Height fluctuations in interacting dimers

F. Toninelli, CNRS and Université Lyon 1 in collaboration with A. Giuliani (Roma 3) and V. Mastropietro (Milan)

Oxford, October 2, 2014

Perfect matchings of \mathbb{Z}^2 and height function

Height function:

$$h(f') - h(f) = \sum_{b \in C_{f \to f'}} \sigma_b (1_{b \in M} - 1/4)$$

where $\sigma_b = +1/-1$ if b crossed with white on the right/left.

Perfect matchings of \mathbb{Z}^2 and height function

Height function:

$$h(f') - h(f) = \sum_{b \in C_{f \to f'}} \sigma_b (1_{b \in M} - 1/4)$$

where $\sigma_b=+1/-1$ if b crossed with white on the right/left. Crucial observation: white-to-black flux $(1_{b\in M}-1/4)$ is divergence-free. Important point: \mathbb{Z}^2 is bipartite.

If Λ is a large domain, e.g. the $2L \times 2L$ square/torus, many $(\approx \exp(cL^2))$ perfect matchings exist.

Call $\langle \cdot \rangle_{\Lambda;0}$ the uniform measure.

If Λ is a large domain, e.g. the $2L \times 2L$ square/torus, many $(\approx \exp(cL^2))$ perfect matchings exist.

Call $\langle \cdot \rangle_{\Lambda;0}$ the uniform measure.

Observe:

- By symmetry, on the torus, $\langle 1_{b \in M} \rangle_{\Lambda;0} = 1/4$ for every b, so that $\langle h(f) h(f') \rangle_{\Lambda;0} = 0$.
- Dimers do not interact (except for hard-core constraint).

Known facts:

• Dimer-dimer correlations decay slowly:

$$\lim_{\Lambda \to \mathbb{Z}^2} \langle 1_{b \in M}; 1_{b' \in M} \rangle_{\Lambda,0} \approx |b - b'|^{-2}$$

Known facts:

• Dimer-dimer correlations decay slowly:

$$\lim_{\Lambda \to \mathbb{Z}^2} \langle 1_{b \in M}; 1_{b' \in M} \rangle_{\Lambda,0} \approx |b - b'|^{-2}$$

• Height fluctuations grow logarithmically:

$$\lim_{\Lambda o \mathbb{Z}^2} \mathit{Var}_{\Lambda,0}(\mathit{h}(f) - \mathit{h}(f')) \sim rac{1}{\pi^2} \log |f - f'| \quad \text{as} \quad |f - f'| o \infty$$

(see Kenyon-Okounkov-Sheffield for general bipartite graphs, periodic b.c.)

Known facts:

• Dimer-dimer correlations decay slowly:

$$\lim_{\Lambda \to \mathbb{Z}^2} \langle 1_{b \in M}; 1_{b' \in M} \rangle_{\Lambda,0} \approx |b - b'|^{-2}$$

· Height fluctuations grow logarithmically:

$$\lim_{\Lambda o \mathbb{Z}^2} \mathit{Var}_{\Lambda,0}(\mathit{h}(f) - \mathit{h}(f')) \sim rac{1}{\pi^2} \log |f - f'| \quad \text{as} \quad |f - f'| o \infty$$

(see Kenyon-Okounkov-Sheffield for general bipartite graphs, periodic b.c.)

• the height field is asymptotically Gaussian: for $m \ge 3$, the m^{th} cumulant of h(f) - h(f') is

$$\langle h(f) - h(f'); m \rangle_{\Lambda,0} = o(Var_{\Lambda,0}(h(f) - h(f'))^{m/2}).$$

(recall: cumulants of X are zero for $m \ge 3$ iff X is Gaussian)

Interacting dimers

Associate an energy $\lambda \in \mathbb{R}$ to adjacent dimers:

I.e., with N(M) the number of adjacent pairs of dimers in M,

$$\langle \cdot \rangle_{\Lambda,\lambda} = \frac{\sum_{M} e^{\lambda N(M)}}{Z_{\Lambda,\lambda}}$$

