x̂n+m′
pm′−m

≡ x̂n+m mod pO,

so x̂n+m′
pm′

≡ x̂n+m
pm

mod pm+1O. Hence, the limit `n(x) makes sense for each n ≥ 0, and
the same argument as in the proof of Lemma 4.2.2 shows that `n(x) is independent of the
choice of liftings x̂r. The proposed inverse map x 7→ (`n(x)) is therefore well-defined, and in
view of it being independent of the liftings we see that it is indeed an inverse map. �

In what follows, for any x ∈ R(O/pO) as in Proposition 4.3.1 we write x(n) ∈ O to denote

the limit `n(x) = limm→∞ x̂n+m
pm

for all n ≥ 0.

Remark 4.3.2. The bijection in Proposition 4.3.1 allows us to transfer the natural Fp-algebra
structure on R(O/pO) over to such a structure on the inverse limit set lim←−O of p-power

compatible sequences x = (x(n))n≥0 in O. The multiplicative structure is easy to translate
through this bijection: (xy)(n) = x(n)y(n). For addition, the proof of the proposition gives

(x+ y)(n) = lim
m→∞

(x(n+m) + y(n+m))p
m

.

Also, if p is odd then (−1)p = −1 in O, so (−x(n)) is a p-power compatible sequence for any
x. Hence, from the description of the additive structure we see that (−x)(n) = −x(n) for all
n ≥ 0 and all x when p 6= 2. This argument fails to work if p = 2, but then (−x)(n) = x(n)

for all n ≥ 0 since −x = x in such cases (as R(O/2O) is an F2-algebra if p = 2).

We now fix a p-adic field K and let R denote the domain R(OK/(p)) = R(OCK
/(p)) of

characteristic p. An element x ∈ R will be denoted (xn)n≥0 when we wish to view its p-power
compatible components as elements of OCK

/(p) and we use the notation (x(n))n≥0 to denote
its unique representation using a p-power compatible sequence of elements x(n) ∈ OCK

. An
element x ∈ R is a unit if and only if the component x0 ∈ OK/(p) is a unit, so R is a local
ring. Also, since every element of OK is a square, it is easy to check (e.g., via Proposition
4.3.1) that the nonzero maximal ideal m of R satisfies m = m2. In particular, R is not
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noetherian. The ring R has several non-obvious properties which are used throughout the
development of p-adic Hodge theory, and the remainder of this section is devoted to stating
and proving these properties (not all of which will be used in these notes).

Lemma 4.3.3. Let | · |p : CK � pQ ∪ {0} be the normalized absolute value satisfying
|p|p = 1/p. The map | · |R : R → pQ ∪ {0} defined by x = (x(n)) 7→ |x(0)|p is an absolute
value on R that makes R the valuation ring for the unique valuation vR on Frac(R) extending
− logp | · |R on R (and having value group Q).

Also, R is vR-adically separated and complete, and the subfield k of R maps isomorphically
onto the residue field of R.

Proof. Obviously x(0) = 0 if and only if x = 0, and |xy|R = |x|R|y|R since (xy)(0) = x(0)y(0).

To show that |x + y|R ≤ max(|x|R, |y|R) for all x, y ∈ R, we may assume x, y 6= 0, so
x(0), y(0) 6= 0. By symmetry we may assume |x(0)|p ≤ |y(0)|p, so for all n ≥ 0 we have

|x(n)|p = |x(0)|p−n

p ≤ |y(0)|p−n

p = |y(n)|p.

The ratios x(n)/y(n) therefore lie in OCK
for n ≥ 0 and form a p-power compatible sequence.

This sequence is therefore an element z ∈ R and clearly yz = x in R, so y|x in R. Hence,

|x+ y|R = |y(z + 1)|R = |y|R|z + 1|R ≤ |y|R ≤ max(|x|R, |y|R).

The same argument shows that R is the valuation ring of vR on Frac(R).

To prove | · |R-completeness of R, first note that if we let v = − logp | · |p on CK then

vR(x) = v(x(0)) = pnv(x(n)) for n ≥ 0. Thus, vR(x) ≥ pn if and only if v(x(n)) ≥ 1 if and
only if x(n) mod p = 0. Hence, if we let

θn : R→ OCK
/(p)

denote the ring homomorphism x = (xm)m≥0 7→ xn then {x ∈ R | vR(x) ≥ pn} = ker θn.
In view of how the inverse limit R sits within the product space

∏
m≥0(OCK

/(p)), or more
specifically since xn = 0 implies xm = 0 for all m ≤ n, we conclude that the vR-adic topology
on R coincides with its subspace topology within

∏
m≥0(OCK

/(p)) where the factors are given
the discrete topology, so the vR-adic completeness is clear (as R is closed in this product
space due to the definition of R = R(OCK

/(p))).

Finally, the definition of the k-embedding of k into R in (4.2.1) implies that θ0 : R �
OCK

/(p) is a k-algebra map, but θ0 is local and so induces an injection on residue fields.
Since k → OCK

/(p) induces an isomorphism on residue fields, we are done. �

For x = (x(n)) and y = (y(n)) in R, we have x(n) ≡ y(n) mod p if and only if x(i) ≡
y(i) mod pn−i+1 for all 0 ≤ i ≤ n, so the vR-adic topology on R also coincides with its closed
subspace topology from sitting as a multiplicative inverse limit within

∏
n≥0 OCK

where each
factor is given the p-adic topology. This gives an alternative way of seeing the vR-adic
completeness of R.
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Example 4.3.4. An important example of an element of R is

ε = (ε(n))n≥0 = (1, ζp, ζp2 , . . . )

with ε(0) = 1 but ε(1) 6= 1 (so ε(1) = ζp is a primitive pth root of unity and hence ε(n) is a
primitive pnth root of unity for all n ≥ 0). Any two such elements are Z×p -powers of each
other. For any such choice of element we claim that

vR(ε− 1) =
p

p− 1
.

To see this, by definition we have vR(ε− 1) = v((ε− 1)(0)) where v = ordp = − logp | · |p,
so we need to describe (ε− 1)(0) ∈ OCK

. By Remark 4.3.2, in OCK
we have

(ε− 1)(0) = lim
n→∞

(ε(n) + (−1)(n))p
n

,

with ε(n) = ζpn a primitive pnth root of unity in K and (−1)(n) = −1 if p 6= 2 whereas
(−1)(n) = 1 if p = 2. We shall separately treat the cases of odd p and p = 2.

If p is odd then

vR(ε− 1) = lim
n→∞

pn ordp(ζpn − 1) = lim
n→∞

pn

pn−1(p− 1)
=

p

p− 1
.

If p = 2 then

vR(ε− 1) = lim
n→∞

2n ord2(ζ2n + 1) = lim
n→∞

2n ord2((ζ2n − 1) + 2).

Since ord2(ζ2n−1) = 1/2n−1 < ord2(2) for n > 1, we have ord2((ζ2n−1) + 2) = ord2(ζ2n−1)
for n > 1, so we may conclude as for odd p.

Theorem 4.3.5. The field Frac(R) of characteristic p is algebraically closed.

Proof. Since R is a perfect valuation ring of characteristic p, its fraction field is a perfect
field of characteristic p. Hence, our problem is to prove that it is separably closed. Via
the valuation we see that it suffices to prove that any monic polynomial P ∈ R[X] that is
separable over Frac(R) has a root in R when degP > 0. Since P and its derivative P ′ are
relatively prime over Frac(R) by separability, clearing denominators gives U, V ∈ R[X] such
that

PU + P ′V = r ∈ R− {0}.
The value group of vR is Q, so further scaling of U and V by a common nonzero element of
R allows us to arrange that vR(r) ∈ Z+. Let m = vR(r) ≥ 1. We will construct a Cauchy
sequence {ρn} in R such that P (ρn) → 0, so the limit ρ = lim ρn ∈ R (which exists by the
completeness in Lemma 4.3.3) is a root of P . The construction of {ρn} rests on the following
lemma:

Lemma 4.3.6. With m = vR(r) ≥ 1 as defined above, if n ≥ 2m + 1 and ξ ∈ R satisfies
vR(P (ξ)) ≥ n then there exists y ∈ R such that vR(y) ≥ n−m and vR(P (ξ + y)) ≥ n+ 1.
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Granting this lemma for a moment, and assuming furthermore that there exists some
ρ1 ∈ R satisfying vR(P (ρ1)) ≥ 2m+ 1, we may take ξ = ρ1 in the lemma (with n = 2m+ 1)
to find y1 ∈ R such that vR(y1) ≥ m + 1 and vR(P (ρ1 + y1)) ≥ 2m + 2. We then apply the
lemma to ξ = ρ2 := ρ1 + y1 and n = 2m+ 2, and so on, to construct sequences {ρi} and {yi}
in R such that ρi+1 = ρi + yi for all i ≥ 1, vR(yi) ≥ m + i, and vR(P (ρi)) ≥ 2m + i. Since
vR(ρi+1 − ρi) = vR(yi) ≥ m + i, the sequence {ρi} is Cauchy. Hence, the limit ρ = lim ρi
exists in R and vR(P (ρ)) = +∞, which is to say P (ρ) = 0 as desired. It therefore suffices to
find such a ρ1 and to then prove Lemma 4.3.6.

To find ρ1 as just used, for each j ≥ 1 consider the ring map θj : R → OCK
/(p) defined

by x = (xi) 7→ xj. Since

ker θj = {x ∈ R | vR(x) ≥ pj},
we seek ρ1 ∈ R such that θj(P (ρ1)) = 0 for a fixed j large enough so that pj ≥ 2m + 1.
More generally, for any n ≥ 1 we shall construct t ∈ R such that θn(P (t)) = 0. Consider
the induced map θn : R[X] → (OCK

/(p))[X] given by θn on coefficients. This carries P to

a monic polynomial Q with positive degree, so upon lifting Q to a monic polynomial Q̃ in

OCK
[X] we may choose a root z ∈ OCK

of Q̃ (as CK is algebraically closed and Q̃ is a monic
polynomial with positive degree over its valuation ring). The map θn : R → OCK

/(p) is
surjective (again using that CK is algebraically closed), so we can pick t ∈ θ−1

n (z mod p).

Clearly θn(P (t)) = (θn(P ))(θn(t)) = Q(z mod p) = Q̃(z) mod p = 0, as desired.

Now we turn to the task of proving Lemma 4.3.6. Recall that vR(r) = m ≥ 1. To find the
required y ∈ R, consider the algebraic expansion

P (X + Y ) = P (X) + Y P ′(X) +
∑
j≥2

Y jPj(X)

for suitable Pj ∈ R[X]. For any y ∈ R with vR(y) ≥ n−m we have

vR(P (ξ + y)) ≥ min(vR(P (ξ) + P ′(ξ)yn), vR(yjPj(ξ))j≥2),

and for any j ≥ 2 clearly vR(yjPj(ξ)) ≥ jvR(y) ≥ 2vR(y) ≥ 2(n −m) ≥ n + 1. Hence, we
can ignore the contribution from y-degrees beyond the first in our search for y and we just
need to find y ∈ R such that

vR(P (ξ) + yP ′(ξ)) ≥ n+ 1.

The idea is to take y = −P (ξ)/P ′(ξ), except that we do not know this lies in R (let alone
that vR(y) ≥ n−m) nor that the denominator P ′(ξ) is nonzero. It is enough to check that
vR(P ′(ξ)) ≤ m (so P ′(ξ) 6= 0), for then y = P (ξ)/P ′(ξ) makes sense in Frac(R) and satisfies

vR(y) = vR(P (ξ))− vR(P ′(ξ)) ≥ n−m

as required.

