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Notations

We equip the two dimensional torus T with:

• dT standard volume distance and dx volume form

• ∆ the Laplace-Beltrami operator on T
• pt(x , y) the standard heat kernel of the Brownian motion B

on T
Recall that:

pt(x , y) =
1

|T|
+
∑
n≥1

e−λnten(x)en(y)

where (λn)n≥1 (increasing) eigenvalues and (en)n≥1 (normalized)
eigenvectors:

−∆en = 2πλnen,

∫
T

en(x)dx = 0.



Log-correlated field X

Notations:

• G standard Green function of the Laplacian ∆:

G (x , y) =
∑
n≥1

1

λn
en(x)en(y)

• X GFF on T under PX (expectation EX ):

EX [X (x)X (y)] = G (x , y) = ln+
1

dT(x , y)
+ g(x , y)



Gaussian multiplicative chaos (Liouville measure)

Gaussian multiplicative chaos associated to X :

Mγ(dx) = eγX (x)− γ
2

2
E[X (x)2] dx .

Theorem (Kahane, 1985)

Mγ can be defined by regularizing the field X and a limit
procedure. Mγ 6= 0 if and only if γ < 2. If γ < 2, the measure Mγ

”lives” almost surely on a set of Hausdorff dimension 2− γ2

2 (the
set of thick points).



Liouville Brownian motion

Framework:

• Standard Brownian motion B = (Bt)t≥0 on T
• Px

B (and E x
B) probability (expectation) of B starting from x .

• Px
t→y

B (and E x
t→y

B ) law (expectation) of the Brownian bridge
(Bs)0≤s≤t from x to y with lifetime t.

Liouville Brownian motion starting from x ∈ T formally defined by:

dBt = e−
γ
2
X (Bt)dBt



Liouville heat kernel: definition

Liouville Brownian motion starting from x ∈ T:

Bt = BF (t)−1

where

F (t) =

∫ t

0
eγX (Br )− γ

2

2
EX [X 2(Br )] dr .

Liouville heat kernel pγt defined for all f by:

E x
B[f (Bt)] = E x

B[f (BF (t)−1)] =

∫
T

f (y)pγt (x , y) Mγ(dy), t > 0



Liouville heat kernel: representation and regularity

Consider the Hilbert-Schmidt operator:

Tγ : f 7→
∫
T

Gγ(x , y)f (y)Mγ(dy)

with

Gγ(x , y) = G (x , y)−
∫
T G (z , y)Mγ(dz)

Mγ(T)

Let (λγ,n)n≥1 be the (increasing) eigenvalues of T−1
γ associated to

the eigenvectors (eγn)n≥1. We have:
∑

n≥1
1

λ2
γ,n

< +∞.



Liouville heat kernel: representation and regularity

We have the following representation:

Theorem (Maillard, Rhodes, V., Zeitouni)

pγt (x , y) =
1

Mγ(T)
+
∑
n≥1

e−λγ,nteγn(x)eγn(y).

Furthermore, it is of class C∞,0,0(R∗+ × T2). If γ < 2−
√

2, it is
even of class C∞,1,1(R∗+ × T2).



Speculations and heuristics

Watabiki (1993) conjectures that one can construct a metric space
(T,dγ) which is locally monofractal with intrinsic Hausdorff
dimension

dH(γ) = 1 +
γ2

4
+

√(
1 +

γ2

4

)2
+ γ2.

The literature on diffusion on fractals suggests that the heat kernel
pγt (x , y) then takes the following form for small t:

pγt (x , y) � C

t
exp

(
−C

dγ(x , y)dH(γ)/(dH(γ)−1)

t
1

dH (γ)−1

)



Summary of our bounds within these heuristics



The lower bound: fixed points

Theorem (Maillard, Rhodes, V., Zeitouni)

Fix x 6= y. For all η > 0, there exists some random variable
T0 = T0(x , y , η) such that for all t ≤ T0,

pγt (x , y) ≥ exp
(
− t
− 1

1+γ2/4−η
)
, PX -a.s.