[Alet et al., Phys. Rev. Lett 2005]

Interacting dimers

Theorem [Giuliani, Mastropietro, T. 2014] If $|\lambda| \leq \lambda_0$ then:

Fluctuations still grow logarithmically:

$$\lim_{\Lambda o \mathbb{Z}^2} extstyle extstyle Var_{\Lambda,\lambda}(h(f) - h(f')) \sim rac{K(\lambda)}{\pi^2} \log |f - f'|$$

with $K(\cdot)$ analytic and K(0) = 1;

• for $m \ge 3$, the m^{th} cumulant of h(f) - h(f') is bounded:

$$\sup_{f,f'}\lim_{\Lambda\to\mathbb{Z}^2}\langle h(f)-h(f');m\rangle_{\Lambda,\lambda}\leq C(m).$$

Interacting dimers

• Convergence to the GFF

If $|\lambda| \leq \lambda_0$ then convergence to Gaussian Free Field: if $\varphi \in C_c^\infty(\mathbb{R}^2)$ with $\int_{\mathbb{R}^2} \varphi(x) dx = 0$ then, as $\epsilon \to 0$,

$$\epsilon^2 \sum_f \varphi(\epsilon f) h(f) \Rightarrow \int_{\mathbb{R}^2} \varphi(x) X(x) dx$$

with X the Gaussian Free Field of covariance

$$-\frac{K(\lambda)}{2\pi^2}\log|x-y|.$$

• System remains "critical" even for $\lambda \neq 0$.

- System remains "critical" even for $\lambda \neq 0$.
- Theorem proven with periodic boundary conditions

- System remains "critical" even for $\lambda \neq 0$.
- Theorem proven with periodic boundary conditions
- Physicists are interested also in the "electric correlator"

$$\mathcal{E}(f,f') = \langle e^{i\pi\alpha(h(f)-h(f'))} \rangle_{\Lambda,\lambda},$$

 $\alpha \in (-1,1)$. Our theorem suggests that

$$\mathcal{E}(f,f') \approx |f-f'|^{-\alpha^2 K(\lambda)/2}$$

but our control of cumulants is not good enough. Even for $\lambda=0$, proof is hard (Pinson '04, Dubedat '11).

• For $\lambda=0$, Kenyon '00 proves conformal invariance of height moments e.g.

$$g_{\mathcal{D}}(x,y) = \lim_{L \to \infty} \langle (h_x - \langle h_x \rangle_{\Lambda,0}) (h_y - \langle h_y \rangle_{\Lambda,0}) \rangle_{\Lambda,0}$$

(lattice spacing 1/L tends to zero, Λ is suitable discretization of domain $\mathcal{D}\subset\mathbb{C}$ and x,y tend to distinct points)

Challenge: proof for $\lambda \neq 0$

Analogy with the 2D Ising model

Let $\mu_{\Lambda,0}$ be the Gibbs measure of the nearest-neighbor 2D Ising model at T_c , and $\mu_{\Lambda,\lambda}$ the one with Hamiltonian perturbed by $\lambda \sum_{x,y} v(x-y) \sigma_x \sigma_y$, at its critical point $T_c(\lambda)$.

Analogy with the 2D Ising model

Let $\mu_{\Lambda,0}$ be the Gibbs measure of the nearest-neighbor 2D Ising model at T_c , and $\mu_{\Lambda,\lambda}$ the one with Hamiltonian perturbed by $\lambda \sum_{x,y} v(x-y) \sigma_x \sigma_y$, at its critical point $T_c(\lambda)$.

• The analog of dimer-dimer correlations are energy-energy correlations: if |x - x'| = |y - y'| = 1

$$\mu_{\Lambda,0}(\sigma_x\sigma_{x'};\sigma_y\sigma_{y'}) \approx |x-y|^{-2}.$$
 (1)

Greenblatt-Giuliani-Mastropietro '12: if $|\lambda| \leq \lambda_0$ and $\nu(\cdot)$ finite range, then (1) still true.