To prove the upper bound vR(P ′(ξ)) ≤ m, we evaluate the identity UP +V P ′ = r in R[X]
(with vR(r) = m) at X = ξ to get

U(ξ)P (ξ) + V (ξ)P ′(ξ) = r
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in R. But vR(U(ξ)P (ξ)) ≥ vR(P (ξ)) ≥ n > m = vR(r), so vR(V (ξ)P ′(ξ)) = vR(r) = m.
Hence, V (ξ) and P ′(ξ) are nonzero, and moreover vR(P ′(ξ)) ≤ m as desired. �

Consider an element ε ∈ R as in Example 4.3.4 (so ε(0) = 1 and ε(1) 6= 1). Thus,
θ0(ε) = 1 ∈ OCK

/(p), so the image of ε in the residue field k of R is 1. Hence, ε − 1 lies
in the maximal ideal mR of R, which we knew anyway from Example 4.3.4 since there we
proved vR(ε−1) = p/(p−1) > 0. By the completeness of R, we get a unique local k-algebra
map k[[u]]→ R satisfying u 7→ ε−1 6= 0. This map depends on the choice of ε, but its image
does not:

Lemma 4.3.7. The image of k[[u]] in R is independent of ε.

Proof. Consider a second choice ε′, so ε′ = εa for some a ∈ Z×p . (Note that ε lies in the
multiplicative group 1 + mR that is p-adically separated and complete, so Zp-exponentiation
on here makes sense.) Letting x = ε− 1 and x′ = ε′ − 1 in mR, we can compute formally

x′ = εa − 1 = (1 + x)a − 1 = ax+ . . .

in R. Rigorously, the unique local k-algebra self-map of k[[u]] satisfying u 7→ (1 + u)a − 1
carries the map k[[u]] → R resting on ε to the one resting on ε′. But this self-map is an
automorphism since (1 + u)a − 1 = au+ . . . with a ∈ Z×p . �

In view of the lemma, we may define the canonical subfield E ⊆ Frac(R) to be the fraction
field of the canonical image of k[[u]] in R for any choice of ε as in Lemma 4.3.7. By Theorem
4.3.5, the separable closure Es of E within Frac(R) is a separable closure of E. The action
of the Galois group GK on R extends uniquely to an action on Frac(R), and this does not fix
the image ε−1 of u. However, for the extension K∞ = K(µp∞) generated by the components
ε(n) of ε (for all choices of ε) we see that the subgroup GK∞ ⊆ GK is the isotropy group of
ε − 1 ∈ R and so is the isotropy group of the intrinsic subfield E ⊆ Frac(R). Hence, GK∞

preserves the separable closure Es ⊆ Frac(R), so we get a group homomorphism

GK∞ → Aut(Es/E) = GE.

Lemma 4.3.8. The map of Galois groups GK∞ → GE is continuous.

Proof. Fix a finite Galois extension E ′ of E inside of Es ⊆ Frac(R). We may choose a
primitive element x ∈ E ′× for E ′ over E. By replacing x with 1/x if necessary, we can
arrange that x ∈ R. The algebraicity of x over E implies that the GK∞-orbit of x is finite,
say {x = x1, . . . , xn}, with all xi ∈ R. To find an open subgroup of GK∞ that has trivial
image in Gal(E ′/E), or equivalently lands in GE′ ⊆ GE, we just need to show that if g ∈ GK∞

is sufficiently close to 1 then g(x) is distinct from the finitely many elements x2, . . . , xn that
are distinct from x (forcing g(x) = x). The existence of such a neighborhood of the identity
is immediate from the continuity of the action of GK on the Hausdorff space R. �

A much deeper fact (not used in these notes) that is best understood as part of the theory
of norm fields of Fontaine and Wintenberger is that the continuous map in Lemma 4.3.8 is
in fact bijective and so is a topological isomorphism. (The theory of norm fields even gives
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a functorial equivalence between the categories of finite separable extensions of K∞ and of
E.) This is the concrete realization of a special case of the abstract isomorphism in (1.3.1).

4.4. The field of p-adic periods BdR. We have now assembled enough work to carry out
the first important refinement on the graded ring BHT, namely the construction of the field
of p-adic periods BdR as promised in the discussion following Example 4.1.2. Inspired by the
universal property of Witt vectors in Proposition 4.2.3 and the perfectness of the Fp-algebra
R, we seek to lift the GK-equivariant surjective ring map θ0 : R → OCK

/(p) defined by
(xi) 7→ x0 to a GK-equivariant surjective ring map θ : W (R) → OCK

. As we have already
observed, although OCK

is p-adically separated and complete, we cannot use Proposition
4.2.3 because OCK

/(p) is not perfect. Nonetheless, we will construct such a θ in a canonical
(in particular, GK-equivariant) manner.

In the end, the formula for θ will be very simple and explicit:

θ(
∑

[cn]pn) =
∑

c(0)
n pn.

(Recall that W (R) is a strict p-ring with W (R)/(p) = R, so each of its elements has the
unique form

∑
[cn]pn with cn ∈ R.) This is very much in the spirit of the proof of Proposition

4.2.3 since c(0) = limm→∞ ĉm
pm

for any c ∈ R using any choice of lift ĉm ∈ OCK
of cm ∈

OCK
/(p) (with {cm} a compatible sequence of p-power roots of c0 ∈ OCK

/(p)). In terms

of the Witt coordinatization (r0, r1, . . . ) =
∑
pn[rp

−n

n ] we expect to have θ : (r0, r1, . . . ) 7→∑
(rp
−n

n )(0)pn, but for any r ∈ R we have (rp
−n

)(0) = ((rp
−n

)(n))p
n

= r(n) in OCK
since r 7→ r(n)

is multiplicative. Hence, we expect to have the formula θ : (r0, r1, . . . ) 7→
∑
r

(n)
n pn. It is a

pain to prove by hand that this explicit formula defines a ring map, so we will proceed in a
more indirect manner.

Since xpn+1 = xn in OCK
/(p) for x = (xi) ∈ R, the projection maps θn : R → OCK

/(p)
given by x 7→ xn satisfy Frob ◦ θn+1 = θn with Frob : OCK

/(p) → OCK
/(p) denoting the p-

power map. Applying the Witt functor on arbitrary commutative rings to this compatibility
gives a commutative diagram

W (R)
W (θn)

((QQQQQQQQQQQQQ

W (θn+1)

��
W (OCK

/(p))
ϕ

// W (OCK
/(p))

where the bottom side is the usual Frobenius endomorphism ϕ = W (Frob) of the Witt
vectors of any Fp-algebra. Let Θn : W (R) → Wn(OCK

/(p)) denote the composition of
W (θn) with the projection W → Wn to length-n truncated Witt vectors (on OCK

/(p)-
valued points), so Θn = fn ◦ Θn+1 where fn : Wn+1(OCK

/(p)) → Wn(OCK
/(p)) is the map

(a0, . . . , an) 7→ (ap0, . . . , a
p
n−1). Thus, we get a canonical map of rings

α : W (R)→ lim←−
fn

Wn(OCK
/(p)).
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We claim that α is bijective. For x = (x(m))m≥0 ∈ R with {x(m)} a p-power compatible
sequence in OCK

, the map Θn : W (R)→ Wn(OCK
/(p)) carries the Teichmüller digit

[x] = (x, 0, 0, . . . )

to [x(n) mod p]. Likewise, Θn carries a general Witt vector w = (w0, w1, . . . ) ∈ W (R) (with

wn = (w
(m)
n )m≥0 ∈ R) to

(w
(n)
0 mod p, . . . , w

(n)
n−1 mod p).

Hence, from the definition of α it is a bijective map. Since the valuation vR on R satisfies
vR(x) = ordp(x

(0)) = pn ordp(x
(n)), it is easy to check that α is a topological isomorphism

when we give each OCK
/(p) its discrete topology, R its vR-adic topology, and W (A) =∏

n≥0A the product topology for any topological ring A.

Now comes the key point. We want to construct a (continuous GK-equivariant) ring
homomorphism θ : W (R) → OCK

as if OCK
were a strict p-ring (which it isn’t), so in

particular we hope to have the formula θ : (rn) 7→
∑
pnr

(n)
n . But we have a topological and

GK-equivariant identification OCK
= lim←−OCK

/(pn) and we just constructed a topological ring
isomorphism α : W (R) ' lim←−fn

Wn(OCK
/(p)) that is also visibly GK-equivariant. Hence, it

suffices to construct compatible GK-equivariant maps

ψn : Wn(OCK
/(p))→ OCK

/(pn)

inducing the desired θ in the inverse limit as n→∞. Such maps ψn can be constructed as
follows.

From the theory of Witt vectors, the set-theoretic map wn : Wn+1(A)→ A given by

(a0, . . . , an) 7→ ap
n

0 + pap
n−1

1 + · · ·+ pnan

is a ring map for any ring A. Taking A = OCK
, we can use this to define a canonical map

Wn(OCK
/(p))→ OCK

/(pn):

Lemma 4.4.1. The map ψn : Wn(OCK
/(p))→ OCK

/(pn) defined by

(c0, . . . , cn−1) 7→ wn(ĉ0, . . . , ĉn−1, 0) =
n−1∑
j=0

pj ĉp
n−j

j mod pn

for arbitrary lifts ĉj ∈ OCK
of cj ∈ OCK

/(p) is well-defined and a map of rings; it uniquely
fits into the commutative diagram

Wn+1(OCK
)

��

wn // OCK

��
Wn(OCK

/(p))
ψn

// OCK
/(pn)

with surjective vertical maps, using componentwise reduction in the left side.

Proof. It is clear by hand that ψn is a well-defined map of sets and that it fits into the
given commutative diagram (in view of how wn is defined), whence ψn must be a ring map
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since the left side is surjective. Alternatively, one can prove directly that the kernel of the
surjective left side is killed by the composite along the top and right sides since the kernel
consists of Witt vectors (pb0, . . . , pbn−1, bn). �

By inspection, the visibly GK-equivariant diagram

Wn+1(OCK
/(p))

ψn+1 //

fn

��

OCK
/(pn+1)

��
Wn(OCK

/(p))
ψn

// OCK
/(pn)

(using reduction along the right side) commutes, whence passing to the inverse limit in n
defines a continuous GK-equivariant ring homomorphism

θ : W (R) ' lim←−
fn

Wn(OCK
/(p))→ lim←−OCK

/(pn) = OCK

(where continuity is relative to the p-adic topology on OCK
and the product topology on

W (R) relative to the vR-adic topology on R). To unravel this, we compute on Teichmüller
lifts: for r = (r(n))n≥0 ∈ R and [r] = (r, 0, 0, . . . ) ∈ W (R),

θ([r]) = lim←−ψn(Θn([r])) = lim←−ψn([r(n) mod p]) = lim←−((r(n))p
n

mod pn)

= lim←− r
(0) mod pn

= r(0).

Hence, on a general Witt vector (r0, r1, . . . ) =
∑
pn[rp

−n

n ],

θ((rn)) =
∑

pnθ([rp
−n

n ]) =
∑

pn(rp
−n

n )(0) =
∑

pnr(n)
n ,

as desired. This explicit formula makes it evident that θ is surjective (since R → OCK
/(p)

via r 7→ r(n) is surjective for each n ≥ 0). In concrete terms, the formula shows that θ fits
into the following family of commutative diagrams:

W (R)
θ //

��

OCK

''PPPPPPPPPPPPP

Wn(R)
Θn

// Wn(OCK
/(p))

ψn

// OCK
/(pn)

Proposition 4.4.2. The continuous surjective GK-equivariant map θ : W (R) → OCK
is

open. Also, using the canonical k-algebra map j : k → R to make W (R) into a W (k)-algebra
via W (j), θ is a W (k)-algebra map via the natural W (k)-algebra structure on OCK

.

Proof. To prove openness, using the product of the valuation topology from R on W (R) and
the p-adic topology on OCK

, we just have to show that if J is an open ideal in R then the
image under θ of the additive subgroup of vectors (ri) with r0, . . . , rn ∈ J (for fixed n) is
open in OCK

. This image is J (0) + pJ (1) + · · · + pn−1J (n−1), where J (m) is the image of J
under the map of sets R → OCK

defined by r 7→ r(m). Since OCK
has the p-adic topology,
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it suffices to show that J (m) is open in OCK
for each m ≥ 0. But J (m) = (Jp

m
)(0), so to

prove that θ is open we just have to show that if J is an open ideal in R then J (0) is open
in OCK

. It is enough to work with J ’s running through a base of open ideals, so we take
J = {r ∈ R | vR(r) ≥ c} with c ∈ Q. Since vR(r) = v(r(0)) and the map r 7→ r(0) is a
surjection from R onto OCK

, clearly for such J we have that J (0) = {t ∈ OCK
| v(t) ≥ c},

which is certainly open in OCK
. This concludes the proof that θ is an open map.

