Some new estimates on the Liouville heat kernel

Vincent Vargas ! 2

ENS Paris

Lirst part in collaboration with: Maillard, Rhodes, Zeitouni
2second part in collaboration with: David, Kupiainen, Rhodes



Outline

Gaussian multiplicative chaos theory

Set-up and Notations
m Liouville Brownian motion
m Liouville heat kernel

Off-diagonal bounds on the heat kernel
m Lower bound on the heat kernel
m Upper bound on the Liouville heat kernel

Liouville quantum gravity on the Riemann sphere
m Construction
m Basic properties



Notations

We equip the two dimensional torus T with:
e dr standard volume distance and dx volume form
e A the Laplace-Beltrami operator on T

e p:(x,y) the standard heat kernel of the Brownian motion B
on T

Recall that:

pe(x, + Z e e x)en(y)

n>1

where (A\;)n>1 (increasing) eigenvalues and (e,)n>1 (normalized)
eigenvectors:

—Ae, = 2w A\nep, / en(x)dx = 0.
T



Log-correlated field X

Notations:

e G standard Green function of the Laplacian A:

G y) = Y wenlen(y)

n>1""

e X GFF on T under PX (expectation EX):

1
EX[X(x)X(y)] = G(x,y) = Iny axy) +g(x,y)



Gaussian multiplicative chaos (Liouville measure)

Gaussian multiplicative chaos associated to X:

M, (dx) = X0~ S EIXCP gy

Theorem ( , 1985)

M., can be defined by regularizing the field X and a limit
procedure. M, # 0 if and only if v < 2. If v < 2, the measure M,
"lives” almost surely on a set of Hausdorff dimension 2 — 772 (the
set of thick points).



Liouville Brownian motion

Framework:
e Standard Brownian motion B = (B¢):>0 on T

e Pg (and EZ) probability (expectation) of B starting from x.

t t,
o Py Y (and Eg ) law (expectation) of the Brownian bridge
(Bs)o<s<¢ from x to y with lifetime t.

Liouville Brownian motion starting from x € T formally defined by:

dB, = e 2X(B)yB,



Liouville heat kernel: definition

Liouville Brownian motion starting from x € T:

Be = BF(t)—1
where

F(t) = / X (B~ T EXXB)] g
0

Liouville heat kernel p] defined for all f by:

E3[F(B)] = E3[F(Bry)] = / F(y)Pi(x,y) M (dy), t >0



Liouville heat kernel: representation and regularity

Consider the Hilbert-Schmidt operator:
T [ Gxn)fly)m (@)

with
fqr M., (dz)
v(T)

Let (Ay,n)n>1 be the (increasing) eigenvalues of T_ associated to
the eigenvectors (€])n>1. We have: 3, -1 57 X, < +oo

G’Y(Xay) = G(Xay)



Liouville heat kernel: representation and regularity

We have the following representation:

Theorem ( )

1
M, (T)

pi(x,y) = + ) e Mrtel(x)e)(y).

n>1

Furthermore, it is of class C*0O(R* x T?). Ify <2 —+/2, it is
even of class C°LL(RY x T?).



Speculations and heuristics

Watabiki (1993) conjectures that one can construct a metric space
(T,d,) which is locally monofractal with intrinsic Hausdorff
dimension

2 2

2
dH('y)zl—i-’yI—i- (1+%) +92.

The literature on diffusion on fractals suggests that the heat kernel
p/(x,y) then takes the following form for small t:

C d,(x, y)@H()/(dn(v)-1)
pi(x,y) =< —exp (—C /(x:Y) 5

tdn(n-1



Summary of our bounds within these heuristics
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The lower bound: fixed points

Theorem ( )

Fix x # y. For all p > 0, there exists some random variable
To = To(x, y,n) such that for all t < T,

_ 1
p’ty(X7y) Z €Xp ( —t /4777)’ IPX'a-S-



The lower bound: typical points

Theorem ( )

Conditioned on the Gaussian field X, let x,y be sampled according
to the measure M.,(T) "M, For all ) > 0, there exists some
random variable Tg, such that for all t < Ty,

1

pi(x,y) > exp ( -t (7)—"), PX-a.s.,
where
1+ % 12 €[0,8/3]

-1
v ={1+4-F(1-F)  2€(8/33]
4— 2 7 € (3,4).