Analogy with the 2D Ising model

Let $\mu_{\Lambda,0}$ be the Gibbs measure of the nearest-neighbor 2D Ising model at T_c , and $\mu_{\Lambda,\lambda}$ the one with Hamiltonian perturbed by $\lambda \sum_{x,y} v(x-y) \sigma_x \sigma_y$, at its critical point $T_c(\lambda)$.

• The analog of dimer-dimer correlations are energy-energy correlations: if |x-x'|=|y-y'|=1

$$\mu_{\Lambda,0}(\sigma_x\sigma_{x'};\sigma_y\sigma_{y'}) \approx |x-y|^{-2}.$$
 (1)

Greenblatt-Giuliani-Mastropietro '12: if $|\lambda| \leq \lambda_0$ and $\nu(\cdot)$ finite range, then (1) still true.

• The analog of spin-spin correlations $\mu_{\Lambda,\lambda}(\sigma_x;\sigma_y)$ is the "electric correlator". Even for $\lambda=0$ hard to prove the expected $|x-y|^{-1/4}$ decay.

Non-interacting dimers: Kasteleyn theory

Partition functions and correlations given by determinants (or Pfaffians)

Define an antisymmetric $|\Lambda| \times |\Lambda|$ matrix K, indexed by lattice sites, as $K(x, x + e_1) = 1$, $K(x, x + e_2) = i$ and zero otherwise. Then,

$$\sum_{M} 1 = Pf(K)$$

with, for antisymmetric $2n \times 2n$ matrix A,

$$Pf(A) = \frac{1}{2^n n!} \sum_{\pi} (-1)^{\pi} A_{\pi(1)\pi(2)} \dots A_{\pi(2n-1)\pi(2n)}.$$

Non-interacting dimers: Kasteleyn theory

Similarly, if
$$b_1=(x_1,x_2), b_2=(x_3,x_4)$$
 are two bonds $(x_i\in\mathbb{Z}^2, |x_1-x_2|=|x_3-x_4|=1)$, then

$$\langle 1_{b_1 \in M} 1_{b_2 \in M} \rangle_{\Lambda,0} = K(b_1)K(b_2)Pf(M)$$

with M the 4 × 4 matrix with $M_{ij} = K^{-1}(x_i, x_j)$.

E.g.

$$\langle 1_{(x,x+e_1)\in M} 1_{(y,y+e_1)\in M} \rangle_{\Lambda,0}$$

= $K^{-1}(x,x+e_1)K^{-1}(y,y+e_1) - K^{-1}(x,y+e_1)K^{-1}(y,x+e_1)$

Inverse Kasteleyn matrix (or "propagator")

The inverse matrix K^{-1} can be computed explicitly, diagonalizing K:

$$\lim_{\Lambda \to \mathbb{Z}^2} K^{-1}(x, y) = \int_{[-\pi, \pi]^2} \frac{d\mathbf{k}}{(2\pi)^2} \frac{e^{-i\mathbf{k}(x - y)}}{-i\sin k_1 + \sin k_2}$$

Singularities at $(k_1, k_2) = (0, 0), (\pi, 0), (\pi, \pi), (0, \pi)$ produce $|x - y|^{-1}$ decay of K^{-1} .

Back to height fluctuations (free case)

Recall
$$h(f') - h(f) = \sum_{b \in C_{f \to f'}} \sigma_b (1_{b \in M} - 1/4)$$

One finds

$$\begin{split} &\sigma_{b}\sigma_{b'}\lim_{\Lambda\to\mathbb{Z}^{2}}\langle 1_{b\in M};1_{b'\in M}\rangle_{\Lambda,0}=A_{b,b'}+B_{b,b'}+C_{b,b'}\\ &=-\frac{1}{2\pi^{2}}\Re\Big[\Delta z_{b}\Delta z_{b'}\frac{1}{(z_{b}-z_{b'})^{2}}\Big]\\ &+Osc(z_{b},z_{b'})\frac{1}{|z_{b}-z_{b'}|^{2}}+O(|z_{b}-z_{b'}|^{-3}). \end{split}$$