Next, consider the claim that θ is a map of W (k)-algebras. Recall that OCK
is made

into a W (k)-algebra via the unique continuous W (k)-algebra map h : W (k) → OCK
lifting

the identity map on k at the level of residue fields. (By such continuity and the p-adic
separatedness and completeness of OCK

, the existence and uniqueness of such an h is reduced
to the case when k is replaced with a finite extension k′/k, and the unique W (k)-algebra
map W (k′) → OCK

lifting the inclusion k′ → k is built as follows: by W (k)-finiteness it
must land in the valuation ring of a finite extension of K if it exists, so we can pass to the
case when the target is a complete discrete valuation ring, whence the universal property of
W (k′) can be used. Concretely, W (k′) is just a finite unramified extension of W (k) within K,
the point being that the map on residue fields uniquely determines the map in characteristic
0.) Using p-adic continuity, it is enough to chase Teichmüller digits.

Our problem is now to show that for each c ∈ k the image h([c]) is equal to θ([j(c)]), where
j : k → R is the canonical k-algebra map defined by c 7→ (c1/pm

)m≥0 ∈ R(OK/(p)) = R
and we view OK/(p) as a k-algebra over its k-algebra structure via Hensel’s Lemma. The
key point is that c viewed in OK/(p) = OCK

/(p) is just h([c]) mod p (check!), so j(c) =
(h([c1/pm

]) mod p) ∈ R. Since the sequence of elements h([c1/pm
]) in OCK

is p-power com-
patible, j(c)(0) = h([c]). Thus, θ([j(c)]) = j(c)(0) = h([c]). �

We now have a GK-equivariant surjective ring homomorphism

θK : W (R)[1/p]� OCK
[1/p] = CK ,

but the source ring is not a complete discrete valuation ring. We shall replace W (R)[1/p]
with its ker θK-adic completion, and the reason this works is that ker θK = (ker θ)[1/p] turns
out to be a principal ideal. We now record some facts about ker θ.

Proposition 4.4.3. Choose π ∈ R such that π(0) = p (i.e., π = (p, p1/p, p1/p2
, . . . ) ∈

lim←−x 7→xp
OCK

= R, so vR(π) = 1) and let ξ = ξπ = [π]− p = (π,−1, . . . ) ∈ W (R).

(1) The ideal ker θ ⊆ W (R) is the principal ideal generated by ξ.
(2) An element w = (r0, r1, . . . ) ∈ ker θ is a generator of ker θ if and only if r1 ∈ R×.

A defect of ξ, despite its explicitness, is that GK does not act on ξ in a nice way (but it
does preserve ξ ·W (R) = ker θ). This will be remedied after replacing W (R)[1/p] with its
ker θK-adic completion.

Proof. Clearly θ(ξ) = θ([π]) − p = π(0) − p = 0 and ker θ ∩ pnW (R) = pn · ker θ since
W (R)/(ker θ) = OCK

has no nonzero p-torsion. Since W (R) is p-adically separated and
complete (as R is a perfect domain, so the p-adic topology on W (R) is just the product
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topology on W (R) using the discrete topology of R), to prove that ξ is a principal generator
of ker θ it therefore suffices to show ker θ ⊆ (ξ, p) = ([π], p). But if w = (r0, r1, . . . ) ∈ ker θ

then r
(0)
0 ≡ 0 mod p, so vR(r0) = ordp(r

(0)
0 ) ≥ 1 = vR(π) and hence r0 ∈ πR. We conclude

that w ∈ ([r0], p) ⊆ ([π], p), as desired.

A general element w = (r0, r1, . . . ) ∈ ker θ has the form

w = ξ · (r′0, r′1, . . . ) = (π,−1, . . . )(r′0, r
′
1, . . . ) = (πr′0, π

pr′1 − r′0
p
, . . . ),

so r1 = πpr′1 − r′0
p. Hence, r1 ∈ R× if and only if r′0 ∈ R×, and this final unit condition is

equivalent to the multiplier (r′0, r
′
1, . . . ) being a unit in W (R), which amounts to w being a

principal generator of ker θ (since W (R) is a domain). �

Corollary 4.4.4. For all j ≥ 1,

W (R) ∩ (ker θK)j = (ker θ)j.

Also, ∩(ker θ)j = ∩(ker θK)j = 0.

Proof. By a simple induction on j and chasing multiples of ξ, to prove the displayed equality
it suffices to check the case j = 1. This case is clear since W (R)/(ker θ) = OCK

has no
nonzero p-torsion.

Since any element of W (R)[1/p] admits a p-power multiple in W (R), we conclude that

∩(ker θK)j = (∩(ker θ)j)[1/p].

To prove this vanishes, it suffices to consider an arbitrary w = (r0, r1, . . . ) ∈ W (R) lying in
∩(ker θ)j. Thus, w is divisible by arbitrarily high powers of ξ = [π]−p = (π,−1, . . . ), so r0 is
divisible by arbitrarily high powers of π in R. But vR(π) = 1 > 0, so by vR-adic separatedness
of R we see that r0 = 0. This says that w = pw′ for some w′ ∈ W (R) since R is a perfect Fp-
algebra. Hence, w′ ∈ (∩(ker θ)j)[1/p] = ∩(ker θK)j. Thus, w′ ∈ W (R) ∩ (ker θK)j = (ker θ)j

for all j. This shows that each element of ∩(ker θ)j in W (R) lies in ∩pnW (R), and this
vanishes since W (R) is a strict p-ring. �

We conclude that W (R)[1/p] injects into the inverse limit

(4.4.1) B+
dR := lim←−

j

W (R)[1/p]/(ker θK)j

whose transition maps are GK-equivariant, so B+
dR has a natural GK-action that is com-

patible with the action on its subring W (R)[1/p]. (Beware that in (4.4.1) we cannot move
the p-localization outside of the inverse limit: algebraic localization and inverse limit do
not generally commute with each other, as is most easily seen when comparing the t-adic
completion Qp[[t]] of Qp[t] = Zp[t][1/p] with its subring Zp[[t]][1/p] of power series with
“bounded denominators”.) The inverse limit B+

dR maps GK-equivariantly onto each quo-
tient W (R)[1/p]/(ker θK)j via the evident natural map, and in particular for j = 1 the
map θK induces a natural GK-equivariant surjective map θ+

dR : B+
dR � CK . It is clear that

ker θ+
dR ∩W (R) = ker θ and ker θ+

dR ∩W (R)[1/p] = ker θK since θ+
dR restricts to θK on the

subring W (R)[1/p].
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Proposition 4.4.5. The ring B+
dR is a complete discrete valuation ring with residue field

CK, and any generator of ker θK in W (R)[1/p] is a uniformizer of B+
dR. The natural map

B+
dR → W (R)[1/p]/(ker θK)j is identified with the projection to the quotient modulo the jth

power of the maximal ideal for all j ≥ 1.

Proof. Since ker θK is a nonzero principal maximal ideal (with residue field CK) in the domain
W (R)[1/p], for j ≥ 1 it is clear that W (R)[1/p]/(ker θK)j is an artin local ring whose only
ideals are (ker θK)i/(ker θK)j for 0 ≤ i ≤ j. In particular, an element of B+

dR is a unit if and
only if it has nonzero image under θ+

dR. In other words, the maximal ideal ker θ+
dR consists

of precisely the non-units, so B+
dR is a local ring.

Consider a non-unit b ∈ B+
dR, so its image in each W (R)[1/p]/(ker θK)j has the form bjξ

with bj uniquely determined modulo (ker θK)j−1 (with ξ as above). In particular, the residue
classes bj mod (ker θK)j−1 are a compatible sequence and so define an element b′ ∈ B+

dR with
b = ξb′. The construction of b′ shows that it is unique. Hence, the maximal ideal of B+

dR has
the principal generator ξ, and ξ is not a zero divisor in B+

dR.

It is now clear that for each j ≥ 1 the multiples of ξj in B+
dR are the elements killed by the

surjective projection to W (R)[1/p]/(ker θK)j. In particular, B+
dR is ξ-adically separated, so

it is a discrete valuation ring with uniformizer ξ. We have identified the construction of B+
dR

as the inverse limit of its artinian quotients, so it is a complete discrete valuation ring. �

The Frobenius automorphism ϕ of W (R)[1/p] does not naturally extend to B+
dR since it

does not preserve ker θK ; for example, ϕ(ξ) = [πp]−p 6∈ ker θK . There is no natural Frobenius
structure on B+

dR. Nonetheless, we do have a filtration via powers of the maximal ideal, and
this is a GK-stable filtration. We get the same on the fraction field:

Definition 4.4.6. The field of p-adic periods (or the de Rham period ring) is BdR :=
Frac(B+

dR) equipped with its natural GK-action and GK-stable filtration via the Z-powers of
the maximal ideal of B+

dR.

To show that the filtered field BdR is an appropriate refinement of BHT, we wish to prove
that the associated graded algebra gr•(BdR) over the residue field CK of B+

dR (see Example
4.1.2) is GK-equivariantly identified with the graded CK-algebra BHT. This amounts to
proving that the Zariski cotangent space of B+

dR, which is 1-dimensional over the residue
field CK , admits a canonical copy of Zp(1); this would be a canonical Zp-line on which
GK acts by the p-adic cyclotomic character, and identifies the Zariski cotangent space with
CK(1) as required.

We will do better: we shall prove that B+
dR admits a uniformizer t, canonical up to Z×p -

multiple, on which GK acts by the cyclotomic character, and that the set of such t’s is
naturally Z×p -equivariantly bijective with the set of Zp-bases of Zp(1) = lim←−µpn(K). (Such

elements t do not live in W (R)[1/p], so it is essential to have passed to the completion B+
dR

to find such a uniformizer on which there is such a nice GK-action.) The construction of t
rests on elements ε ∈ R from Example 4.3.4 as follows.
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Choose ε ∈ R with ε(0) = 1 and ε(1) 6= 1, so θ([ε] − 1) = ε(0) − 1 = 0. Hence, [ε] − 1 ∈
ker θ ⊆ ker θ+

dR, so [ε] = 1 + ([ε]− 1) is a 1-unit in the complete discrete valuation ring B+
dR

over K. We can therefore make sense of the logarithm

t := log([ε]) = log(1 + ([ε]− 1)) =
∑
n≥1

(−1)n+1 ([ε]− 1)n

n
∈ B+

dR.

This clearly lies in the maximal ideal of B+
dR. Note that if we make another choice ε′ then

ε′ = εa for a unique a ∈ Z×p using the natural Zp-module structure on 1-units in R. Hence,
by continuity of the Teichmüller map R → W (R) relative to the vR-adic topology of R we
have [ε′] = [ε]a in W (R). Thus, t′ = log([ε′]) = log([ε]a).

We wish to claim that log([ε]a) = a · log([ε]), but this requires an argument because the
logarithm is defined as a convergent sum relative to a topology on B+

dR that “ignores” the vR-
adic topology of R whereas the exponentiation procedure [ε]a involves the vR-adic topology
of R in an essential manner. A good way to deal with this is to introduce a topological ring
structure on B+

dR that is finer than its discrete valuation topology and relative to which the
natural map W (R) → B+

dR is continuous. We leave this to the reader in the form of the
following important multi-part exercise.

Exercise 4.4.7. This exercise introduces a topological ring structure on W (R)[1/p] that in-
duces the natural vR-adic product topology on the subring W (R) and extends it to a natural
topological ring structure on B+

dR whose induced quotient topology on the residue field CK

is the natural valuation topology. Roughly speaking, for W (R)[1/p] the idea is to impose a
topology using controlled decay of coefficients of Laurent series in p. The situation is funda-
mentally different from topologizing Qp = Zp[1/p] from the topology on Zp because pW (R)
is not open in W (R) (in contrast with pZp ⊆ Zp) when R is given its vR-adic (rather than
its discrete) topology.

