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Perfect matchings of Z? and height function

C

f-=>f"
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Height function:

h(F) = h(f)= > op(leem —1/4)
beCy_pr
where o, = +1/ — 1 if b crossed with white on the right/left.

Crucial observation: white-to-black flux (1peps — 1/4) is
divergence-free. Important point: Z? is bipartite.



Non-interacting dimers (or uniform perfect matchings)

If A'is a large domain, e.g. the 2L x 2L square/torus, many
(= exp(cL?)) perfect matchings exist.

Call (-)a,0 the uniform measure.



Non-interacting dimers (or uniform perfect matchings)

If A'is a large domain, e.g. the 2L x 2L square/torus, many
(= exp(cL?)) perfect matchings exist.

Call (-)a,0 the uniform measure.
Observe:

e By symmetry, on the torus, (1pcp)n.0 = 1/4 for every b, so
that (h(f) — h(f"))a.0 = 0.

e Dimers do not interact (except for hard-core constraint).
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periodic b.c.)



Non-interacting dimers (or uniform perfect matchings)
Known facts:

e Dimer-dimer correlations decay slowly:
; : ~ /-2
lim (lpem;lyem)no ~ [b— b
N—72

e Height fluctuations grow logarithmically:

. 1
/\ll_,r%z Varp o(h(f) — h(f")) ~ 3 log|f—f'| as |f—f|— o0
(see Kenyon-Okounkov-Sheffield for general bipartite graphs,
periodic b.c.)

e the height field is asymptotically Gaussian: for m > 3, the mt®
cumulant of h(f) — h(f’) is

(h(F) = h(f"); mno = o Varmo(h(f) — h(f"))™?).

h

(recall: cumulants of X are zero for m > 3 iff X is Gaussian)



Interacting dimers

Associate an energy A € R to adjacent dimers:

(=

— |

IR

l.e., with N(M) the number of adjacent pairs of dimers in M,

rs— S AN(M)
A V4

)

[Alet et al., Phys. Rev. Lett 2005]



Interacting dimers

Theorem [Giuliani, Mastropietro, T. 2014] If |\| < Ao then:

e Fluctuations still grow logarithmically:

lim Vara x(h(f) — h(f")) ~ K;;\)

A—Z2

log |[f — f'|

with K(+) analytic and K(0) = 1;
e for m > 3, the m*" cumulant of h(f) — h(f') is bounded:

iuf;l)/\ll_?%z(h(f) — h(f"); myar < C(m).



Interacting dimers

e Convergence to the GFF
If |A| < Ao then convergence to Gaussian Free Field: if
¢ € C°(R?) with [g, p(x)dx = 0 then, as € — 0,

> p(ef)h(f) = ; ©(x) X (x)dx
f

with X the Gaussian Free Field of covariance

K(A)
272

log |x — y/.
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e System remains “critical” even for A # 0.



Comments

e System remains “critical” even for A # 0.

e Theorem proven with periodic boundary conditions



Comments

e System remains “critical” even for A # 0.
e Theorem proven with periodic boundary conditions

e Physicists are interested also in the “electric correlator”
(‘:(f’ f/) _ <ei7ro¢(h(f)—h(f’))>/\ N
a € (—1,1). Our theorem suggests that
E(F, ') m |f — |07k

but our control of cumulants is not good enough. Even for
A =0, proof is hard (Pinson '04, Dubedat '11).



Comments

e For A =0, Kenyon '00 proves conformal invariance of height
moments e.g.

gp(x,y) = lim {(hx — {h)no)(hy = (hy)r0)in0

(lattice spacing 1/L tends to zero, A is suitable discretization
of domain D C C and x, y tend to distinct points)

Challenge: proof for A # 0
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Let pp0 be the Gibbs measure of the nearest-neighbor 2D Ising
model at T, and pp » the one with Hamiltonian perturbed by
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Let pp0 be the Gibbs measure of the nearest-neighbor 2D Ising
model at T, and pp » the one with Hamiltonian perturbed by
A wy V(X = y)oxoy, at its critical point Tc(A).

e The analog of dimer-dimer correlations are energy-energy
correlations: if [x — x| =y —y/'| =1

pao(oxox; oyoy) & |x — y\72. (1)

Greenblatt-Giuliani-Mastropietro '12: if |A| < Mg and v(+)
finite range, then (1) still true.



