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The notion of a motive is an elusive one, like its namesake “the motif” of 
Cezanne’s impressionist method of painting. Its existence was fi rst suggested by 
Grothendieck in 1964 as the underlying structure behind the myriad cohomology 
theories in Algebraic Geometry. We now know that there is a triangulated theory 
of motives, discovered by Vladimir Voevodsky, which suffi ces for the development 
of a satisfactory Motivic Cohomology theory. However, the existence of motives 
themselves remains conjectural.

This book provides an account of the triangulated theory of motives. Its purpose 
is to introduce Motivic Cohomology, to develop its main properties, and fi nally to 
relate it to other known invariants of algebraic varieties and rings such as Milnor 
K-theory, étale cohomology, and Chow groups. The book is divided into lectures, 
grouped in six parts. The fi rst part presents the defi nition of Motivic Cohomology, 
based upon the notion of presheaves with transfers. Some elementary comparison 
theorems are given in this part. The theory of (étale, Nisnevich, and Zariski) sheaves 
with transfers is developed in parts two, three, and six, respectively. The theoretical 
core of the book is the fourth part, presenting the triangulated category of motives. 
Finally, the comparison with higher Chow groups is developed in part fi ve.

The lecture notes format is designed for the book to be read by an advanced 
graduate student or an expert in a related fi eld. The lectures roughly correspond 
to one-hour lectures given by Voevodsky during the course he gave at the Institute 
for Advanced Study in Princeton on this subject in 1999–2000. In addition, many of 
the original proofs have been simplifi ed and improved so that this book will also 
be a useful tool for research mathematicians.
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Preface

This book was written by Carlo Mazza and Charles Weibel on the basis of the
lectures on motivic cohomology which I gave at the Institute for Advanced Study
in Princeton in 1999/2000.

From the point of view taken in these lectures, motivic cohomology with coef-
ficients in an abelian group A is a family of contravariant functors

H p,q(−,A) : Sm/k → Ab

from smooth schemes over a given field k to abelian groups, indexed by integers p
and q. The idea of motivic cohomology goes back to P. Deligne, A. Beilinson and
S. Lichtenbaum.

Most of the known and expected properties of motivic cohomology (predicted
in [ABS87] and [Lic84]) can be divided into two families. The first family concerns
properties of motivic cohomology itself – there are theorems about homotopy in-
variance, Mayer-Vietoris and Gysin long exact sequences, projective bundles, etc.
This family also contains conjectures such as the Beilinson-Soulé vanishing con-
jecture (H p,q = 0 for p < 0) and the Beilinson-Lichtenbaum conjecture, which can
be interpreted as a partial étale descent property for motivic cohomology. The sec-
ond family of properties relates motivic cohomology to other known invariants of
algebraic varieties and rings. The power of motivic cohomology as a tool for prov-
ing results in algebra and algebraic geometry lies in the interaction of the results
in these two families; applying general theorems of motivic cohomology to the
specific cases of classical invariants, one gets new results about these invariants.

The idea of these lectures was to define motivic cohomology and to give care-
ful proofs for the elementary results in the second family. In this sense they are
complementary to the study of [VSF00], where the emphasis is on the properties
of motivic cohomology itself. The structure of the proofs forces us to deal with the
main properties of motivic cohomology as well (such as homotopy invariance). As
a result, these lectures cover a considerable portion of the material of [VSF00], but
from a different point of view.

One can distinguish the following “elementary” comparison results for motivic
cohomology. Unless otherwise specified, all schemes below are assumed to be
smooth or (in the case of local or semilocal schemes) limits of smooth schemes.

vii



viii PREFACE

(1) H p,q(X ,A) = 0 for q < 0, and for a connected X one has

H p,0(X ,A) =
{

A for p = 0
0 for p �= 0;

(2) one has

H p,1(X ,Z) =


O∗(X) for p = 1
Pic(X) for p = 2
0 for p �= 1,2;

(3) for a field k, one has H p,p(Spec(k),A) = KM
p (k)⊗A where KM

p (k) is the
p-th Milnor K-group of k (see [Mil70]);

(4) for a strictly Hensel local scheme S over k and an integer n prime to
char(k), one has

H p,q(S,Z/n) =
{

µ⊗q
n (S) for p = 0

0 for p �= 0

where µn(S) is the groups of n-th roots of unity in S;
(5) one has H p,q(X ,A) = CHq(X ,2q− p;A). Here CHi(X , j;A) denotes the

higher Chow groups of X introduced by S. Bloch in [Blo86], [Blo94]. In
particular,

H2q,q(X ,A) = CHq(X)⊗A,

where CHq(X) is the classical Chow group of cycles of codimension q
modulo rational equivalence.