(1) For any open ideal a ⊆ R and N ≥ 0, let

UN,a =
⋃

j>−N

(p−jW (ap
j

) + pNW (R)) ⊆ W (R)[1/p],

where W (J) for an ideal J of R means the ideal of Witt vectors in W (R) whose com-
ponents all lie in J . Prove that UN,a is a GK-stable W (R)-submodule of W (R)[1/p].

(2) Prove UN+M,a+b ⊆ UN,a ∩ UM,b and that UN,a · UN,a ⊆ UN,a. Deduce that W (R)[1/p]
has a unique structure of topological ring with the UN,a’s a base of open neighborhoods
of 0, and that the GK-action on W (R)[1/p] is continuous.

(3) Prove that UN,a ∩W (R) = W (a) + pNW (R), and deduce that W (R) endowed with
its product topology using the vR-adic topology on R is a closed topological subring
of W (R)[1/p]. Conclude that K0 = W (k)[1/p] ⊆ W (R)[1/p] is a closed subfield with
its usual p-adic topology (hint: k is a discrete subring of R).

(4) For each N ≥ 0, prove that pNOCK
⊆ θK(UN,a) and show that this containment gets

arbitrarily close to an equality for the p-adic topology (i.e., θK(UN,a) is contained
in pN+aOCK

for arbitrarily small a > 0) by taking a to be sufficiently small. In
particular, deduce that θK : W (R)[1/p]→ CK is a continuous open map.
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(5) Prove that the multiplication map ξ : W (R)[1/p] → W (R)[1/p] is a closed em-
bedding, so all ideals (ker θK)j = ξjW (R)[1/p] are closed. Conclude that with the
quotient topology on each W (R)[1/p]/(ker θK)j, the inverse limit topology on B+

dR

makes it a Hausdorff topological ring relative to which the powers of the maximal
ideal are closed, W (R) is a closed subring, the multiplication map by ξ on B+

dR is
a closed embedding, and the residue field CK inherits its valuation topology as the
quotient topology.

We now use the final part of the preceding exercise. Let UR ⊆ 1 + mR be the subgroup
of elements x such that x(0) = 1 (such as any choice of ε). We claim that the logarithm
log([x]) ∈ B+

dR formed as a convergent sum for the discrete valuation topology is continuous
in x relative to the vR-adic topology of the topological group UR ⊆ 1+mR and the topological
ring structure just constructed on B+

dR. Since x 7→ log([x]) is an abstract homomorphism
UR → B+

dR between topological groups, it suffices to check continuity at the identity. If a ⊆ R
is an ideal and x ∈ (1 + a) ∩ UR then working in W (R/a) shows that [x] − 1 ∈ W (a), so

([x]− 1)n/n ∈ p−jW (ap
j
) with j = ordp(n) for all n ≥ 1. This gives the required continuity,

in view of how the topology on B+
dR is defined.

For any a ∈ Zp and x ∈ UR we have xa ∈ UR by continuous extension from the case
a ∈ Z+ via the tautological continuity of the map x 7→ x(0) from R to OCK

. Likewise, by
continuity of log : UR → B+

dR, for any a ∈ Zp and x ∈ UR we have log([xa]) = a log([x])
by continuous extension from the case a ∈ Z+. Hence, for ε′ = εa with a ∈ Z×p we have
t′ := log([ε′]) = a log([ε]) = at.

In other words, the line Zpt in the maximal ideal of B+
dR is intrinsic (i.e., independent of

the choice of ε) and making a choice of Zp-basis of this line is the same as making a choice
of ε. Also, choosing ε is literally a choice of Zp-basis of Zp(1) = lim←−µpn(K). For any g ∈ GK

we have g(ε) = εχ(g) in R since g(ε(n)) = (ε(n))χ(g) for the primitive pnth roots of unity
ε(n) ∈ OK for all n ≥ 0. Thus, by the GK-equivariance of the logarithm on 1-units of B+

dR,

g(t) = log(g([ε])) = log([g(ε)]) = log([εχ(g)]) = log([ε]χ(g)) = χ(g)t.

We conclude that Zpt is a canonical copy of Zp(1) as a GK-stable line in B+
dR. Intuitively,

this line is viewed as an analogue of the Z-line Z(1) := ker(exp) ⊆ C, and in particular the
choice of a Zp-basis element t is analogous to a choice of 2πi in complex analysis.

The key fact concerning such elements t is that they are uniformizers of B+
dR, and hence

we get a canonical isomorphism gr•(BdR) ' BHT. We now prove this uniformizer property.

Proposition 4.4.8. The element t = log([ε]) in B+
dR is a uniformizer.

Proof. By construction of t, θ+
dR(t) = 0. Hence, t is a non-unit. We have to prove that t is

not in the square of the maximal ideal. In view of its definition as an infinite series in powers
([ε] − 1)n/n with [ε] − 1 in the maximal ideal, all such terms with n ≥ 2 can be ignored.
Thus, we just have to check that [ε]− 1 is not in the square of the maximal ideal. But the
projection from B+

dR onto the quotient modulo the square of its maximal ideal is the same as
the natural map onto W (R)[1/p]/(ker θK)2, so we have to prove that [ε]− 1 is not contained
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in (ker θK)2, or equivalently is not contained in W (R)∩ (ker θK)2 = (ker θ)2 = ξ2W (R) with
ξ = [π]− p for π ∈ R defined by a compatible sequence of p-power roots of p.

To show that [ε] − 1 is not a W (R)-multiple of ξ2, it suffices to project into the 0th
component of W (R) and show that ε − 1 is not an R-multiple of π2. That is, it suffices to
prove vR(ε − 1) < vR(π2) = 2. But vR(ε − 1) = p/(p − 1) by Example 4.3.4, so for p > 2
we have a contradiction. Now suppose p = 2. In this case we will work in W2(R). Since
ξ2 = [π2] − 2[π] + 4 = (π2, 0, . . . ) in W (R), for any w = (r0, r1, . . . ) ∈ W (R) we compute
ξ2w = (r0π

2, r1π
4, . . . ). However, for p = 2 we have −1 = (1, 1, . . . ) in Z2 = W (F2) since

−1 = 1 + 2 · 1 mod 4, so [ε]− 1 = (ε− 1, ε− 1, . . . ) in W (R). Thus, if [ε]− 1 were a W (R)-
multiple of ξ2 for p = 2 then ε−1 = r1π

4 for some r1 ∈ R. This says vR(ε−1) ≥ vR(π4) = 4,
a contradiction since vR(ε− 1) = p/(p− 1) = 2. �

Remark 4.4.9. Note that the construction of B+
dR only involves the field K through its

completed algebraic closure CK . More specifically, if K ′ ⊆ CK is a complete discretely-
valued subfield (so it is a p-adic field, as its residue field k′ is perfect due to sitting between k
and k) then we get the same ring B+

dR whether we use K or K ′. The actions of GK and GK′ on
this common ring are related in the evident manner, namely via the inclusion GK′ ↪→ GK as

subgroups of the isometric automorphism group of CK . For example, replacing K with K̂un

does not change B+
dR but replaces the GK-action with the underlying IK-action. Likewise,

the ring B+
dR is unaffected by replacing K with a finite extension within K.

We end our preliminary discussion of B+
dR by recording some important properties that

are not easily seen from its explicit construction. First of all, whereas W (R)[1/p] does not
contain any nontrivial finite totally ramified extension of K0 = W (k)[1/p] (as it lies inside
of the absolutely unramified p-adic field W (Frac(R))[1/p]), the completion B+

dR contains a
unique copy of K as a subfield over K0 compatibly with the action of GK (and even GK0).
This is due to Hensel’s Lemma: since B+

dR is a complete discrete valuation ring over K0, and
moreover K is a subfield of the residue field CK that is separable algebraic over K0, it follows
that K uniquely lifts to a subfield over K0 in B+

dR. The uniqueness of the lifting ensures
that this is a GK-equivariant lifting. This canonical K-structure on B+

dR (and hence on its
fraction field BdR) plays an important role in the study of finer period rings; it can be shown
that there is no GK-equivariant lifting of the entire residue field CK into B+

dR (whereas such
an abstract lifting exists by commutative algebra and is not useful).

Another property of BdR that is hard to see directly from the construction is the de-
termination of its subfield of GK-invariants. As we have just seen, there is a canonical
GK-equivariant embedding K ↪→ B+

dR, whence K ⊆ BGK
dR . (Nothing like this holds for

W (R)[1/p] if K 6= K0.) This inclusion is an equality, due to the Tate–Sen theorem:

Theorem 4.4.10. The inclusion K ⊆ BGK
dR is an equality.

Proof. Since the GK-actions respect the (exhaustive and separated) filtration, the field ex-
tension BGK

dR of K with the subspace filtration has associated graded K-algebra that injects

into (gr•(BdR))GK = BGK
HT . But by the Tate–Sen theorem this latter space of invariants is

K. We conclude that gr•(BGK
dR ) is 1-dimensional over K, so the same holds for BGK

dR . �
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The final property of BdR that we record is its dependence on K. An inspection of the
construction shows that B+

dR depends solely on OCK
and not on the particular p-adic field

K ⊆ OCK
[1/p] = CK whose algebraic closure is dense in CK . More specifically, B+

dR depends
functorially on OCK

(this requires reviewing the construction of R and θ), and the action
of Aut(OCK

) on B+
dR via functoriality induces the action of GK (via the natural inclusion of

GK into Aut(OCK
)). Hence, if K → K ′ is a map of p-adic fields and we pick a compatible

embedding K → K ′ of algebraic closures then the induced map OCK
→ OCK′

induces a
map B+

dR,K → B+
dR,K′ that is equivariant relative to the corresponding map of Galois groups

GK′ → GK . In particular, if the induced map CK → CK′ is an isomorphism then we have
B+

dR,K = B+
dR,K′ (compatibly with the inclusion GK′ ↪→ GK) and likewise for the fraction

fields. This applies in two important cases: K ′/K a finite extension and K ′ = K̂un. In other
words, B+

dR and BdR are naturally insensitive to replacing K with a finite extension or with
a completed maximal unramified extension. The invariance of B+

dR and BdR under these two
kinds of changes in K is important in practice when replacing GK with an open subgroup
or with IK in the context of studying deRham representations in §6. We will return to this
issue in more detail in Proposition 6.3.8 and the discussion immediately preceding it.

5. Formalism of admissible representations

Now that we have developed some experience with various functors between Galois rep-
resentations and semilinear algebra categories via suitable rings with structure, we wish to
axiomatize this kind of situation for constructing and analyzing functors defined via “period
rings” in order that we do not have to repeat the same kinds of arguments every time we
introduce a new period ring. In §6 we shall use the following formalism.

5.1. Definitions and examples. Let F be a field and G be a group. Let B be an F -
algebra domain equipped with a G-action (as an F -algebra), and assume that the invariant
F -subalgebra E = BG is a field. We do not impose any topological structure on B or F or
G. Our goal is to use B to construct an interesting functor from finite-dimensional F -linear
representations of G to finite-dimensional E-vector spaces (endowed with extra structure,
depending on B).

We let C = Frac(B), and observe that G also acts on C in a natural way.

Definition 5.1.1. We say B is (F,G)-regular if CG = BG and if every nonzero b ∈ B whose
F -linear span Fb is G-stable is a unit in B.

Note that if B is a field then the conditions in the definition are obviously satisfied. The
cases of most interest will be rather far from fields. We now show how the Tate–Sen theorem
(Theorem 2.1.5) provides two interesting examples of (F,G)-regular domains.

Example 5.1.2. Let K be a p-adic field with a fixed algebraic closure K, and let CK denote
the completion of K. Let G = GK = Gal(K/K). Let B = BHT = ⊕n∈ZCK(n) endowed with
its natural G-action. Non-canonically, B = CK [T, 1/T ] with G acting through the p-adic
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cyclotomic character χ : GK → Z×p via g(
∑
anT

n) =
∑
g(an)χ(g)nT n. Obviously in this

case C = CK(T ). We claim that B is (Qp, G)-regular (with BG = K).