Analogy with the 2D Ising model

Let pp0 be the Gibbs measure of the nearest-neighbor 2D Ising
model at T, and pp » the one with Hamiltonian perturbed by
A wy V(X = y)oxoy, at its critical point Tc(A).

e The analog of dimer-dimer correlations are energy-energy
correlations: if [x — x| =y —y/'| =1

pao(oxox; oyoy) & |x — y\72. (1)

Greenblatt-Giuliani-Mastropietro '12: if |A| < Mg and v(+)
finite range, then (1) still true.

¢ The analog of spin-spin correlations fip \(0x; o)) is the
“electric correlator”. Even for A = 0 hard to prove the
expected |x — y|~Y/* decay.



Non-interacting dimers: Kasteleyn theory

Partition functions and correlations given by determinants (or
Pfaffians)

Define an antisymmetric |A| x |A| matrix K, indexed by lattice
sites, as K(x,x + e1) = 1, K(x,x + e2) = i and zero otherwise.

Then,
> 1= Pf(K)
M

with, for antisymmetric 2n x 2n matrix A,

2”n| Ar()r(2) - - - Ax(2n—1)r(2n)-



Non-interacting dimers: Kasteleyn theory

Similarly, if by = (x1,x2), bo = (x3, x4) are two bonds (x; € Z2,
‘Xl — X2| = |X3 —X4| = 1), then
(Ibyemlpemino = K(b1)K(b2) PF(M)

with M the 4 x 4 matrix with M; = K~1(x;, x;).
Eg.

<1(X,X+e1)€M1(y,y+el)€M>/\,0
=K lox+e)K Hy,y +e) = K (x,y +e)K Hy,x +e)



Inverse Kasteleyn matrix (or “propagator”)

The inverse matrix K~1 can be computed explicitly, diagonalizing
K:

dk e kx=y)
lim K~* =
i (x.y) /[mr]2 (2m)2 —isin ky + sin kp

Singularities at (ki, k2) = (0,0), (7, 0), (7, 7), (0, 7) produce
|x — y|7! decay of K1,



Back to height fluctuations (free case)

Recall h(f') = h(f) = Ypec, , o6(Loem — 1/4)
One finds

opop lim <1b€M; 1b/€M>/\,O = Ab,b/ + Bb,b’ -+
N—7Z2

1
= ——R|AzpAzpy ———
27T2 #b22b (Zb — Zb/)2

+Osc(zp, zb/)m

Then [Kenyon-Okounkov-Sheffield '06],

1 ' dzdz 1
App ~ ——=R —_— = — f—f'|
Z b,b 52 /f (z—2) =2 og | |
beCf_,f/,b/ec;_}f,



Non-interacting dimers: “lattice free fermions”

Algebraic identity: Pfaffian can be written as “Grassmann
Gaussian integral”

{x}xen Grassmann variables: 151, = —th, 1), and 12 = 0.
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Non-interacting dimers: “lattice free fermions”

Algebraic identity: Pfaffian can be written as “Grassmann
Gaussian integral”

{x}xen Grassmann variables: 151, = —th, 1), and 12 = 0.
All functions are polynomials: for instance,

e =14+ 922+ .. =141y

Integration rules:

/lf[d¢i¢n---¢1:1

and

/Hd¢,¢k...¢1:o k < n.
1



Then,

Pf(K) :/Hdwue5<¢:’w)

ueN
and
-1 _ 1 —1(,K¥)
K (X7y) - <¢x¢y> T Pf(K) H dwue 2 wxwy-
ueN
Also “Wick rule”:
(hxg -+ Vo) = Z On <¢Xﬂ(1)wXﬁ(z)> X X <wxﬂ(zn—1)wxn(2n)>

pairings



Then,

Pf(K) :/Hdwue5<¢:’w)

ueN
and
-1 _ 1 —1(,K¥)
K (X7y) - <¢x¢y> T Pf(K) H dwue 2 wxwy-
ueN
Also “Wick rule”:
(hxg -+ Vo) = Z On <¢Xﬂ(1)wXﬁ(z)> X X <wxﬂ(zn—1)wxn(2n)>

pairings

“Fermions” because of anticommutation, “free” because
exponential of quadratic form



Interacting dimers as interacting fermions

Similarly, the partition function of the interacting model is written
as

/Hdwx exp w, Kw)+V(w)) = <e><p(V(¢))>

A0

with
V(¢) = Va(¥) + Ve(v) + ...,

and

V4(¢) =2« Z wxwx—kelwx—&-eﬂ/}x—i-el—o—ep o= e)‘ -1



Interacting dimers as interacting fermions

Similarly, the partition function of the interacting model is written
as

200 = gy | TL e (=50 k0)+v(w)) = (exp( V()

A0

with
V(¢) = Va(¥) + Ve(v) + ...,

and

V4(¢) =2« Z wxwx—kelwx—&-eﬂ/}x—i-el—o—ep o= e)‘ -1

NB: for finite A, these are just exact identities, V is a polynomial
(finite degree).