The isomorphism between motivic cohomology and higher Chow groups leads to
connections between motivic cohomology and algebraic K-theory, but we do not
discuss these connections in the present lectures. See [Blo94], [BL94], [FS02],
[Lev98] and [SV00].

Deeper comparison results include the theorem of M. Levine comparing
CHi(X , j;Q) with the graded pieces of the gamma filtration in K∗(X)⊗Q [Lev94],
and the construction of the spectral sequence relating motivic cohomology and al-
gebraic K-theory for arbitrary coefficients in [BL94] and [FS02].

The lectures in this book may be divided into two parts, corresponding to the
fall and spring terms. The fall term lectures contain the definition of motivic co-
homology and the proofs for all of the comparison results listed above except the
last one. The spring term lectures include more advanced results in the theory of
sheaves with transfers and the proof of the final comparison result (5).

The definition of motivic cohomology used here goes back to the work of An-
drei Suslin in about 1985. As I understand it, when he came up with this definition
he was able to prove the first three of the comparison results stated above. In par-
ticular, the proof of comparison (3) between motivic cohomology and Milnor’s
K-groups given in these lectures is exactly Suslin’s original proof. The proofs of
the last two comparison results, (4) and (5), are also based on results of Suslin.
Suslin’s formulation of the Rigidity Theorem ([Sus83]; see theorem 7.20) is a key
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result needed for the proof of (4), and Suslin’s moving lemma (theorem 18A.1
below) is a key result needed for the proof of (5).

It took ten years and two main new ideas to finish the proofs of the compar-
isons (4) and (5). The first one, which originated in the context of the q f h-topology
and was later transferred to sheaves with transfers (definition 2.1), is that the sheaf
of finite cycles Ztr(X) is the free object generated by X . This idea led to a group
of results, the most important of which is lemma 6.23. The second idea, which is
the main result of [CohTh], is represented here by theorem 13.8. Taken together
they allow one to efficiently do homotopy theory in the category of sheaves with
transfers.

A considerable part of the first half of the lectures is occupied by the proof of
(4). Instead of stating it in the form used above, we prove a more detailed theorem.
For a given weight q, the motivic cohomology groups H p,q(X ,A) are defined as
the hypercohomology (in the Zariski topology) of X with coefficients in a complex
of sheaves A(q)|XZar . This complex is the restriction to the small Zariski site of X
(i.e., the category of open subsets of X) of a complex A(q) defined on the site of all
smooth schemes over k with the Zariski and even the étale topology. Restricting
A(q) to the small étale site of X , we may consider the étale version of motivic
cohomology,

H p,q
L (X ,A) := Hp

ét(X ,A(q)|Xét ).
The subscript L is in honor of Steve Lichtenbaum, who first envisioned this con-
struction in [Lic94].

Theorem 10.2 asserts that the étale motivic cohomology of any X with coeffi-
cients in Z/n(q) where n is prime to char(k) are isomorphic to H p

ét(X ,µ⊗q
n ). This

implies comparison result (4), since the Zariski and the étale motivic cohomol-
ogy of a strictly Hensel local scheme X agree. There should also be an analog of
(4) for the case of Z/�r coefficients where � = char(k), involving the logarithmic
de Rham-Witt sheaves νq

r [−q], but I do not know much about it. We refer the
reader to [GL00] for more information.

Vladimir Voevodsky
Institute for Advanced Study

May 2001





Introduction

This book is divided into six main parts. The first part (lectures 1–5) presents
the definitions and the first three comparison results. The second part (lectures 6–
10) presents the étale version of the theory, focussing on coefficients, 1/m ∈ k. As
Suslin’s Rigidity Theorem 7.20 demonstrates, a key role is played by locally con-
stant étale sheaves such as µ⊗i

m , which are quasi-isomorphic to the motivic Z/m(i)
by theorem 10.3. The tensor triangulated category DM−

ét(k,Z/m) of étale motives
is constructed in lecture 9 and shown to be equivalent to the derived category of
discrete Z/m-modules over the Galois group G = Gal(ksep/k) in theorem 9.35.