By the Tate–Sen theorem, BG = ⊕CK(n)G = K. To compute that CG is also equal to
K, consider the GK-equivariant inclusion of C = CK(T ) into the formal Laurent series field
CK((T )) equipped with its evident G-action. It suffices to show that CK((T ))G = K. The
action of g ∈ G on a formal Laurent series

∑
cnT

n is given by
∑
cnT

n 7→
∑
g(cn)χ(g)nT n, so

G-invariance amounts to the condition cn ∈ CK(n)G for all n ∈ Z. Hence, by the Tate–Sen
theorem we get cn = 0 for n 6= 0 and c0 ∈ K, as desired.

Verifying the second property in (Qp, GK)-regularity goes by a similar method, as follows:
if b ∈ B − {0} spans a GK-stable Qp-line then GK acts on the line Qpb by some character
ψ : GK → Q×p . It is a crucial fact (immediate from the continuity of the GK-action on each
direct summand CK(n) of B = BHT) that ψ must be continuous (so it takes values in Z×p ).

Writing the Laurent polynomial b as b =
∑
cjT

j, we have ψ(g)b = g(b) =
∑
g(cj)χ(g)jT j, so

for each j we have (ψ−1χj)(g) · g(cj) = cj for all g ∈ GK . That is, each cj is GK-invariant in
CK(ψ−1χj). But by the Tate–Sen theorem, for a Z×p -valued continuous character η of GK , if

CK(η) has a nonzero GK-invariant element then η|IK has finite order. Hence, (ψ−1χj)|IK has
finite order whenever cj 6= 0. It follows that we cannot have cj, cj′ 6= 0 for some j 6= j′, for
otherwise taking the ratio of the associated finite-order characters would give that χj−j

′|IK
has finite order, so χ|IK has finite order (as j − j′ 6= 0), but this is a contradiction since χ
cuts out an infinitely ramified extension of K. It follows that there is at most one j such
that cj 6= 0, and there is a nonzero cj since b 6= 0. Hence, b = cT j for some j and some
c ∈ C×K , so obviously b ∈ B×.

Example 5.1.3. Consider B = B+
dR equipped with its natural action by G = GK . This is

a complete discrete valuation ring with uniformizer t on which G acts through χ and with
fraction field C = BdR = B[1/t]. We have seen in Theorem 4.4.10 (using that the associated
graded ring to BdR is BHT) that CG = K, so obviously BG = K too. Since BdR is a
field, it follows trivially that BdR is (Qp, G)-regular. Let us consider whether B = B+

dR is
also (Qp, G)-regular. The first requirement in the definition of (Qp, G)-regularity for B is
satisfied in this case, as we have just seen. But the second requirement in (Qp, G)-regularity
fails: t ∈ B spans a G-stable Qp-line but t 6∈ B×.

The most interesting examples of (Qp, GK)-regular rings are Fontaine’s rings Bcris and Bst

(certain subrings of BdR with “more structure”), which turn out (ultimately by reducing
to the study of BHT) to be (Qp, GK)-regular with subring of GK-invariants equal to K0 =
Frac(W (k)) = W (k)[1/p] and K respectively.

In the general axiomatic setting, if B is an (F,G)-regular domain and E denotes the field
CG = BG then for any object V in the category RepF (G) of finite-dimensional F -linear
representations of G we define

DB(V ) = (B ⊗F V )G,

so DB(V ) is an E-vector space equipped with a canonical map

αV : B ⊗E DB(V )→ B ⊗E (B ⊗F V ) = (B ⊗E B)⊗F V → B ⊗F V.
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This is a B-linear G-equivariant map (where G acts trivially on DB(V ) in the right tensor
factor of the source), by inspection.

As a simple example, for V = F with trivial G-action we have DB(F ) = BG = E and the
map αV : B = B ⊗E E → B ⊗F F = B is the identity map. It is not a priori obvious if
DB(V ) always lies in the category VecE of finite-dimensional vector spaces over E, but we
shall now see that this and much more is true.

5.2. Properties of admissible representations. The aim of this section is to prove the
following theorem which shows (among other things) that dimE DB(V ) ≤ dimF V ; in case
equality holds we call V a B-admissible representation. For example, V = F is always B-
admissible. In case we fix a p-adic field K and let F = Qp and G = GK then for B = BHT

this coincides with the concept of being a Hodge-Tate representation. For the ring BdR

and Fontaine’s finer period rings Bcris, and Bst the corresponding notions are called being a
deRham, crystalline, and semi-stable representation respectively.

Theorem 5.2.1. Fix V as above.

(1) The map αV is always injective and dimE DB(V ) ≤ dimF V , with equality if and only
if αV is an isomorphism.

(2) Let RepBF (G) ⊆ RepF (G) be the full subcategory of B-admissible representations.
The covariant functor DB : RepBF (G) → VecE to the category of finite-dimensional
E-vector spaces is exact and faithful, and any subrepresentation or quotient of a
B-admissible representation is B-admissible.

(3) If V1, V2 ∈ RepBF (G) then there is a natural isomorphism

DB(V1)⊗E DB(V2) ' DB(V1 ⊗F V2),

so V1 ⊗F V2 ∈ RepBF (G). If V ∈ RepBF (G) then its dual representation V ∨ lies in
RepBF (G) and the natural map

DB(V )⊗E DB(V ∨) ' DB(V ⊗F V ∨)→ DB(F ) = E

is a perfect duality between DB(V ) and DB(V ∨).
In particular, RepBF (G) is stable under the formation of duals and tensor products

in RepF (G), and DB naturally commutes with the formation of these constructions
in RepBF (G) and in VecE.

Moreover, B-admissibility is preserved under the formation of exterior and sym-
metric powers, and DB naturally commutes with both such constructions.

Before proving the theorem, we make some remarks.

Remark 5.2.2. In practice F = Qp, G = GK for a p-adic field K, and E = K or E = K0

(the maximal unramified subfield, W (k)[1/p]), and the ring B has more structure (related
to a Frobenius operator, filtration, monodromy operator, etc.). Corresponding to this extra
structure on B, the functor DB takes values in a category of finite-dimensional E-vector
spaces equipped with “more structure”, with morphisms being those E-linear maps which
“respect the extra structure”.
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By viewing DB with values in such a category, it can fail to be fully faithful (such as
for B = BHT or B = BdR using categories of graded or filtered vector spaces respectively),
but for more subtle period rings such as Bcris and Bst one does get full faithfulness into a
suitably enriched category of linear algebra objects. One of the key results in recent years
in p-adic Hodge theory is a purely linear algebraic description of the essential image of the
fully faithful functor DB for such better period rings (with the DB viewed as taking values
in a suitably enriched subcategory of VecE).

Remark 5.2.3. Once the theorem is proved, there is an alternative description of the B-
admissibility condition on V : it says that B⊗F V with its B-module structure and G-action
is isomorphic to a direct sum B⊕r (for some r) respecting the B-structure and G-action.
Indeed, since αV is G-equivariant and B-linear, we get the necessity of this alternative
description by choosing an E-basis of DB(V ). As for sufficiency, if B ⊗F V ' B⊕r as B-
modules and respecting the G-action then necessarily r = d := dimF V (as B ⊗F V is finite
free of rank d over B), and taking G-invariants gives DB(V ) ' (BG)⊕d = E⊕d as modules
over BG = E. This says dimE DB(V ) = d = dimF V , which is the dimension equality
definition of B-admissibility.

Proof. First we prove (1). Granting for a moment that αV is injective, let us show the rest
of (1). Extending scalars from B to C := Frac(B) preserves injectivity (by flatness of C
over B), so C ⊗E DB(V ) is a C-subspace of C ⊗F V . Comparing C-dimensions then gives
dimE DB(V ) ≤ dimF V . Let us show that in case of equality of dimensions, say with common
dimension d, the map αV is an isomorphism (the converse now being obvious). Let {ej} be
an E-basis of DB(V ) and let {vi} be an F -basis of V , so relative to these bases we can
express αV using a d × d matrix (bij) over B (thanks to the assumed dimension equality).
In other words, ej =

∑
bij ⊗ vi. The determinant det(αV ) := det(bij) ∈ B is nonzero due

to the isomorphism property over C = Frac(B) (as C ⊗B αV is a C-linear injection between
C-vector spaces with the same finite dimension d, so it must be an isomorphism). We want
det(αV ) ∈ B×, so then αV is an isomorphism over B. Since B is an (F,G)-regular ring, to
show the nonzero det(αV ) ∈ B is a unit it suffices to show that it spans a G-stable F -line in
B.

The vectors ej =
∑
bij⊗vi ∈ DB(V ) ⊆ B⊗F V are G-invariant, so passing to dth exterior

powers on αV gives that

∧d(αV )(e1 ∧ · · · ∧ ed) = det(bij)v1 ∧ · · · ∧ vd

is a G-invariant vector in B ⊗F ∧d(V ). But G acts on v1 ∧ · · · ∧ vd by some character
η : G→ F× (just the determinant of the given F -linear G-representation on V ), so G must
act on det(bij) ∈ B − {0} through the F×-valued η−1.

This completes the reduction of (1) to the claim that αV is injective. Since B is (F,G)-
regular, we have that E = BG is equal to CG. For DC(V ) := (C ⊗F V )G we also have a
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commutative diagram

B ⊗E DB(V )
αV //

��

B ⊗F V

��
C ⊗E DC(V ) // C ⊗F V

in which the sides are injective. To prove injectivity of the top it suffices to prove it for
the bottom. Hence, we can replace B with C so as to reduce to the case when B is a field.
In this case the injectivity amounts to the claim that αV carries an E-basis of DB(V ) to a
B-linearly independent set in B ⊗F V , so it suffices to show that if x1, . . . , xr ∈ B ⊗F V are
E-linearly independent and G-invariant then they are B-linearly independent. Assuming to
the contrary that there is a nontrivial B-linear dependence relation among the xi’s, consider
such a relation of minimal length. We may assume it to have the form

xr =
∑
i<r

bi · xi

for some r ≥ 2 since B is a field and all xi are nonzero. Applying g ∈ G gives

xr = g(xr) =
∑
i<r

g(bi) · g(xi) =
∑
i<r

g(bi) · xi.

Thus, minimal length for the relation forces equality of coefficients: bi = g(bi) for all i < r,
so bi ∈ BG = E for all i. Hence, we have a nontrivial E-linear dependence relation among
x1, . . . , xr, a contradiction.

Now we prove (2). For any B-admissible V we have a natural isomorphism B⊗EDB(V ) '
B⊗F V , so it is clear that DB is exact and faithful on the category of B-admissible V ’s (since
a sequence of E-vector spaces is exact if and only if it becomes so after applying B⊗E (·), and
similarly from F to B). To show that subrepresentations and quotients of a B-admissible V
are B-admissible, consider a short exact sequence

0→ V ′ → V → V ′′ → 0

of F [G]-modules with B-admissible V . We have to show that V ′ and V ′′ are B-admissible.
From the definition it is clear that DB is left-exact without any B-admissibility hypothesis,
so we have a left-exact sequence of E-vector spaces

0→ DB(V ′)→ DB(V )→ DB(V ′′)

with dimE DB(V ) = d by B-admissibility of V , so d ≤ dimE DB(V ′) + dimE DB(V ′′). By
(1) we also know that the outer terms have respective E-dimensions at most d′ = dimF V

′

and d′′ = dimF V
′′. But d = d′ + d′′ from the given short exact sequence of F [G]-modules,

so these various inequalities are forced to be equalities, and in particular V ′ and V ′′ are
B-admissible.