Strategy of the proof for fixed points

Work with the resolvent which has the explicit representation:

/0 e Mp](x, y)dt = /0 Eégy [G_M:(t)} pe(x, y)dt, A >0.

Goal: give a lower bound of E5 " [e *F(!)] (Brownian bridge in
random environment)

t,
Strategy: find an event A, that costs Py ”(A;) = e~/* such that

Eé_w [ef)‘F(t)’At] is big and use Jensen:

Eé(—tw [ef)\F(t)|At} > ef)\E;_t)y[F(t)‘At]



Strategy of the proof for fixed points

boxes with small M., boxes with large M.,
1o acceleration Brownian bridge is accelerated

Figure: Strategy followed by the bridge in the boxes (S,E)k<%

of side length t

Event A;: the (Bs)s<¢ stays in the corridor [x,y] X [—t, t] and is
accelerated on the ¢-thick boxes of M,,.

Multifractal Analysis: |[{k; M,(Sf) ~ t2+5'7_72/2}| ~ $9°/2-1



Strategy of the proof for fixed points

Spending ts time in all é-thick boxes costs
LB 2y 2 )
(e ")t =e . The cost is e/t for t; = t2+9°/2,

Therefore, we will consider the event A; that the bridge spends
£2+92/2 time in each d-thick boxes of M, .

The contribution on F(t) of the J-thick boxes is then:

$02/2-142467 /2197 26y _ p1+(6—7/2)* 42 /4 < F1+2/4

. 2
Conclusion: F(t) ~ t+7°/4 on the event A;.



Strategy of the proof for fixed points

Going back to the Resolvent:



The upper bound: a useful general lemma

In the context of Liouville Brownian motion, we have the following
lemma:

Lemma ( )

Let > 1, a >0 and Tp(y ) denotes the LBM exit time from the
Euclidean ball B(y,r). Assume that:

1) For all x,y and t > 0, we have p](x,y) < C(tla + 1>,
2) rliﬁ)supyeﬂl‘ P (7g(y,r) < r¥) =0
Then, for all t > 0 and M, almost all x,y € T,

e < (5 +1) e (- (42)77),



The upper bound

Seta:2<1—%)2and Yu >0, Bu) = (%+\/lj+2+’§)2.

)

For each § > 0, we set a5 = o — 9, 5 = B(as) + 0. Then, there
exist two random constants ¢; = c1(X), ca = c2(X) > 0 such that

Theorem (

dT(XaY)>5§6‘1>‘

a
Vx,y € T,t >0, pi(x,y)< 1o eXP(—C2< +1/Bs

Remark

Using similar techniques, these bounds were improved recently by
2
S. Andres, N. Kajino to 8 = 7+2)



The upper bound: strategy of the proof

By definition, for a fixed y € T
T x(B)- LB
TB(y,r) = F( TB(y,r)) = . e 2 dr.

where Tpg, ) is the exit time of a standard Brownian motion B
starting from y.

One has for all g < %

__r
F( TB(y,r))q

Using this relation on a fine grid and a union bound entails the
bound £.

PXPY (75, < r’) < rPIEXEY|



Other works on the Liouville heat kernel

e N. Berestycki, C. Garban, R. Rhodes, V.(2014): KPZ formula
derived from the Liouville heat kernel

e S. Andres, N. Kajino (2014): Continuity and estimates of the
Liouville heat kernel with applications to spectral dimensions

e M. Biskup, J. Ding : work in progress.



Liouville quantum gravity on the Riemann sphere

Why study Liouville quantum gravity on the Riemann sphere?
e Important conformal field theory (indexed by a continuum set
of parameters) which is exactly solvable
e Scaling limit of random planar maps

e Link with 4d-gauge theories



Liouville quantum gravity on the Riemann sphere

References:

e N. Seiberg (1990): Notes on Quantum Liouville Theory and
Quantum Gravity

e Y. Nakayama (2004): Liouville field theory: a decade after the
revolution

e D. Harlow, J. Maltz, E. Witten (2011): Analytic continuation
of Liouville theory



Liouville quantum gravity on the Riemann sphere

Consider the following partition function on the sphere (Polyakov
1981)

Z= / e StX&) px
where S; is the Liouville action:

1

/ (105X [2(x)+ QRg (x) X (x)+4m e’ X)) g (x)dx
and g some reference metric on the sphere.