The lower bound: typical points

Theorem (Maillard, Rhodes, V., Zeitouni)

Conditioned on the Gaussian field X , let x,y be sampled according
to the measure Mγ(T)−1Mγ . For all η > 0, there exists some
random variable T0, such that for all t ≤ T0,

pγt (x , y) ≥ exp
(
− t
− 1
ν(γ)−η

)
, PX -a.s.,

where

ν(γ) =


1 + γ2

4 γ2 ∈ [0, 8/3]

1 + γ2 − γ2

4

(
1− γ2

4

)−1
γ2 ∈ (8/3, 3]

4− γ2 γ2 ∈ (3, 4).



Strategy of the proof for fixed points

Work with the resolvent which has the explicit representation:∫ ∞
0

e−λtpγt (x , y)dt =

∫ ∞
0

E x
t→y

B

[
e−λF (t)

]
pt(x , y)dt, λ > 0.

Goal: give a lower bound of E x
t→y

B

[
e−λF (t)

]
(Brownian bridge in

random environment)

Strategy: find an event At that costs Px
t→y

B (At) = e−c/t such that

E x
t→y

B

[
e−λF (t)|At

]
is big and use Jensen:

E x
t→y

B

[
e−λF (t)|At

]
≥ e−λE

x
t→y

B [F (t)|At ]



Strategy of the proof for fixed points

Figure: Strategy followed by the bridge in the boxes (S t
k)k≤ 1

t

of side length t

Event At : the (Bs)s≤t stays in the corridor [x , y ]× [−t, t] and is
accelerated on the δ-thick boxes of Mγ .

Multifractal Analysis: |{k ; Mγ(S t
k) ≈ t2+δγ−γ2/2}| ≈ tδ

2/2−1.



Strategy of the proof for fixed points

Spending tδ time in all δ-thick boxes costs

(e
−c t2

tδ )t
δ2/2−1

= e
−c t1+δ2/2

tδ . The cost is e−c/t for tδ = t2+δ2/2.

Therefore, we will consider the event At that the bridge spends
t2+δ2/2 time in each δ-thick boxes of Mγ .

The contribution on F (t) of the δ-thick boxes is then:

tδ
2/2−1t2+δ2/2tγ

2/2−δγ = t1+(δ−γ/2)2+γ2/4 ≤ t1+γ2/4

Conclusion: F (t) ≈ t1+γ2/4 on the event At .



Strategy of the proof for fixed points

Going back to the Resolvent:

∫ ∞
0

e−λtpγt (x , y)dt =

∫ ∞
0

E x
t→y

B

[
e−λF (t)

]
pt(x , y)dt

≥
∫ ∞

0
E x

t→y
B

[
e−λF (t)|At

]
e−c/tdt

≥
∫ ∞

0
e−λE

x
t→y

B [F (t)|At ]e−c/tdt

≥
∫ ∞

0
e−λt

1+γ2/4
e−c/tdt

≥ ce−cλ
1

2+γ2/4



The upper bound: a useful general lemma

In the context of Liouville Brownian motion, we have the following
lemma:

Lemma (Barlow,Grygorian)

Let β > 1, α > 0 and τB(y ,r) denotes the LBM exit time from the
Euclidean ball B(y , r). Assume that:

1) For all x , y and t > 0, we have pγt (x , y) ≤ C
(

1
tα + 1

)
.

2) lim
r→0

supy∈TP
y (τB(y ,r) ≤ rβ) = 0

Then, for all t > 0 and Mγ almost all x , y ∈ T,

pγt (x , y) ≤ C ′
( 1

tα
+ 1
)

exp
(
− C ′′

(
d(x , y)

t1/β

) β
β−1 )

.



The upper bound

Set α = 2
(

1− γ
2

)2
and ∀u > 0, β(u) =

(
γ√
u

+
√

γ2

u + 2 + γ2

2

)2
.

Theorem (Maillard, Rhodes, V., Zeitouni)

For each δ > 0, we set αδ = α− δ, βδ = β(αδ) + δ. Then, there
exist two random constants c1 = c1(X ), c2 = c2(X ) > 0 such that

∀x , y ∈ T, t > 0, pγt (x , y) ≤ c1

t1+δ
exp

(
− c2

(
dT(x , y)

t1/βδ

) βδ
βδ−1 )

.