Finally, we consider (3). For B-admissible V1 and V2, say with di = dimF Vi, there is an
evident natural map

DB(V1)⊗E DB(V2)→ (B ⊗F V1)⊗E (B ⊗F V2)→ B ⊗F (V1 ⊗ V2)
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that is clearly seen to be invariant under the G-action on the target, so we obtain a natural
E-linear map

tV1,V2 : DB(V1)⊗E DB(V2)→ DB(V1 ⊗F V2),

with source having E-dimension d1d2 (by B-admissibility of the Vi’s) and target having E-
dimension at most dimF (V1 ⊗F V2) = d1d2 by applying (1) to V1 ⊗F V2. Hence, as long as
this map is an injection then it is forced to be an isomorphism and so V1⊗F V2 is forced to be
B-admissible. To show that tV1,V2 is injective it suffices to check injectivity after composing
with the inclusion of DB(V1⊗F V2) into B⊗F (V1⊗F V2), and by construction this composite
is easily seen to coincide with the composition of the injective map

DB(V1)⊗E DB(V2)→ B ⊗E (DB(V1)⊗E DB(V2)) = (B ⊗E DB(V1))⊗B (B ⊗E DB(V2))

and the isomorphism αV1 ⊗B αV2 (using again that the Vi are B-admissible).

Having shown that B-admissibility is preserved under tensor products and that DB nat-
urally commutes with the formation of tensor products, as a special case we see that if V
is B-admissible then so is V ⊗r for any r ≥ 1, with DB(V )⊗r ' DB(V ⊗r). The quotient
∧r(V ) of V ⊗r is also B-admissible (since V ⊗r is B-admissible), and there is an analogous
map ∧r(DB(V ))→ DB(∧rV ) that fits into a commutative diagram

(5.2.1) DB(V )⊗r
' //

��

DB(V ⊗r)

��
∧r(DB(V )) // DB(∧rV )

in which the left side is the canonical surjection and the right side is surjective because it is
DB applied to a surjection between B-admissible representations. Thus, the bottom side is
surjective. But the left and right terms on the bottom have the same dimension (since V and
∧rV are B-admissible, with dimF V = dimE DB(V )), so the bottom side is an isomorphism!

The same method works with symmetric powers in place of exterior powers. Note that
the diagram (5.2.1) without an isomorphism across the top can be constructed for any
V ∈ RepF (G), so for any such V there are natural E-linear maps ∧r(DB(V )) → DB(∧rV )
and likewise for rth symmetric powers, just as we have for tensor powers (and in the B-
admissible case these are isomorphisms).

The case of duality is more subtle. Let V be a B-admissible representation of G over F .
To show that V ∨ is B-admissible and that the resulting natural pairing between DB(V ) and
DB(V ∨) is perfect, we use a trick with tensor algebra. For any finite-dimensional vector
space W over a field with dimW = d ≥ 1 there is a natural isomorphism

det(W∨)⊗ ∧d−1(W ) ' W∨

defined by
(`1 ∧ · · · ∧ `d)⊗ (w2 ∧ · · · ∧ wd) 7→ (w1 7→ det(`i(wj))),

and this is equivariant for the naturally induced group actions in case W is a linear represen-
tation space for a group. Hence, to show that V ∨ is a B-admissible F -linear representation
space for G we are reduced to proving B-admissibility for det(V ∨) = (detV )∨ (as then
its tensor product against the B-admissible ∧d−1(V ) is B-admissible, as required). Since
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detV is B-admissible, we are reduced to the 1-dimensional case (for proving preservation of
B-admissibility under duality).

Now assume the B-admissible V satisfies dimF V = 1, and let v0 be an F -basis of V , so B-
admissibility gives that DB(V ) is 1-dimensional (rather than 0). Hence, DB(V ) = E(b⊗ v0)
for some nonzero b ∈ B. The isomorphism αV : B⊗EDB(V ) ' B⊗F V = B(1⊗v0) between
free B-modules of rank 1 carries the B-basis b⊗ v0 of the left side to b⊗ v0 = b · (1⊗ v0) on
the right side, so b ∈ B×. The G-invariance of b⊗ v0 says g(b)⊗ g(v0) = b⊗ v0, and we have
g(v0) = η(g)v0 for some η(g) ∈ F× (as V is a 1-dimensional representation space of G over
F , say with character η), so η(g)g(b) = b. Thus, b/g(b) = η(g) ∈ F×. Letting v∨0 be the dual
basis of V ∨, it is easy to then compute that DB(V ∨) contains the nonzero vector b−1 ⊗ v∨0 ,
so it is a nonzero space. The 1-dimensional V ∨ is therefore B-admissible, as required.

Now that we know duality preserves B-admissibility in general, we fix a B-admissible V
and aim to prove the perfectness of the pairing defined by

〈·, ·〉V : DB(V )⊗E DB(V ∨) ' DB(V ⊗F V ∨)→ DB(F ) = E.

For dimF V = 1 this is immediate from the above explicitly computed descriptions of DB(V )
and DB(V ∨) in terms of a basis of V and the corresponding dual basis of V ∨. In the general
case, since V and V ∨ are both B-admissible, for any r ≥ 1 we have natural isomorphisms
∧r(DB(V )) ' DB(∧r(V )) and ∧r(DB(V ∨)) ' DB(∧r(V ∨)) ' DB((∧rV )∨) with respect to
which the pairing

∧rE(DB(V ))⊗E ∧rE(DB(V ∨))→ E

induced by 〈·, ·〉V on rth exterior powers is identified with 〈·, ·〉∧rV . Since perfectness of a
bilinear pairing between finite-dimensional vector spaces of the same dimension is equivalent
to perfectness of the induced bilinear pairing between their top exterior powers, by taking
r = dimF V we see that the perfectness of the pairing 〈·, ·〉V for the B-admissible V is
equivalent to perfectness of the pairing associated to the B-admissible 1-dimensional detV .
But the 1-dimensional case is settled, so we are done. �

6. deRham representations

6.1. Basic definitions. Since BdR is (Qp, GK)-regular with BGK
dR = K, the general formal-

ism of admissible representations provides a good class of p-adic representations: the BdR-
admissible ones. More precisely, we define the covariant functor DdR : RepQp

(GK)→ VecK
valued in the category VecK of finite-dimensional K-vector spaces by

DdR(V ) = (BdR ⊗Qp V )GK ,

so dimK DdR(V ) ≤ dimQp V . In case this inequality is an equality we say that V is a

deRham representation (i.e., V is BdR-admissible). Let RepdR
Qp

(GK) ⊆ RepQp
(GK) denote

the full subcategory of deRham representations.

By the general formalism from §5, for V ∈ RepdR
Qp

(GK) we have aBdR-linearGK-compatible
comparison isomorphism

αV : BdR ⊗K DdR(V )→ BdR ⊗Qp V
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and the subcategory RepdR
Qp

(GK) ⊆ RepQp
(GK) is stable under passage to subquotients,

tensor products, and duals (and so also exterior and symmetric powers), and moreover the
functor DdR : RepdR

Qp
(GK) → VecK is faithful and exact and commutes with the formation

of duals and tensor powers (and hence exterior and symmetric powers).

Since duality does not affect whether or not the deRham property holds, working with
DdR is equivalent to working with the contravariant functor

D∗dR(V ) := DdR(V ∨) ' HomQp[GK ](V,BdR);

this alternative functor can be very useful. In general D∗dR(V ) is a finite-dimensional K-
vector space, and its elements correspond to Qp[GK ]-linear maps from V into BdR. In
particular, for any V ∈ RepQp

(GK) the collection of all such maps spans a finite-dimensional
K-subspace of BdR, generally called the space of p-adic periods of V (or of V ∨, depending
on one’s point of view). This space of periods for V is the only piece of BdR that is relevant
in the formation of D∗dR(V ). As an example, if V is an irreducible Qp[GK ]-module then any
nonzero map from V to BdR is injective and so D∗dR(V ) 6= 0 precisely when V occurs as a
subrepresentation of BdR. In general dimK D

∗
dR(V ) ≤ dimQp(V ), so an irreducible V appears

in BdR with finite multiplicity at most dimQp(V ), and this maximal multiplicity is attained
precisely when V is deRham (as this is equivalent to V ∨ being deRham).

Example 6.1.1. For n ∈ Z, DdR(Qp(n)) = Kt−n if we view Qp(n) as Qp with GK-action by
χn. This is 1-dimensional over K, so Qp(n) is deRham for all n.

The output of the functor DdR has extra K-linear structure (arising from additional struc-
ture on the K-algebra BdR), namely a K-linear filtration arising from the canonical K-linear
filtration on the fraction field BdR of the complete discrete valuation ring B+

dR over K. Be-
fore we explain this in §6.3 and axiomatize the resulting finer target category of DdR (as a
subcategory of VecK), in §6.2 we review some terminology from linear algebra.

6.2. Filtered vector spaces. Let F be a field, and let VecF be the category of finite-
dimensional F -vector spaces. In Definition 4.1.1 we defined the notion of a filtered vector
space over F . In the finite-dimensional setting, if (D, {Fili(D)}) is a filtered vector space
over F with dimF D < ∞ then the filtration is exhaustive if and only if Fili(D) = D for
i � 0 and it is separated if and only if Fili(D) = 0 for i � 0. We let FilF denote the
category of finite-dimensional filtered vector spaces (D, {Fili(D)}) over F equipped with an
exhaustive and separated filtration, where a morphism between such objects is a linear map
T : D′ → D that is filtration-compatible in the sense that T (Fili(D′)) ⊆ Fili(D) for all i.

In the category FilF there are good functorial notions of kernel and cokernel of a map
T : D′ → D between objects, namely the usual F -linear kernel and cokernel endowed
respectively with the subspace filtration

Fili(kerT ) := ker(T ) ∩ Fili(D′) ⊆ kerT

and the quotient filtration

Fili(cokerT ) := (Fili(D) + T (D′))/T (D′) ⊆ coker(T ).
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These have the expected universal properties (for linear maps D′0 → D′ killed by T and
linear maps D → D0 composing with T to give the zero map respectively), but beware that
FilF is not abelian!!

More specifically, it can easily happen that kerT = cokerT = 0 (i.e., T is an F -linear
isomorphism) but T is not an isomorphism in FilF . The problem is that the even if T is an
isomorphism when viewed in VecF , the filtration on D may be “finer” than on D′ and so
although T (Fili(D′)) ⊆ Fili(D)) for all i, such inclusions may not always be equalities (so
the linear inverse is not a filtration-compatible map). For example, we could take D = D′

as vector spaces and give D′ the trivial filtration Fili(D′) = D′ for i ≤ 0 and Fili(D′) = 0
for i > 0 whereas we define Fili(D) = D for i ≤ 4 and Fili(D) = 0 for i > 4. The identity
map T is then such an example. Thus, the forgetful functor FilF → VecF loses too much
information (though it is a faithful functor).

Despite the absence of a good abelian category structure on FilF , we can still define basic
notions of linear algebra in the filtered setting, as follows.

Definition 6.2.1. For D,D′ ∈ FilF , the tensor product D ⊗ D′ has underlying F -vector
space D ⊗F D′ and filtration

Filn(D ⊗D′) =
∑
p+q=n

Filp(D)⊗F Filq(D′)

that is easily checked to be exhaustive and separated. The unit object F [0] is F as a vector
space with Fili(F [0]) = F for i ≤ 0 and Fili(F [0]) = 0 for i > 0. (Canonically, D ⊗ F [0] '
F [0]⊗D ' D in FilF for all D.)

The dual D∨ of D ∈ FilF has underlying F -vector space given by the F -linear dual
HomF (D,F ), and has the (exhaustive and separated) filtration

Fili(D∨) = (Fil1−iD)⊥ := {` ∈ D∨ | Fil1−i(D) ⊆ ker `}.

The reason we use Fil1−i(D) rather than Fil−i(D) is to ensure that F [0]∨ = F [0] (check this
identification!).

A short exact sequence in FilF is a diagram

0→ D′ → D → D′′ → 0

in FilF that is short exact as vector spaces with D′ = ker(D → D′′) (i.e., D′ has the subspace
filtration from D) and D′′ = coker(D → D′′) (i.e., D′′ has the quotient filtration from D).
Equivalently, for all i the diagram

(6.2.1) 0→ Fili(D′)→ Fili(D)→ Fili(D′′)→ 0

is short exact as vector spaces.

Example 6.2.2. It is easy to check that the unit object F [0] is naturally self-dual in FilF ,
and that there is a natural isomorphism D∨⊗D′∨ ' (D⊗D′)∨ in FilF induced by the usual
F -linear isomorphism. Likewise we have the usual double-duality isomorphism D ' D∨∨ in
FilF , and the evaluation morphism D ⊗D∨ → F [0] is clearly a map in FilF .
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Example 6.2.3. There is a natural “shift” operation in FilF : for D ∈ FilF and n ∈ Z, define
D[n] ∈ FilF to have the same underlying F -vector space but Fili(D[n]) = Fili+n(D) for all
i ∈ Z.