The first main goal of the lecture notes, carried out in lectures 11–16, is to in-
troduce the tensor triangulated category DMeff,−

Nis (k,R) of effective motives and its
subcategory of effective geometric motives DMeff

gm. The motive M(X) of a scheme

X is an object of DMeff,−
Nis (k,R), and belongs to DMeff

gm if X is smooth. This re-
quires an understanding of the cohomological properties of sheaves associated with
homotopy invariant presheaves with transfers for the Zariski, Nisnevich and cdh
topologies. This is addressed in the third part (lectures 11–13). Lecture 11 intro-
duces the technical notion of a standard triple, and uses it to prove that homotopy
invariant presheaves with transfers satisfy a Zariski purity property. Lecture 12
introduces the Nisnevich and cdh topologies, and lecture 13 considers Nisnevich
sheaves with transfers and their associated cdh sheaves.

A crucial role in this development is played by theorem 13.8: if F is a homo-
topy invariant presheaf with transfers, and k is a perfect field, then the associated
Nisnevich sheaf FNis is homotopy invariant, and so is its cohomology. For reasons
of exposition, the proof of this result is postponed and occupies lectures 21 to 24.

In the fourth part (lectures 14–16) we introduce the categories DMeff,−
Nis (k,R)

and DMeff
gm. The main properties of these categories — homotopy, Mayer-Vietoris,

projective bundle decomposition, blow-up triangles, Gysin sequence, the Cancella-
tion Theorem, and the connection with Chow motives — are summarized in 14.5.
We also show (in 15.9) that the product on motivic cohomology (defined in 3.12)
is graded-commutative and in agreement (for coefficients Q) with the étale theory
presented in lectures 9 and 10 (see 14.30).

Lecture 16 introduces equidimensional algebraic cycles. These are used
to construct the Suslin-Friedlander motivic complexes ZSF(i), which are quasi-
isomorphic to the motivic complexes Z(i); this requires the field to be perfect (see
16.7). They are also used to define motives with compact support Mc(X). The basic

xi



xii INTRODUCTION

theory with compact support complements the theory presented in lecture 14; this
requires the field to admit resolution of singularities. This lecture concludes with
the use of Friedlander-Voevodsky duality (see 16.24) to establish the Cancellation
Theorem 16.25; this lets us embed effective motives into the triangulated category
of all motives.

The second main goal of this book is to establish the final comparison (theorem
19.1) with Bloch’s higher Chow groups: for any smooth separated scheme X over
a perfect field k, we have

H p,q(X ,Z) ∼= CHq(X ,2q− p).

This is carried out in the fifth part (lectures 17–19). In lecture 17, we introduce
Bloch’s higher Chow groups and show (in 17.21) that they are presheaves with
transfers over any field. Suslin’s comparison (18.3) of higher Chow groups with
equidimensional cycle groups over any affine scheme is given in lecture 18, and
the link between equidimensional cycle groups and motivic cohomology is given
in lecture 19.

We briefly revisit the triangulated category DMgm of geometric motives in lec-
ture 20. We work over a perfect field which admits resolution of singularities. First
we embed Grothendieck’s classic category of Chow motives as a full subcategory.
We then construct the dual of any geometric motive and use it to define internal
Hom objects Hom(X ,Y ). The lecture culminates in theorem 20.17, which states
that this structure makes DMgm a rigid tensor category.

The final part (lectures 21–24) is dedicated to the proof of theorem 13.8. Using
technical results from lecture 21, we prove (in 22.3) that FNis is homotopy invariant.
The proof that its cohomology is homotopy invariant (24.1) is given in lecture 24.
We conclude with a proof that the sheaf FNis admits a “Gersten” resolution.

During the writing of the book, we received many suggestions and comments
from the mathematical community. One popular suggestion was that we include
some of the more well known and useful properties of motives that were missing
from the original lectures, in order to make the exposition of the theory more com-
plete. For this reason, a substantial amount of material has been added to lectures
12–14, 16 and 20. Another suggestion was that we warn the reader that the ex-
ercises vary in difficulty and content, from the concrete to the abstract; some are
learning exercises and some augment the ideas presented in the text.