Remark

Using similar techniques, these bounds were improved recently by

S. Andres, N. Kajino to β = (γ+2)2

2 .



The upper bound: strategy of the proof

By definition, for a fixed y ∈ T

τB(y ,r) = F (TB(y ,r)) =

∫ TB(y,r)

0
eγX (Br )− γ

2

2
EX [X 2(Br )] dr .

where TB(y ,r) is the exit time of a standard Brownian motion B
starting from y .

One has for all q < 4
γ2

PXPy (τB(y ,r) ≤ rβ) ≤ rβqEXEy [
1

F (TB(y ,r))q
]

Using this relation on a fine grid and a union bound entails the
bound β.



Other works on the Liouville heat kernel

• N. Berestycki, C. Garban, R. Rhodes, V.(2014): KPZ formula
derived from the Liouville heat kernel

• S. Andres, N. Kajino (2014): Continuity and estimates of the
Liouville heat kernel with applications to spectral dimensions

• M. Biskup, J. Ding : work in progress.



Liouville quantum gravity on the Riemann sphere

Why study Liouville quantum gravity on the Riemann sphere?

• Important conformal field theory (indexed by a continuum set
of parameters) which is exactly solvable

• Scaling limit of random planar maps

• Link with 4d-gauge theories



Liouville quantum gravity on the Riemann sphere

References:

• N. Seiberg (1990): Notes on Quantum Liouville Theory and
Quantum Gravity

• Y. Nakayama (2004): Liouville field theory: a decade after the
revolution

• D. Harlow, J. Maltz, E. Witten (2011): Analytic continuation
of Liouville theory



Liouville quantum gravity on the Riemann sphere

Consider the following partition function on the sphere (Polyakov
1981)

Z =

∫
e−SL(X ,ĝ)DX

where SL is the Liouville action:

SL(X , ĝ) :=
1

4π

∫
R2

(
|∂ĝX |2(x)+QRĝ (x)X (x)+4πµeγX (x)

)
ĝ(x)dx

and ĝ some reference metric on the sphere.
Goal: construct a CFT independent of the reference metric (within
the same conformal equivalence class) with action given by SL.
Here, we will choose ĝ(x) = 4

(1+|x |2)2 .



Liouville quantum gravity on the Riemann sphere: the
Gaussian Free Field

We denote:

• 4ĝ Laplacian

• G Green function with vanishing mean,

• GFF X : E[X (x)X (y)] = G (x , y).

• Liouville field: X (x) + Q
2 ln ĝ(x)

• Regularized GFF: Xε(x) = 1
2πε

∫ 2π
0 X (x + εe iθ)dθ

• Vertex operator: Vα,ε(x) := εα
2/2 eα(Xε(x)+Q

2
ln ĝ(x))



Liouville quantum gravity on the Riemann sphere: the
n-point correlation function

Goal: construct a CFT on the sphere.

Problem: if ψ Mobius transform, X ◦ ψ
(Law)

6= X .

In order to ensure conformal invariance, we need to integrate with
respect to the Lebesgue measure. Hence, we get the following
definition:

C ((αi ), (zi ), µ,F (.))

= lim
ε→0

∫
R
E
[(∏

i

ε
α2
i

2 eαi (c+Xε+
Q
2

ln ĝ)(zi )

)
e−

Q
4π

∫
R2 2(c+X (x)+Q

2
ln ĝ(x)) ĝ(x)dx

F (.) exp
(
− µeγcε

γ2

2

∫
R2

eγ(Xε(x)+Q/2 ln ĝ(x)) dx
)]

dc.



Liouville quantum gravity on the Riemann sphere: the
n-point correlation function

Goal: construct a CFT on the sphere.

Problem: if ψ Mobius transform, X ◦ ψ
(Law)

6= X .

In order to ensure conformal invariance, we need to integrate with
respect to the Lebesgue measure. Hence, we get the following
definition:

C ((αi ), (zi ), µ,F (.))