It is easy to check that D[n]∨ ' D∨[−n] in FilF in the evident manner, and that the
shifting can be passed through either factor of a tensor product.

Observe that if T : D′ → D is a map in FilF there are two notions of “image” that are
generally distinct in FilF but have the same underlying space. We define the image of T to
be T (D′) ⊆ D with the subspace filtration from D. We define the coimage of T to be T (D′)
with the quotient filtration from D′. Equivalently, coimT = D′/ kerT with the quotient
filtration and imT = ker(D → cokerT ) with the subspace filtration. There is a canonical
map coimT → imT in FilF that is a linear bijection, and it is generally not an isomorphism
in FilF .

Definition 6.2.4. A morphism T : D′ → D in FilF is strict if the canonical map coimT →
imT is an isomorphism, which is to say that the quotient and subspace filtrations on T (D′)
coincide.

Exercise 6.2.5. For D,D′ ∈ FilF we can naturally endow HomF (D′, D) with a structure in
FilF (denoted Hom(D′, D)). This can be done in two equivalent ways. First of all, the usual
linear isomorphism D ⊗F D′∨ ' HomF (D′, D) imposes a FilF -structure by using the dual
filtration on D′∨ and the tensor product filtration on D⊗F D′∨. However, this is too ad hoc
to be useful, so the usefulness rests on the ability to describe this filtration in more direct
terms in the language of Hom’s: prove that this ad hoc definition yields

Fili(HomF (D′, D)) = {T ∈ HomF (D′, D) |T (Filj(D′)) ⊆ Filj+i(D) for all j}.

In other words, Fili(HomF (D′, D)) = HomFilF (D′, D[i]) for all i ∈ Z. (Hint: Compute using
bases of D and D′ adapted to the filtrations on these spaces.)

There is a natural functor gr = gr• : FilF → GrF,f to the category of finite-dimensional
graded F -vector spaces via gr(D) = ⊕i Fili(D)/Fili+1(D). This functor is dimension-
preserving, and it is exact in the sense that if carries short exact sequences in FilF (see
Definition 6.2.1, especially (6.2.1)) to short exact sequences in GrF,f . By choosing bases
compatible with filtrations we see that the functor gr is compatible with tensor products in
the sense that there is a natural isomorphism

gr(D)⊗ gr(D′) ' gr(D ⊗D′)

in GrF,f for any D,D′ ∈ FilF , using the tensor product grading on the left side and the
tensor product filtration on D ⊗D′ on the right side.

6.3. Filtration on DdR. For V ∈ RepQp
(GK), the K-vector space DdR(V ) = (BdR⊗V )GK ∈

VecK has a natural structure of object in FilK : since BdR has an exhaustive and separated
GK-stable K-linear filtration via Fili(BdR) = tiB+

dR, we get an evident K-linear GK-stable
filtration {Fili(BdR) ⊗Qp V } on BdR ⊗Qp V , so this induces an exhaustive and separated
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filtration on the finite-dimensional K-subspace DdR(V ) of GK-invariant elements. Explicitly,

Fili(DdR(V )) = (tiB+
dR ⊗Qp V )GK .

The finite-dimensionality of DdR(V ) is what ensures that this filtration fills up all of DdR(V )
for sufficiently negative filtration degrees and vanishes for sufficiently positive filtration de-
grees.

Example 6.3.1. For n ∈ Z, DdR(Qp(n)) is 1-dimensional with its unique filtration jump in
degree −n (i.e., gr−n is nonzero).

Proposition 6.3.2. If V is deRham then V is Hodge–Tate and gr(DdR(V )) = DHT(V ) as
graded K-vector spaces. In general there is an injection gr(DdR(V )) ↪→ DHT(V ) and it is an
equality of CK-vector spaces when V is deRham.

The inclusion in the proposition can be an equality in some cases with V not deRham,
such as when DHT(V ) = 0 and V 6= 0.

Proof. By left exactness of the formation ofGK-invariants, we get a naturalK-linear injection

gr(DdR(V )) ↪→ DHT(V )

for all V ∈ RepQp
(GK) because gr(BdR) = BHT as graded CK-algebras with GK-action.

Thus,

dimK DdR(V ) = dimK gr(DdR(V )) ≤ dimK DHT(V ) ≤ dimQp(V )

for all V . In the deRham case the outer terms are equal, so the inequalities are all equalities.
�

In the spirit of the Hodge–Tate case, we say that the Hodge–Tate weights of a deRham
representation V are those i for which the filtration on DdR(V ) “jumps” from degree i to
degree i+1, which is to say gri(DdR(V )) 6= 0. This says exactly that the graded vector space
gr(DdR(V )) = DHT(V ) has a nonzero term in degree i, which is the old notion of CK ⊗Qp V
having i as a Hodge–Tate weight. The multiplicity of such an i as a Hodge–Tate weight is
the K-dimension of the filtration jump, which is to say dimK gri(DdR(V )).

Since DdR(Qp(n)) is a line with nontrivial gr−n, we have that Qp(n) has Hodge–Tate
weight −n (with multiplicity 1). Thus, sometimes it is more convenient to define Hodge–
Tate weights using the same filtration condition (gri 6= 0) applied to the contravariant functor
D∗dR(V ) = DdR(V ∨) = HomQp[GK ](V,BdR) so as to negate things (so that Qp(n) acquires
Hodge–Tate weight n instead).

The general formalism of §5 tells us that DdR on the full subcategory RepdR
Q (GK) is exact

and respects tensor products and duals when viewed with values in VecK , but it is a stronger
property to ask if the same is true as a functor valued in FilK . For example, it is clear that
when DdR on RepdR

Qp
(GK) is viewed with values in FilK then it is a faithful functor, since the

forgetful functor FilK → VecK is faithful and DdR is faithful when valued in VecK . However,
it is less mechanical to check if the general isomorphism

DdR(V ′)⊗K DdR(V ) ' DdR(V ′ ⊗Qp V )
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in VecK for deRham representations V and V ′ is actually an isomorphism in FilK (using the
tensor product filtration on the left side). Fortunately, such good behavior of isomorphisms
relative to filtrations does hold:

Proposition 6.3.3. The faithful functor DdR : RepdR
Qp

(GK) → FilK carries short exact
sequences to short exact sequences and is compatible with the formation of tensor products
and duals. In particular, if V is a deRham representation and

0→ V ′ → V → V ′′ → 0

is a short exact sequence in RepQp
(GK) (so V ′ and V ′′ are deRham) then DdR(V ′) ⊆ DdR(V )

has the subspace filtration and the linear quotient DdR(V ′′) of DdR(V ) has the quotient fil-
tration.

Once this proposition is proved, it follows that DdR with its filtration structure is com-
patible with the formation of exterior and symmetric powers (endowed with their natural
quotient filtrations as operations on FilK).

Proof. For any short exact sequence

(6.3.1) 0→ V ′ → V → V ′′ → 0

in RepQp
(GK) the sequence

(6.3.2) 0→ Fili(DdR(V ′))→ Fili(DdR(V ))→ Fili(DdR(V ′′))

is always left-exact, but surjectivity may fail on the right. However, when V is deRham all
terms in (6.3.1) are Hodge–Tate and so the functor DHT applied to (6.3.1) yields an exact
sequence. Passing to separate graded degrees gives that the sequence of gri(DHT(·))’s is
short exact, but this is the same as the gri(DdR(·))’s since V ′, V , and V ′′ are deRham (by
Theorem 5.2.1(2)). Hence, adding up dimensions of grj’s for j ≤ i gives

dimK Fili(DdR(V )) = dimK Fili(DdR(V ′)) + dimK Fili(DdR(V ′′)),

so the left-exact sequence (6.3.2) is also right-exact in the deRham case. This settles the
exactness properties for the FilK-valued DdR, as well as the subspace and quotient filtration
claims.

Now consider the claims concerning the behavior of DdR with respect to tensor product
and dual filtrations. By the general formalism of §5 we have K-linear isomorphisms

DdR(V )⊗K DdR(V ′) ' DdR(V ⊗Qp V
′), DdR(V )∨ ' DdR(V ∨)

for V, V ′ ∈ RepdR
Qp

(GK). The second of these isomorphisms is induced by the mapping

DdR(V )⊗K DdR(V ∨) ' DdR(V ⊗Qp V
∨)→ DdR(Qp) = K[0],

and so if the tensor-compatibility is settled then at least the duality comparison isomorphism
in VecK is a morphism in FilK .

The construction of the tensor comparison isomorphism for the VecK-valued DdR rests
on the multiplicative structure of BdR, so since BdR is a filtered ring it is immediate that
the tensor comparison isomorphism in VecK for DdR is at least a morphism in FilK . In
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view of the finite-dimensionality and the exhaustiveness and separatedness of the filtrations,
this morphism in FilK that is known to be an isomorphism in VecK is an isomorphism in
FilK precisely when the induced map on associated graded spaces is an isomorphism. But
gr(DdR) = DHT on deRham representations and gr : FilK → GrK,f is compatible with the
formation of tensor products, so our problem is reduced to the Hodge–Tate tensor comparison
isomorphism being an isomorphism in GrK,f (and not just in VecK). But this final assertion
is part of Theorem 2.3.9. The same mechanism works for the case of dualities. �

The following corollary is very useful, and is often invoked without comment.

Corollary 6.3.4. For V ∈ RepQp
(GK) and n ∈ Z, V is deRham if and only if V (n) is

deRham.

Proof. By Example 6.3.1, this follows from the tensor compatibility in Proposition 6.3.3 and
the isomorphism V ' (V (n))(−n). �

Example 6.3.5. We now give an example of a Hodge–Tate representation that is not deRham.
Consider a non-split short exact sequence

(6.3.3) 0→ Qp → V → Qp(1)→ 0

in RepQp
(GK). The existence of such a non-split extension amounts to the non-vanishing of

H1
cont(GK ,Qp(−1)), and at least when k is finite such non-vanishing is a consequence of the

Euler characteristic formula for H1’s in the Qp-version of Tate local duality.

We now show that any such extension V is Hodge–Tate. Applying CK ⊗Qp (·) to (6.3.3)
gives an extension of CK(1) by CK in RepCK

(GK), and H1
cont(GK ,CK(−1)) = 0 by the

Tate–Sen theorem. Thus, our extension structure on CK ⊗Qp V is split in RepCK
(GK), so

implies CK ⊗Qp V ' CK ⊕ CK(−1) in RepCK
(GK). The Hodge–Tate property for V is

therefore clear. However, we claim that such a non-split extension V is never deRham!

There is no known elementary proof of this fact. The only known proof rests on very deep
results, namely that deRham representations must be potentially semistable in the sense of
being Bst,K′-admissible after restriction to GK′ for a suitable finite extension K ′/K inside of
K, where Bst,K′ ⊆ BdR,K′ = BdR,K is Fontaine’s semistable period ring. It is an important
fact that the category of Bst,K′-admissble p-adic representations of GK′ admits a fully faithful
functor Dst,K′ into a concrete abelian semilinear algebra category (of weakly admissible
filtered (φ,N)-modules over K ′), and that the Ext-group for Dst,K′(Qp(1)) by Dst,K′(Qp) in
this abelian category can be shown to vanish via an easy calculation in linear algebra. By
full faithfulness of Dst,K′ , this would force the original extension structure (6.3.3) on V to
be Qp[GK′ ]-linearly split. But the restriction map H1(GK ,Qp(−1)) → H1(GK′ ,Qp(−1)) is
injective due to [K ′ : K] being a unit in the coefficient ring Qp, so the original extension
structure (6.3.3) on V in RepQp

(GK) would then have to split, contrary to how V was chosen.