Dimer-dimer correlations, interacting case

If X is small, then [see also Falco, Phys Rev E 2013]

opop lim (Ipem; lyem)an
N—7Z2

= K(A)S}% AZ[,AZb/(]-)2
Zp — Zp

- on2
1

+OSC(Zb, Z[y)m +

with K(-), n(-) analytic and K(0) = 1,7(0) = 0.



Dimer-dimer correlations, interacting case

If X is small, then [see also Falco, Phys Rev E 2013]

opop lim (Ipem; lyem)an
N—7Z2

K(A), 1
=— R|AzpAzy ————
52 R| Az, Az, (2o — 257 )2

1

+OSC(Zb, Z[y)m +

with K(-), n(-) analytic and K(0) = 1,7(0) = 0.
Note:
e in the main term the critical exponent remains 2

e in the oscillating term it changes to 2 + n(A) (non-universal).



Methods

The estimate heavily relies on works by Benfatto-Mastropietro on
2D interacting lattice fermions. B-M study a related model where
(essentially) the denominator in the A = 0 two-point function,

dk e—ik(x—y)
lim K1 =
A () /[mf]z (2m)% —isin ky +sin kp’

is linearized around the four singularities.

Tools: constructive Quantum Field Theory



Difficulties I: a combinatorial problem

Naif approach: perturbative expansion in A

<exp( V(zb))> Z %(V(w)n”\,o-

AO

Each expectation is computed via Wick’s rule as sum of “Feynman
diagrams”. However, number of pairings is at least (n!)?. Not
summable.



Difficulties I: a combinatorial problem

Naif approach: perturbative expansion in A

(em(V()))

AO

> V) o

Each expectation is computed via Wick’s rule as sum of “Feynman
diagrams”. However, number of pairings is at least (n!)?. Not
summable.

Solution: anticommutation rules = relative signs = gain a factor
n! (ideas form the '80s, QFT; e.g. Gawedzki-Kupiaienen '86,...).



Difficulties Il: “infrared problem”

Due to slow decay of two-point function K~, Fenynman diagrams
are divergent (as A — o0).

A typical problem in Quantum Field Theory with massless fields.
Constructive QFT (Benfatto, Brydges, Gallavotti, Gawedzki,
Kupiainen, Rivasseau, Spencer...) provides the right tools to cure
the problem:



Difficulties Il: “infrared problem”

Due to slow decay of two-point function K~, Fenynman diagrams
are divergent (as A — o0).

A typical problem in Quantum Field Theory with massless fields.
Constructive QFT (Benfatto, Brydges, Gallavotti, Gawedzki,
Kupiainen, Rivasseau, Spencer...) provides the right tools to cure
the problem:
e multiscale decomposition of the “free propagator” or of the
field: ¢, = p{® + ol 4ol +
e multiscale integration (with tree expansion) starting from
short-distance scales: at each scale h, effective potential
VR (y=h);
o flow equation for the effective coupling:
B = \(h+1) o g\(hHD) A (0))

e from B-M: vanishing of the Beta function.



Conclusions

e Proof of Gaussian behavior for the height function of
non-integrable dimer models;

e Novelties:
e match between constructive QFT methods (huge literature)
and some (simple) discrete complex analysis ideas
e control of a non-local fermionic observable (height field) in a
non-integrable case



Conclusions

e Proof of Gaussian behavior for the height function of
non-integrable dimer models;
e Novelties:
e match between constructive QFT methods (huge literature)
and some (simple) discrete complex analysis ideas
e control of a non-local fermionic observable (height field) in a
non-integrable case
e While critical exponent of dimer-dimer correlations is not
universal, large-scale GFF behavior is;
e To be done (major difficulties):
e get rid of periodic b.c., work with general domains (necessary

to study conformal invariance).
e control the exponential of the height function



