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Perfect matchings of Z2 and height function
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Height function:

h(f ′)− h(f ) =
∑

b∈Cf→f ′

σb(1b∈M − 1/4)

where σb = +1/− 1 if b crossed with white on the right/left.

Crucial observation: white-to-black flux (1b∈M − 1/4) is
divergence-free. Important point: Z2 is bipartite.
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Non-interacting dimers (or uniform perfect matchings)

If Λ is a large domain, e.g. the 2L× 2L square/torus, many
(≈ exp(cL2)) perfect matchings exist.

Call 〈·〉Λ;0 the uniform measure.

Observe:

• By symmetry, on the torus, 〈1b∈M〉Λ;0 = 1/4 for every b, so
that 〈h(f )− h(f ′)〉Λ;0 = 0.

• Dimers do not interact (except for hard-core constraint).
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Non-interacting dimers (or uniform perfect matchings)
Known facts:

• Dimer-dimer correlations decay slowly:

lim
Λ→Z2

〈1b∈M ; 1b′∈M〉Λ,0 ≈ |b − b′|−2

• Height fluctuations grow logarithmically:

lim
Λ→Z2

VarΛ,0(h(f )−h(f ′)) ∼ 1

π2
log |f − f ′| as |f − f ′| → ∞

(see Kenyon-Okounkov-Sheffield for general bipartite graphs,
periodic b.c.)

• the height field is asymptotically Gaussian: for m ≥ 3, the mth

cumulant of h(f )− h(f ′) is

〈h(f )− h(f ′);m〉Λ,0 = o(VarΛ,0(h(f )− h(f ′))m/2).

(recall: cumulants of X are zero for m ≥ 3 iff X is Gaussian)
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Interacting dimers

Associate an energy λ ∈ R to adjacent dimers:

I.e., with N(M) the number of adjacent pairs of dimers in M,

〈·〉Λ,λ =

∑
M eλN(M) ·
ZΛ,λ

[Alet et al., Phys. Rev. Lett 2005]



Interacting dimers

Theorem [Giuliani, Mastropietro, T. 2014] If |λ| ≤ λ0 then:

• Fluctuations still grow logarithmically:

lim
Λ→Z2

VarΛ,λ(h(f )− h(f ′)) ∼ K (λ)

π2
log |f − f ′|

with K (·) analytic and K (0) = 1;

• for m ≥ 3, the mth cumulant of h(f )− h(f ′) is bounded:

sup
f ,f ′

lim
Λ→Z2

〈h(f )− h(f ′);m〉Λ,λ ≤ C (m).



Interacting dimers

• Convergence to the GFF
If |λ| ≤ λ0 then convergence to Gaussian Free Field: if
ϕ ∈ C∞c (R2) with

∫
R2 ϕ(x)dx = 0 then, as ε→ 0,

ε2
∑
f

ϕ(εf )h(f )⇒
∫
R2

ϕ(x)X (x)dx

with X the Gaussian Free Field of covariance

−K (λ)

2π2
log |x − y |.



Comments

• System remains “critical” even for λ 6= 0.

• Theorem proven with periodic boundary conditions

• Physicists are interested also in the “electric correlator”

E(f , f ′) = 〈e iπα(h(f )−h(f ′))〉Λ,λ,

α ∈ (−1, 1). Our theorem suggests that

E(f , f ′) ≈ |f − f ′|−α2K(λ)/2

but our control of cumulants is not good enough. Even for
λ = 0, proof is hard (Pinson ’04, Dubedat ’11).
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Comments

• For λ = 0, Kenyon ’00 proves conformal invariance of height
moments e.g.

gD(x , y) = lim
L→∞
〈(hx − 〈hx〉Λ,0)(hy − 〈hy 〉Λ,0)〉Λ,0

(lattice spacing 1/L tends to zero, Λ is suitable discretization
of domain D ⊂ C and x , y tend to distinct points)

Challenge: proof for λ 6= 0



Analogy with the 2D Ising model

Let µΛ,0 be the Gibbs measure of the nearest-neighbor 2D Ising
model at Tc , and µΛ,λ the one with Hamiltonian perturbed by
λ
∑

x ,y v(x − y)σxσy , at its critical point Tc(λ).