Example 6.3.6. To compensate for the incomplete justification (at the present time) of the
preceding example, we now prove that for any extension structure

(6.3.4) 0→ Qp(1)→ V → Qp → 0
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the representation V is always deRham. First we make a side remark that will not be used.
If k is finite then by Kummer theory the space of such extension structures has Qp-dimension
1 + [K : Qp], and a calculation with weakly admissible filtered (φ,N)-modules shows that
there is only a 1-dimensional space of such extensions for which V is semistable (i.e., Bst-
admissible), namely those V ’s that arise from “Tate curves” over K. Hence, these examples
exhibit the difference between the deRham property and the much finer admissibility prop-
erty with respect to the finer period ring Bst ⊆ BdR.

The deRham property for such V is the statement that dimK DdR(V ) = 2. We have a left
exact sequence

0→ DdR(Qp(1))→ DdR(V )→ DdR(Qp)

in FilK with DdR(Qp(1)) and DdR(Qp) each 1-dimensional over K with nonzero gr−1 and gr0

respectively. Hence, our problem is to prove surjectivity on the right, for which it is necessary
and sufficient to have surjectivity with Fil0’s, which is to say that we need to prove that the
natural map (B+

dR ⊗Qp V )GK → (B+
dR)GK = K is surjective.

Applying B+
dR⊗Qp(·) to the initial short exact sequence (6.3.4) gives aGK-equivariant short

exact sequence of finite free B+
dR-modules, so it admits a B+

dR-linear splitting. The problem is
to give such a splitting that is GK-equivariant, and the obstruction is a continuous 1-cocycle
on GK valued in the topological module tB+

dR endowed with its subspace topology from B+
dR;

see Exercise 4.4.7. Hence, it suffices to prove H1
cont(GK , tB

+
dR) = 0. Since t is a unit multiple

of ξ = ξπ as in Exercise 4.4.7, it follows from that exercise that the multiplication map
t : B+

dR → B+
dR is a closed embedding. Hence, the subspace topology on tB+

dR coincides with
its topology as a free module of rank 1 over the topological ring B+

dR. Likewise, the subspace
topology on tnB+

dR from B+
dR for any n ≥ 1 coincides with its topology as a free module of

rank 1, so the GK-equivariant exact sequence

0→ tn+1B+
dR → tnB+

dR → CK(n)→ 0

is topologically exact for n ≥ 1. Since H1
cont(GK ,CK(n)) = 0 for all n ≥ 1 by the Tate–

Sen theorem, we can use a successive approximation argument with continuous 1-cocycles
and the topological identification tB+

dR = lim←− tB
+
dR/t

nB+
dR to deduce that H1

cont(GK , tB
+
dR) =

0. (Concretely, by successive approximation we exhibit each continuous 1-cocycle as a 1-
coboundary.)

An important refinement of Proposition 6.3.3 is that the deRham comparison isomorphism
is also filtration-compatible:

Proposition 6.3.7. For V ∈ RepdR
Qp

(GK), the GK-equivariant BdR-linear comparison iso-
morphism

α : BdR ⊗K DdR(V ) ' BdR ⊗Qp V

respects the filtrations and its inverse does too.

Proof. By construction it is clear that α is filtration-compatible, so the problem is to prove
that its inverse is as well. It is equivalent to show that the induced BHT-linear map gr(α)
on associated graded objects is an isomorphism. On the right side the associated graded
object is naturally identified with BHT ⊗Qp V . For the left side, we first recall that (by a
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calculation with filtration-adapted bases) the formation of the associated graded space of
an arbitrary filtered K-vector space (of possibly infinite dimension) is naturally compatible
with the formation of tensor products (in the graded and filtered senses), so the associated
graded object for the left side is naturally identified with BHT ⊗K gr(DdR(V )).

By Proposition 6.3.2, the deRham representation V is Hodge–Tate and there is a natural
graded isomorphism gr(DdR(V )) ' DHT(V ). In this manner, gr(α) is naturally identified
with the graded comparison morphism

αHT : BHT ⊗K DHT(V )→ BHT ⊗Qp V

that is a graded isomorphism because V is Hodge–Tate. �

Recall that the construction of B+
dR as a topological ring with GK-action only depends

on OCK
endowed with its GK-action. Thus, replacing K with a discretely-valued complete

subfield K ′ ⊆ CK has no effect on the construction (aside from replacing GK with the closed
subgroup GK′ within the isometric automorphism group of CK). It therefore makes sense
to ask if the property of V ∈ RepQp

(GK) being deRham is insensitive to replacing K with
such a K ′, in the sense that this problem involves the same period ring BdR throughout (but
with action by various subgroups of the initial GK).

For accuracy, we now write DdR,K(V ) := (BdR ⊗Qp V )GK , so for a discretely-valued com-
plete extension K ′/K inside of CK we have DdR,K′(V ) = (BdR ⊗Qp V )GK′ . There is an
evident map

K ′ ⊗K DdR,K(V )→ DdR,K′(V )

in FilK′ for all V ∈ RepQp
(GK) via the canonical compatible embeddings of K and K ′ into

the same B+
dR (determined by the embedding of W (k)[1/p] into B+

dR and considerations with
Hensel’s Lemma and the residue field CK).

Proposition 6.3.8. For any complete discretely-valued extension K ′/K inside of CK and
any V ∈ RepQp

(GK), the natural map K ′ ⊗K DdR,K(V )→ DdR,K′(V ) is an isomorphism in
FilK′. In particular, V is deRham as a GK-representation if and only if V is deRham as a
GK′-representation.

As special cases, the deRham property for GK can be checked on IK = GdKun and it is
insensitive to replacing K with a finite extension inside of CK .

Proof. The fields K̂ ′un and K̂un have the same residue field k, so by finiteness of the absolute

ramification we see that the resulting extension K̂un → K̂ ′un of completed maximal unram-
ified extensions is of finite degree. Hence, it suffices to separately treat two special cases:

K ′/K of finite degree and K ′ = K̂un. In the case of finite-degree extensions a transitivity
argument easily reduces us to the case when K ′/K is finite Galois. It is clear from the
definitions that for all i ∈ Z, the finite-dimensional K ′-vector space Fili(DdR,K′(V )) has a
natural semilinear action by Gal(K ′/K) whose K-subspace of invariants is Fili(DdR,K(V )).
Thus, classical Galois descent for vector spaces as in (2.3.3) (applied to K ′/K) gives the
desired isomorphism result in FilK′ in this case.
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To adapt this argument to work in the case K ′ = K̂un, we wish to apply the “com-
pleted unramified descent” argument for vector spaces as in the proof of Theorem 2.3.5.
It is clear from the definitions that for all i ∈ Z, the finite-dimensional K ′-vector space
Fili(DdR,K′(V )) has a natural semilinear action by GK/IK = Gk and the K-subspace of
invariants is Fili(DdR,K(V )). Hence, to apply the completed unramified descent result we
just have to check that the Gk-action on each Fili(DdR,K′(V )) is continuous for the natural
topology on this finite-dimensional K ′-vector space. More generally, consider the GK-action
on tiB+

dR ⊗Qp V . We view this as a free module of finite rank over the topological ring
B+

dR (using the topology from Exercise 4.4.7). It suffices to prove two things: (i) the GK-
action on tiB+

dR⊗Qp V relative to the finite free module topology is continuous, and (ii) any
finite-dimensional K ′-subspace of tiB+

dR ⊗Qp V inherits as its subspace topology the natural
topology as such a finite-dimensional vector space (over the p-adic field K ′). Note that for
the proof of (ii) we may rename K ′ as K since this does not affect the formation of B+

dR, so
it suffices for both claims to consider a common but arbitrary p-adic field K.

For (i), we can use multiplication by t−i and replacement of V by V (i) to reduce to checking
continuity of the GK-action on B+

dR ⊗Qp V for any V ∈ RepQp
(GK). Continuity of the GK-

action on V and on B+
dR then easily gives the continuity of the GK-action on B+

dR ⊗Qp V by
computing relative to a Qp-basis of V . To prove (ii) with K ′ = K, we may again replace V
with V (i) to reduce to the case i = 0. It is harmless to replace the given finite-dimensional
K-subspace of B+

dR⊗Qp V with a larger one, so by considering elementary tensor expansions
relative to a choice of Qp-basis of V we reduce to the case when the given finite-dimensional
K-vector space has the form W ⊗Qp V for a finite-dimensional K-subspace of B+

dR. We may
therefore immediately reduce to showing that if W ⊆ B+

dR is a finite-dimensional K-subspace
then its subspace topology from B+

dR is its natural topology as a finite-dimensional K-vector
space.

Pick a K-basis {w1, . . . , wn} of W , so wj = ujt
ej with ej ≥ 0 and uj a unit in B+

dR. Since
B+

dR is a topological K-algebra (see Exercise 4.4.7) and it is Hausdorff with a countable base
of opens around the origin, the subspace topology on W is a Hausdorff topological vector
space structure with a countable base of opens around the origin. Hence, the problem is just
to show that if xm =

∑
aj,mwj is a sequence in W tending to 0 for the subspace topology as

m → ∞ then aj,m → 0 in K for each j. By working in the successive topological quotients
tiB+

dR/t
i+1B+

dR for 0 ≤ i ≤ max{e1, . . . , en} (with each tiB+
dR given its subspace topology

from B+
dR) we reduce to solving the analogous problem for finite-dimensional subspaces of

each such quotient space. In Exercise 6.3.6 we saw that multiplication by ti topologically
identifies the subspace topology on tiB+

dR with its topology as a free module of rank 1. Hence,
tiB+

dR/t
i+1B+

dR ' CK(i) topologically for all i ≥ 0.

Our topological problem is now reduced to the classical setting of finite-dimensional K-
subspaces W of CK (since the Tate twist has no effect on the topological aspects of the
problem), as follows. The open subset L = W ∩ OCK

in W is an OK-submodule of W that
contains a K-basis of W and has no infinitely p-divisible elements. The injective hull of k as
an OK-module is K/OK , so by the duality properties of injective hulls over local noetherian
rings as in pages 146–149 of Matsumura’s Commutative Ring Theory (or some alternative
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elementary argument?) it follows that L is finitely generated over the complete discrete
valuation ring OK . The problem is to show that L has its OK-module topology (i.e., p-adic
topology) as its subspace topology from the p-adic topology of OCK

.

Let Ln = L ∩ pnOCK
, so clearly L/Ln has finite length (it is killed by pn since L ⊆ OCK

)
and ∩Ln = 0. It is a classical (elementary but non-obvious) result of Chevalley that for any
finite module M over any complete local noetherian ring (A,m) whatsoever, if {Mi}i≥1 is
a descending sequence of submodules such that each M/Mi has finite length and ∩Mi = 0,
then the Mi’s define the module topology of M (i.e., each Mi contains mj(i)M for sufficiently
large j(i)); presumably this fact admits a short easy proof in the relevant case that A is a
complete discrete valuation ring. (Chevalley’s result is Exercise 8.7 in Matsumura’s book
for M = A, with a solution in the back of the book that easily adapts to handle general
M .) Chevalley’s result ensures that the subspace topology on L has no additional open sets
beyond those from the finite OK-module topology. �

Example 6.3.9. In the 1-dimensional case, the Hodge–Tate and deRham properties are equiv-
alent. Indeed, we have seen in general that deRham representations are always Hodge–Tate
(in any dimension), and for the converse suppose that V is a 1-dimensional Hodge–Tate
representation. Thus, it has some Hodge–Tate weight i, so if we replace V with V (−i) (as
we may without loss of generality since every Qp(n) is deRham) we may reduce to the case
when the continuous character ψ : GK → Z×p of V is Hodge–Tate with Hodge–Tate weight 0.

Hence, CK(ψ)GK 6= 0, so by the Tate–Sen theorem ψ(IK) is finite. By choosing a sufficiently
ramified finite extension K ′/K we can thereby arrange that ψ(IK′) = 1. Since the deRham

property is insensitive to replacing K with K̂ ′un, we thereby reduce to the case of the trivial
character, which is deRham.

The same argument shows that any finite-dimensional p-adic representation W of GK with
open kernel on IK is deRham with 0 as the only Hodge–Tate weight, and that DdR(W ) is
then a direct sum of copies of the unit object K[0] in FilK .
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