Then [Kenyon-Okounkov-Sheffield '06],

$$\sum_{b \in C_{f \to f'}, b' \in C'_{f \to f'}} \mathbf{A}_{b,b'} \sim -\frac{1}{2\pi^2} \Re \int_f^{f'} \frac{dz dz'}{(z-z')^2} = \frac{1}{\pi^2} \log |f - f'|.$$

Non-interacting dimers: "lattice free fermions"

Algebraic identity: Pfaffian can be written as "Grassmann Gaussian integral"

 $\{\psi_x\}_{x\in\Lambda}$ Grassmann variables: $\psi_x\psi_y=-\psi_y\psi_x$ and $\psi_x^2=0$.

Non-interacting dimers: "lattice free fermions"

Algebraic identity: Pfaffian can be written as "Grassmann Gaussian integral"

 $\{\psi_x\}_{x\in\Lambda}$ Grassmann variables: $\psi_x\psi_y=-\psi_y\psi_x$ and $\psi_x^2=0$. All functions are polynomials: for instance,

$$e^{\psi_x} = 1 + \psi_x + \psi_x^2/2 + \dots = 1 + \psi_x$$

Non-interacting dimers: "lattice free fermions"

Algebraic identity: Pfaffian can be written as "Grassmann Gaussian integral"

 $\{\psi_x\}_{x\in\Lambda}$ Grassmann variables: $\psi_x\psi_y=-\psi_y\psi_x$ and $\psi_x^2=0$. All functions are polynomials: for instance,

$$e^{\psi_x} = 1 + \psi_x + \psi_x^2/2 + \dots = 1 + \psi_x$$

Integration rules:

$$\int \prod_{1}^{n} d\psi_{i} \; \psi_{n} \dots \psi_{1} = 1$$

and

$$\int \prod_{1}^{n} d\psi_{i} \; \psi_{k} \dots \psi_{1} = 0 \quad k < n.$$

Then,

$$Pf(K) = \int \prod_{u \in \Lambda} d\psi_u e^{-\frac{1}{2}(\psi, K\psi)}$$

and

$$\mathsf{K}^{-1}(\mathsf{x},\mathsf{y}) = \langle \psi_\mathsf{x} \psi_\mathsf{y} \rangle := \frac{1}{\mathsf{P} f(\mathsf{K})} \int \prod_{\mathsf{u} \in \Lambda} \mathsf{d} \psi_\mathsf{u} \mathsf{e}^{-\frac{1}{2}(\psi,\mathsf{K} \psi)} \psi_\mathsf{x} \psi_\mathsf{y}.$$

Also "Wick rule":

$$\langle \psi_{\mathsf{x}_1} \dots \psi_{\mathsf{x}_{2n}} \rangle = \sum_{\mathsf{pairings} \ \pi} \sigma_{\pi} \langle \psi_{\mathsf{x}_{\pi(1)}} \psi_{\mathsf{x}_{\pi(2)}} \rangle \times \dots \times \langle \psi_{\mathsf{x}_{\pi(2n-1)}} \psi_{\mathsf{x}_{\pi(2n)}} \rangle$$

Then,

$$Pf(K) = \int \prod_{u \in \Lambda} d\psi_u e^{-\frac{1}{2}(\psi, K\psi)}$$

and

$$K^{-1}(x,y) = \langle \psi_x \psi_y \rangle := \frac{1}{Pf(K)} \int \prod_{u \in \Lambda} d\psi_u e^{-\frac{1}{2}(\psi,K\psi)} \psi_x \psi_y.$$