• The analog of dimer-dimer correlations are energy-energy
correlations: if |x − x ′| = |y − y ′| = 1

µΛ,0(σxσx ′ ;σyσy ′) ≈ |x − y |−2. (1)

Greenblatt-Giuliani-Mastropietro ’12: if |λ| ≤ λ0 and v(·)
finite range, then (1) still true.

• The analog of spin-spin correlations µΛ,λ(σx ;σy ) is the
“electric correlator”. Even for λ = 0 hard to prove the
expected |x − y |−1/4 decay.
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Non-interacting dimers: Kasteleyn theory

Partition functions and correlations given by determinants (or
Pfaffians)

Define an antisymmetric |Λ| × |Λ| matrix K , indexed by lattice
sites, as K (x , x + e1) = 1,K (x , x + e2) = i and zero otherwise.
Then, ∑

M

1 = Pf (K )

with, for antisymmetric 2n × 2n matrix A,

Pf (A) =
1

2nn!

∑
π

(−1)πAπ(1)π(2) . . .Aπ(2n−1)π(2n).



Non-interacting dimers: Kasteleyn theory

Similarly, if b1 = (x1, x2), b2 = (x3, x4) are two bonds (xi ∈ Z2,
|x1 − x2| = |x3 − x4| = 1), then

〈1b1∈M1b2∈M〉Λ,0 = K (b1)K (b2)Pf (M)

with M the 4× 4 matrix with Mij = K−1(xi , xj).

E.g.

〈1(x ,x+e1)∈M1(y ,y+e1)∈M〉Λ,0
= K−1(x , x + e1)K−1(y , y + e1)− K−1(x , y + e1)K−1(y , x + e1)



Inverse Kasteleyn matrix (or “propagator”)

The inverse matrix K−1 can be computed explicitly, diagonalizing
K :

lim
Λ→Z2

K−1(x , y) =

∫
[−π,π]2

dk

(2π)2

e−ik(x−y)

−i sin k1 + sin k2

Singularities at (k1, k2) = (0, 0), (π, 0), (π, π), (0, π) produce
|x − y |−1 decay of K−1.



Back to height fluctuations (free case)

Recall h(f ′)− h(f ) =
∑

b∈Cf→f ′
σb(1b∈M − 1/4)

One finds

σbσb′ lim
Λ→Z2

〈1b∈M ; 1b′∈M〉Λ,0 = Ab,b′ + Bb,b′ + Cb,b′

= − 1

2π2
<
[
∆zb∆zb′

1

(zb − zb′)2

]
+Osc(zb, zb′)

1

|zb − zb′ |2
+ O(|zb − zb′ |−3).

Then [Kenyon-Okounkov-Sheffield ’06],

∑
b∈Cf→f ′ ,b

′∈C ′
f→f ′

Ab,b′ ∼ −
1

2π2
<
∫ f ′

f

dzdz ′

(z − z ′)2
=

1

π2
log |f − f ′|.



Non-interacting dimers: “lattice free fermions”

Algebraic identity: Pfaffian can be written as “Grassmann
Gaussian integral”

{ψx}x∈Λ Grassmann variables: ψxψy = −ψyψx and ψ2
x = 0.

All functions are polynomials: for instance,

eψx = 1 + ψx + ψ2
x/2 + ... = 1 + ψx

Integration rules: ∫ n∏
1

dψi ψn . . . ψ1 = 1

and ∫ n∏
1

dψi ψk . . . ψ1 = 0 k < n.
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Then,

Pf (K ) =

∫ ∏
u∈Λ

dψue
− 1

2
(ψ,Kψ)

and

K−1(x , y) = 〈ψxψy 〉 :=
1

Pf (K )

∫ ∏
u∈Λ

dψue
− 1

2
(ψ,Kψ)ψxψy .