Goal: construct a CFT independent of the reference metric (within
the same conformal equivalence class) with action given by S;.

Here, we will choose g(x) = W.



Liouville quantum gravity on the Riemann sphere: the

Gaussian Free Field

We denote:
e A, Laplacian

e G Green function with vanishing mean,

GFF X: E[X(x)X(y)] = G(x,y).
Liouville field: X(x) + € In g(x)

Regularized GFF: X(x) = 5t 02” X(x + ee’®)dd

2me

a?/2 ga(Xe(x)+§ Ing(x))

Vertex operator: V,, ((x) =€



Liouville quantum gravity on the Riemann sphere: the

n-point correlation function

Goal: construct a CFT on the sphere.
(Law)
Problem: if ¢ Mobius transform, X o) # X.



Liouville quantum gravity on the Riemann sphere: the

n-point correlation function

Goal: construct a CFT on the sphere.
(Law)
Problem: if ¢ Mobius transform, X o) # X.

In order to ensure conformal invariance, we need to integrate with

respect to the Lebesgue measure. Hence, we get the following
definition:

C((ci), (zi), 1, F(.))

i / E| He%'?ea;(c+xe+§lné)(z,') o2 Jiz 2+ X(0+ 20 2(x)) 2(x)dx
R

e—0 ;
i

2
F(.) exp ( — pe’eT /

V(X ()+Q/2Ing(x) dx)] d.
R2



Liouville quantum gravity on the Riemann sphere

C((ci), (zi), 1, F (1))
— lim / E[Hefea"(c*&*g In8)(21) a= 4% J2 2(c+X )+ In&(x)) &(x)dx
R i

e—0

2
F(.) exp ( — e’ /

&V (Xe(3)+Q/21n g(x)) dx)] de.
R2

We set C((«), (zi), ) = C((evi), (2i), p, F(.) = 1) and the
probability

(z1),(e) it ~ C((), (zi), 1, F())
BRI =, o)



Liouville quantum gravity on the Riemann sphere:
existence of the n-point correlation

Theorem ( )

Ify " a; >2Q and o; < Q (Seiberg bound), then
C((Oé,'), (Zi)? ,LL)

2Q—> ;o
— 5(2 )~ A +50 o Xig @iajG(zi,z) (CRF T
(ig(z,)42)e¢f’ e 5
1
xT(v71) a;—2Q))E —
(- 20)el s

where [ is the standard gamma function, C(g) a global constant
and

Zi(dx) = X0~ FEIXCIH7 5016 x.)



Liouville quantum gravity on the Riemann sphere:
conformal invariance of the n-point correlation

Theorem (

If 1) is a Mobius transform then

C((ai), (¥(2), HW z)|~ 2AQ’C((041) (2i): 1)

where A, are the conformal weights: A, = 5 (Q — ).

Proof: use definition of C((«;),(z), 1) as a limit and then:

Girsanov+ computations involving change of metrics +

Law
Xoth— & fo Xop(x)g(x)dx 12 X



Liouville quantum gravity on the Riemann sphere: the

Liouville measure

o . Qne .
The Liouville measure Z; (dx) = lim, eYX<()+3 &) g is
conformally invariant (with respect to Mobius) and its total mass
has a I distribution
2Q—Y @

o0 Tje-2Q
EGE)(C)LF(Z,(R?))] = “2;_20/ Fv)v™ o e ™dy
(=29

Conditioning on the volume, we get the distribution

Z(z, ( )
EF( m%)aa(
_2iei—2Q
B[Zy(R?)™ ]

E@)( )1 Z, (dx)|Z,(R?) = A] =




Liouville quantum gravity on the Riemann sphere:

perspectives

Perspectives:
e Compute the semi-classical limit of your system, i.e. v — 0
(Liouville equation on the sphere with conical singularities)
e Give explicit expressions for the 3 point correlation function

(conjectured to be the 3 point correlations of numerous
2d-statistical physics systems at criticality)
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