Also "Wick rule":

$$\langle \psi_{\mathsf{X}_1} \dots \psi_{\mathsf{X}_{2n}} \rangle = \sum_{\mathsf{pairings}\ \pi} \sigma_{\pi} \langle \psi_{\mathsf{X}_{\pi(1)}} \psi_{\mathsf{X}_{\pi(2)}} \rangle \times \dots \times \langle \psi_{\mathsf{X}_{\pi(2n-1)}} \psi_{\mathsf{X}_{\pi(2n)}} \rangle$$

"Fermions" because of anticommutation, "free" because exponential of quadratic form

Interacting dimers as interacting fermions

Similarly, the partition function of the interacting model is written as

$$Z_{\Lambda,\lambda} = \frac{1}{Pf(K)} \int \prod d\psi_X \exp\left(-\frac{1}{2}(\psi, K\psi) + V(\psi)\right) \equiv \left\langle \exp(V(\psi)) \right\rangle_{\Lambda,0}$$

with

$$V(\psi) = V_4(\psi) + V_6(\psi) + \ldots,$$

and

$$V_4(\psi) = 2\alpha \sum_{\mathbf{x}} \psi_{\mathbf{x}} \psi_{\mathbf{x} + \mathbf{e}_1} \psi_{\mathbf{x} + \mathbf{e}_2} \psi_{\mathbf{x} + \mathbf{e}_1 + \mathbf{e}_2}, \qquad \alpha = \mathbf{e}^{\lambda} - 1$$

Interacting dimers as interacting fermions

Similarly, the partition function of the interacting model is written as

$$Z_{\Lambda,\lambda} = \frac{1}{Pf(K)} \int \prod d\psi_X \exp\left(-\frac{1}{2}(\psi, K\psi) + V(\psi)\right) \equiv \left\langle \exp(V(\psi)) \right\rangle_{\Lambda,0}$$

with

$$V(\psi) = V_4(\psi) + V_6(\psi) + \ldots,$$

and

$$V_4(\psi) = 2\alpha \sum_{\mathbf{x}} \psi_{\mathbf{x}} \psi_{\mathbf{x} + \mathbf{e}_1} \psi_{\mathbf{x} + \mathbf{e}_2} \psi_{\mathbf{x} + \mathbf{e}_1 + \mathbf{e}_2}, \qquad \alpha = \mathbf{e}^{\lambda} - 1$$

NB: for finite Λ , these are just exact identities, V is a polynomial (finite degree).

Dimer-dimer correlations, interacting case

If λ is small, then [see also Falco, Phys Rev E 2013]

$$\begin{split} &\sigma_b \sigma_{b'} \lim_{\Lambda \to \mathbb{Z}^2} \langle \mathbf{1}_{b \in M}; \mathbf{1}_{b' \in M} \rangle_{\Lambda, \lambda} \\ &= -\frac{K(\lambda)}{2\pi^2} \Re \Big[\Delta z_b \Delta z_{b'} \frac{1}{(z_b - z_{b'})^2} \Big] \\ &+ Osc(z_b, z_{b'}) \frac{1}{|z_b - z_{b'}|^{2+\eta(\lambda)}} + O(|z_b - z_{b'}|^{-3+O(\lambda)}). \end{split}$$

with $K(\cdot)$, $\eta(\cdot)$ analytic and K(0) = 1, $\eta(0) = 0$.

Dimer-dimer correlations, interacting case

If λ is small, then [see also Falco, Phys Rev E 2013]

$$\begin{split} &\sigma_b \sigma_{b'} \lim_{\Lambda \to \mathbb{Z}^2} \langle \mathbf{1}_{b \in M}; \mathbf{1}_{b' \in M} \rangle_{\Lambda, \lambda} \\ &= -\frac{K(\lambda)}{2\pi^2} \Re \Big[\Delta z_b \Delta z_{b'} \frac{1}{(z_b - z_{b'})^2} \Big] \\ &+ Osc(z_b, z_{b'}) \frac{1}{|z_b - z_{b'}|^{2+\eta(\lambda)}} + O(|z_b - z_{b'}|^{-3+O(\lambda)}). \end{split}$$

with $K(\cdot)$, $\eta(\cdot)$ analytic and K(0) = 1, $\eta(0) = 0$. Note:

- in the main term the critical exponent remains 2
- in the oscillating term it changes to $2 + \eta(\lambda)$ (non-universal).