Also “Wick rule”:

〈ψx1 . . . ψx2n〉 =
∑

pairings π

σπ〈ψxπ(1)
ψxπ(2)

〉 × · · · × 〈ψxπ(2n−1)
ψxπ(2n)

〉

“Fermions” because of anticommutation, “free” because
exponential of quadratic form
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Interacting dimers as interacting fermions

Similarly, the partition function of the interacting model is written
as

ZΛ,λ =
1

Pf (K )

∫ ∏
dψx exp

(
−1

2
(ψ,Kψ)+V (ψ)

)
≡
〈

exp(V (ψ))
〉

Λ,0

with
V (ψ) = V4(ψ) + V6(ψ) + . . . ,

and

V4(ψ) = 2α
∑
x

ψxψx+e1ψx+e2ψx+e1+e2 , α = eλ − 1

NB: for finite Λ, these are just exact identities, V is a polynomial
(finite degree).
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Dimer-dimer correlations, interacting case

If λ is small, then [see also Falco, Phys Rev E 2013]

σbσb′ lim
Λ→Z2

〈1b∈M ; 1b′∈M〉Λ,λ

= −K (λ)

2π2
<
[
∆zb∆zb′

1

(zb − zb′)2

]
+Osc(zb, zb′)

1

|zb − zb′ |2+η(λ)
+ O(|zb − zb′ |−3+O(λ)).

with K (·), η(·) analytic and K (0) = 1, η(0) = 0.

Note:

• in the main term the critical exponent remains 2

• in the oscillating term it changes to 2 + η(λ) (non-universal).
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Methods

The estimate heavily relies on works by Benfatto-Mastropietro on
2D interacting lattice fermions. B-M study a related model where
(essentially) the denominator in the λ = 0 two-point function,

lim
Λ→Z2

K−1(x , y) =

∫
[−π,π]2

dk

(2π)2

e−ik(x−y)

−i sin k1 + sin k2
,

is linearized around the four singularities.

Tools: constructive Quantum Field Theory



Difficulties I: a combinatorial problem

Naif approach: perturbative expansion in λ〈
exp(V (ψ))

〉
Λ,0

=
∑
n

1

n!
〈V (ψ)n〉Λ,0.

Each expectation is computed via Wick’s rule as sum of “Feynman
diagrams”. However, number of pairings is at least (n!)2. Not
summable.

Solution: anticommutation rules ⇒ relative signs ⇒ gain a factor
n! (ideas form the ’80s, QFT; e.g. Gawedzki-Kupiaienen ’86,...).
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Difficulties II: “infrared problem”

Due to slow decay of two-point function K−1, Fenynman diagrams
are divergent (as Λ→∞).

A typical problem in Quantum Field Theory with massless fields.
Constructive QFT (Benfatto, Brydges, Gallavotti, Gawedzki,
Kupiainen, Rivasseau, Spencer...) provides the right tools to cure
the problem:

• multiscale decomposition of the “free propagator” or of the

field: ψx = ψ
(0)
x + ψ

(−1)
x + ψ

(−2)
x + . . . ;

• multiscale integration (with tree expansion) starting from
short-distance scales: at each scale h, effective potential
V (h)(ψ≤h);

• flow equation for the effective coupling:
λ(h) = λ(h+1) + β(λ(h+1), . . . , λ(0))

• from B-M: vanishing of the Beta function.
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Conclusions

• Proof of Gaussian behavior for the height function of
non-integrable dimer models;

• Novelties:
• match between constructive QFT methods (huge literature)

and some (simple) discrete complex analysis ideas
• control of a non-local fermionic observable (height field) in a

non-integrable case

• While critical exponent of dimer-dimer correlations is not
universal, large-scale GFF behavior is;

• To be done (major difficulties):
• get rid of periodic b.c., work with general domains (necessary

to study conformal invariance).
• control the exponential of the height function
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