In Figure 1 we give a rough bird’s eye view of the structure of the book and how
the various lectures depend upon each other. Lectures 1 and 2 are missing from the
figure because they are prerequisites for all other lectures. We split lecture 13 into
two parts to clarify that the results in the second half of the lecture crucially depend
on theorem 13.8, which is proven in lecture 24. The dependency chart (and this
Introduction) should serve as a guide to the reader.
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FIGURE 1. Dependency graph of the lectures
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LECTURE 1

The category of finite correspondences

In this lecture we shall define the additive category Cork of finite correspon-
dences over a field k. The objects of Cork will be the smooth separated schemes
(of finite type) over k. The morphisms in Cork from X to Y will be the finite corre-
spondences, which are special kinds of cycles in X ×Y . Composition is defined so
that Cork contains the category Sm/k of smooth separated schemes over k.

By convention, all schemes will be separated, and defined over k. Although
smooth schemes always have finite type over k [EGA4, 17.3.1], we will some-
times refer to local and even semilocal schemes as being smooth; by this we mean
that they are the local (resp., semilocal) schemes associated to points on a smooth
scheme.

Our point of view will be that a cycle in a scheme T is a formal Z-linear
combination of irreducible closed subsets of T . Each irreducible closed subset W
is the support of its associated integral subscheme W̃ so W and W̃ determine each
other. Thus we can ascribe some algebraic properties to W . We say that W is finite
along a morphism T → S if the restriction W̃ → S is a finite morphism. A cycle
∑niWi is said to be finite along a morphism if each Wi is finite.

DEFINITION 1.1. If X is a smooth connected scheme over k, and Y is any
(separated) scheme over k, an elementary correspondence from X to Y is an irre-
ducible closed subset W of X ×Y whose associated integral subscheme is finite and
surjective over X . By an elementary correspondence from a non-connected scheme
X to Y , we mean an elementary correspondence from a connected component of X
to Y .

The group Cor(X ,Y ) is the free abelian group generated by the elementary
correspondences from X to Y . The elements of Cor(X ,Y ) are called finite corre-
spondences.

If X is not connected and X =� Xi is the decomposition into its connected
components, our definition implies that Cor(X ,Y ) = ⊕iCor(Xi,Y ).

EXAMPLE 1.2. Let f : X → Y be a morphism in Sm/k. If X is connected, the
graph Γ f of f is an elementary correspondence from X to Y . If X is not connected,
the sum of the components of Γ f is a finite correspondence from X to Y . Indeed
the projection Γ f → X is an isomorphism, and Γ f is closed because Y is separated
over k.

3



4 1. THE CATEGORY OF FINITE CORRESPONDENCES

The graph Γ1 of the identity on X is the support of the diagonal ∆(X)⊂ X ×X .
We write idX for the finite correspondence Γ1 from X to itself. It is the identity
element of Cor(X ,X) for the composition product. Note that idX is an elementary
correspondence when X is integral.

If X is connected, Y is smooth and f : X → Y is finite and surjective, the
transpose of Γ f in Y ×X is a finite correspondence from Y to X . This is a useful
construction; see exercise 1.11 below for one application.

CONSTRUCTION 1.3. Every subscheme Z of X ×Y which is finite and surjec-
tive over X determines a finite correspondence [Z] from X to Y .

PROOF. If Z is integral then its support [Z] is by definition an elementary cor-
respondence. In general we associate to Z the finite correspondence ∑niWi, where
the Wi are the irreducible components of the support of Z which are surjective over
a component of X and ni is the geometric multiplicity of Wi in Z, i.e., the length of
the local ring of Z at Wi (see [Ser65] or [Ful84]). �

We now define an associative and bilinear composition for finite correspon-
dences between smooth schemes. For this, it suffices to define the composition
W ◦V of elementary correspondences V ∈Cor(X ,Y ) and W ∈Cor(Y,Z). Our def-
inition will use the push-forward of a finite cycle.