Methods

The estimate heavily relies on works by Benfatto-Mastropietro on 2D interacting lattice fermions. B-M study a related model where (essentially) the denominator in the $\lambda=0$ two-point function,

$$\lim_{\Lambda \to \mathbb{Z}^2} K^{-1}(x, y) = \int_{[-\pi, \pi]^2} \frac{d\mathbf{k}}{(2\pi)^2} \frac{e^{-i\mathbf{k}(x - y)}}{-i\sin k_1 + \sin k_2},$$

is linearized around the four singularities.

Tools: constructive Quantum Field Theory

Difficulties I: a combinatorial problem

Naif approach: perturbative expansion in λ

$$\left\langle \exp(V(\psi)) \right\rangle_{\Lambda,0} = \sum_{n} \frac{1}{n!} \langle V(\psi)^n \rangle_{\Lambda,0}.$$

Each expectation is computed via Wick's rule as sum of "Feynman diagrams". However, number of pairings is at least $(n!)^2$. Not summable.

Difficulties I: a combinatorial problem

Naif approach: perturbative expansion in λ

$$\left\langle \exp(V(\psi)) \right\rangle_{\Lambda,0} = \sum_{n} \frac{1}{n!} \langle V(\psi)^n \rangle_{\Lambda,0}.$$

Each expectation is computed via Wick's rule as sum of "Feynman diagrams". However, number of pairings is at least $(n!)^2$. Not summable.

Solution: anticommutation rules \Rightarrow relative signs \Rightarrow gain a factor n! (ideas form the '80s, QFT; e.g. Gawedzki-Kupiaienen '86,...).

Difficulties II: "infrared problem"

Due to slow decay of two-point function K^{-1} , Fenynman diagrams are divergent (as $\Lambda \to \infty$).

A typical problem in Quantum Field Theory with massless fields. Constructive QFT (Benfatto, Brydges, Gallavotti, Gawedzki, Kupiainen, Rivasseau, Spencer...) provides the right tools to cure the problem:

Difficulties II: "infrared problem"

Due to slow decay of two-point function K^{-1} , Fenynman diagrams are divergent (as $\Lambda \to \infty$).

A typical problem in Quantum Field Theory with massless fields. Constructive QFT (Benfatto, Brydges, Gallavotti, Gawedzki, Kupiainen, Rivasseau, Spencer...) provides the right tools to cure the problem:

- multiscale decomposition of the "free propagator" or of the field: $\psi_x = \psi_x^{(0)} + \psi_x^{(-1)} + \psi_x^{(-2)} + \dots$;
- multiscale integration (with tree expansion) starting from short-distance scales: at each scale h, effective potential $V^{(h)}(\psi^{\leq h})$;
- flow equation for the effective coupling: $\lambda^{(h)} = \lambda^{(h+1)} + \beta(\lambda^{(h+1)}, \dots, \lambda^{(0)})$
- from B-M: vanishing of the Beta function.

Conclusions

- Proof of Gaussian behavior for the height function of non-integrable dimer models;
- Novelties:
 - match between constructive QFT methods (huge literature) and some (simple) discrete complex analysis ideas
 - control of a non-local fermionic observable (height field) in a non-integrable case

Conclusions

- Proof of Gaussian behavior for the height function of non-integrable dimer models;
- Novelties:
 - match between constructive QFT methods (huge literature) and some (simple) discrete complex analysis ideas
 - control of a non-local fermionic observable (height field) in a non-integrable case
- While critical exponent of dimer-dimer correlations is not universal, large-scale GFF behavior is;
- To be done (major difficulties):
 - get rid of periodic b.c., work with general domains (necessary to study conformal invariance).
 - control the exponential of the height function