= lim
ε→0

∫
R
E
[(∏

i

ε
α2
i

2 eαi (c+Xε+
Q
2

ln ĝ)(zi )

)
e−

Q
4π

∫
R2 2(c+X (x)+Q

2
ln ĝ(x)) ĝ(x)dx

F (.) exp
(
− µeγcε

γ2

2

∫
R2

eγ(Xε(x)+Q/2 ln ĝ(x)) dx
)]

dc .



Liouville quantum gravity on the Riemann sphere

C ((αi ), (zi ), µ,F (.))

= lim
ε→0

∫
R
E
[∏

i

ε
α2
i

2 eαi (c+Xε+
Q
2

ln ĝ)(zi )e−
Q
4π

∫
R2 2(c+X (x)+Q

2
ln ĝ(x)) ĝ(x)dx

F (.) exp
(
− µeγcε

γ2

2

∫
R2

eγ(Xε(x)+Q/2 ln ĝ(x)) dx
)]

dc .

We set C ((αi ), (zi ), µ) = C ((αi ), (zi ), µ,F (.) = 1) and the
probability

E(zi ),(αi ),µ[F (.)] =
C ((αi ), (zi ), µ,F (.))

C ((αi ), (zi ), µ)
.



Liouville quantum gravity on the Riemann sphere:
existence of the n-point correlation

Theorem (David, Kupiainen, Rhodes, V.)

If
∑

i αi > 2Q and αi < Q (Seiberg bound), then

C ((αi ), (zi ), µ)

=
(∏

i

ĝ(zi )
−α

2
i

4
+Q

2
αi

)
e
∑

i 6=j αiαjG(zi ,zj )eC(ĝ)µ
2Q−

∑
i αi

γ

γ

× Γ
(
γ−1(

∑
i

αi − 2Q)
)
E
[ 1

Z(zi )(R2)

∑
i αi−2Q

γ

]

where Γ is the standard gamma function, C (ĝ) a global constant
and

Z(zi )(dx) = eγX (x)− γ
2

2
E[X (x)2]+γ

∑
i αiG(x ,zi )dx



Liouville quantum gravity on the Riemann sphere:
conformal invariance of the n-point correlation

Theorem (David, Kupiainen, Rhodes, V.)

If ψ is a Mobius transform then

C ((αi ), (ψ(zi )), µ) =
∏
i

|ψ′(zi )|−2∆αi C ((αi ), (zi ), µ)

where ∆αi are the conformal weights: ∆αi = αi
2 (Q − αi

2 ).

Proof: use definition of C ((αi ), (zi ), µ) as a limit and then:
Girsanov+ computations involving change of metrics +

X ◦ ψ − 1
4π

∫
R2 X ◦ ψ(x)ĝ(x)dx

(Law)
= X



Liouville quantum gravity on the Riemann sphere: the
Liouville measure

The Liouville measure ZL(dx) = limε eγ(Xε(x)+Q
2

ln ĝ(x))dx is
conformally invariant (with respect to Mobius) and its total mass
has a Γ distribution

E(zi ),(αi ),µ[F (ZL(R2))] =
µ

2Q−
∑

i αi
γ

Γ(
∑

i αi−2Q
γ )

∫ ∞
0

F (v)v

∑
i αi−2Q

γ
−1e−µvdv

Conditioning on the volume, we get the distribution

E(zi ),(αi ),µ[ZL(dx)|ZL(R2) = A] =
E[F

(
A

Z(zi )
(dx)

Z(zi )
(R2)

)
Z(zi )(R2)−

∑
i αi−2Q

γ ]

E[Z(zi )(R2)−
∑

i αi−2Q

γ ]



Liouville quantum gravity on the Riemann sphere:
perspectives

Perspectives:

• Compute the semi-classical limit of your system, i.e. γ → 0
(Liouville equation on the sphere with conical singularities)

• Give explicit expressions for the 3 point correlation function
(conjectured to be the 3 point correlations of numerous
2d-statistical physics systems at criticality)
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