Let p : T → S be any morphism. If W is an irreducible closed subset of T
finite along p, the image V = p(W ) is a closed irreducible subset of S and d =
[k(W ) : k(V )] is finite. In this case we define the push-forward of the cycle W
along p to be the cycle p∗W = d ·V ; see [Ful84]. By additivity we may define the
push-forward of any cycle which is finite along p.

LEMMA 1.4. Suppose that f : T → T ′ is a morphism of separated schemes of
finite type over a Noetherian base S. Let W be an irreducible closed subset of T
which is finite over S. Then f (W ) is closed and irreducible in T ′ and finite over S.
If W is finite and surjective over S, then so is f (W ).

PROOF. By Ex.II.4.4 of [Har77], f (W ) is closed in T ′ and proper over S.
Since f (W ) has finite fibers over S, it is finite over S by [EGA3, 4.4.2]. If W → S
is surjective, so is f (W ) → S. �

Given elementary correspondences V ∈ Cor(X ,Y ) and W ∈ Cor(Y,Z), form
the intersection product [T ] = (V × Z) · (X ×W ) of the corresponding cycles in
X ×Y ×Z. (The intersection product is defined in [Ser65] and [Ful84]; see 17A.1.)

The composition W ◦V of V and W is defined to be the push-forward of the
finite correspondence [T ], along the projection p : X ×Y ×Z → X ×Z; see [Ful84].
By lemma 1.7 below, the cycle [T ] is finite over X×Z. Thus the push-forward p∗[T ]
is defined; it is a finite correspondence from X to Z by lemma 1.4.

We can easily check that idX is the identity of Cor(X ,X), and that the composi-
tion of finite correspondences is associative and bilinear (see [Man68] and [Ful84,
16.1]).
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DEFINITION 1.5. Let Cork be the category whose objects are the smooth sepa-
rated schemes of finite type over k and whose morphisms from X to Y are elements
of Cor(X ,Y ). It follows from the above remarks that Cork is an additive category
with /0 as the zero object, and disjoint union as coproduct.

LEMMA 1.6. Let Z be an integral scheme, finite and surjective over a normal
scheme S. Then for every morphism T → S with T connected, every component of
T ×S Z is finite and surjective over T .

PROOF. See [EGA4, 14.4.4]. �

Recall that two irreducible closed subsets Z1 and Z2 of a smooth scheme are
said to intersect properly if Z1 ∩Z2 = /0 or codim(Z1∩Z2) = codimZ1 +codimZ2.

LEMMA 1.7. Let V ⊂ X ×Y and W ⊂ Y × Z be irreducible closed subsets
which are finite and surjective over X and Y respectively. Then V ×Z and X ×W
intersect properly, and each component of the push-forward of the cycle [T ] of
T = (V ×Z)∩ (X ×W ) is finite and surjective over X.

PROOF. Let Ṽ and W̃ be the underlying integral subschemes associated to V
and W respectively. Without loss of generality we can suppose both X and Y con-
nected. We form the pullback of Ṽ and W̃ .

Ṽ ×Y W̃ � W̃ � Z

Ṽ
�

� Y

f.surj.
�

X

f.surj.
�

By 1.6, each component of Ṽ ×Y W̃ is finite and surjective over Ṽ and therefore over
X too. The image T of the evident map Ṽ ×Y W̃ → X ×Y ×Z is the intersection
of Ṽ × Z and X̃ ×W . Thus each irreducible component Ti of T is the image of
an irreducible component of Ṽ ×Y W̃ . By 1.4, we know that each Ti is finite and
surjective over X . Therefore dimTi = dimX for all i, i.e., Ṽ ×Z and X ×W̃ intersect
properly.

Let p(Ti) denote the image of Ti under the map p : X ×Y ×Z → X ×Z. By
lemma 1.4, each p(Ti) is an irreducible closed subscheme of X ×Z which is finite
and surjective over X . Since the components of p∗[T ] are the supports of the p(Ti),
we are done. �

REMARK 1.8. It is possible to extend the definition of finite correspondences
to correspondences between singular schemes. This uses the category CorS, where
S is a Noetherian scheme; see [RelCh]. Since we use only smooth schemes in these
lectures, we describe this more general definition in the appendix of this lecture.



6 1. THE CATEGORY OF FINITE CORRESPONDENCES

The additive category Cork is closely related to the category Sm/k of smooth
schemes over k. Indeed, these categories have the same objects, and it is a routine
computation (exercise!) to check that Γg◦Γ f equals Γg◦ f . That is, there is a faithful
functor Sm/k →Cork, defined by:

X �→ X ( f : X → Y ) �→ Γ f .

The tensor product is another important feature of the category Cork.

DEFINITION 1.9. If X and Y are two objects in Cork, their tensor product
X ⊗Y is defined to be the product of the underlying schemes over k:

X ⊗Y = X ×Y.

If V and W are elementary correspondences from X to X ′ and from Y to Y ′, then
the cycle associated to the subscheme V ×W by 1.3 gives a finite correspondence
from X ⊗Y to X ′ ⊗Y ′.

It is easy to verify that ⊗ makes Cork a symmetric monoidal category (see
[Mac71]).

EXERCISE 1.10. If S = Speck then Cork(S,X) is the group of zero-cycles in
X . If W is a finite correspondence from A1 to X , and s, t : Speck →A1 are k-points,
show that the zero-cycles W ◦Γs and W ◦Γt are rationally equivalent (cf. [Ful84,
1.6]).

EXERCISE 1.11. Let x be a closed point on X , considered as a correspondence
from S = Spec(k) to X . Show that the composition S → X → S is multiplication by
the degree [k(x) : k], and that X → S → X is given by X × x ⊂ X ×X .

Let L/k be a finite Galois extension with Galois group G and T = Spec(L).
Prove that Cork(T,T ) ∼= Z[G] and that T → S → T is ∑g∈G g ∈ Z[G]. Then show
that Cork(S,Y ) ∼= Cork(T,Y )G for every Y .

EXERCISE 1.12. If k ⊂ F is a field extension, there is an additive functor
Cork → CorF sending X to XF . If F is finite and separable over k, there is an
additive functor CorF → Cork sending U to U . These are adjoint: if U is smooth
over F and X is smooth over k, there is a canonical identification:

CorF(U,XF) = Cork(U,X).

EXERCISE 1.13. (a) Let F be a field extension of k and X and Y two smooth
schemes over k. Writing XF for X ×Speck SpecF and so on, show that CorF(XF ,YF)
is the limit of the CorE(XE ,YE) as E ranges over all finitely generated field exten-
sions of k contained in F .

(b) Let X → S → Spec(k) be smooth morphisms, with S connected, and let
F denote the function field of S. For every smooth scheme Y over k, show that
CorF(X ×S SpecF,Y ×k SpecF) is the direct limit of the Cork(X ×S U,Y ) as U
ranges over all nonempty open subschemes of S. In the special case X = S, this
shows that CorF(SpecF,Y ×k SpecF) = lim−→Cork(U,Y ).

(c) Show that (a) and (b) remain valid if Y is any scheme over k, using definition
1.1 of Cork(X ,Y ).



APPENDIX 1A

The category CorS

It is possible to generalize the notion of finite correspondence to construct a
category CorS, associated to any Noetherian scheme S; see [RelCh]. The objects of
this category are the schemes of finite type over S; the morphisms are the elements
of an abelian group CorS(X ,Y ) whose elements are the cycles W on X ×S Y which
are “universally integral relative to X”, and each of whose components are finite
and surjective over X .

Universally integral cycles are defined in 1A.9 below as those cycles for
which the pullback is always defined, and has integer coefficients. This condi-
tion is needed because, in order to compose an elementary correspondence V in
CorS(X ,Y ) with a correspondence W in CorS(Y,Z), we must form the pullback WV

of W along V → Y to get a cycle on V ×S Z ⊂ X ×S Y ×S Z (see 1A.11).
Relabeling, we are reduced to the following basic setup for pulling back cycles.

We are given a cycle W on X , a structure map X → S and a map V → S. The
problem is to define a pullback cycle WV on X ×S V in a natural way. This is easy if
V is flat over S (see [Ful84, 1.7]), but in general the problem is quite difficult even
for V = SpecK.

WV ⊂ X ×S V � V

W ⊂ X
�

� S
�

The general pullback is modelled on the pullback of flat cycles. If W is an
irreducible cycle on X which is flat over S, we define the pullback s∗(W ) along
s : Spec(K) → S to be the cycle on Xs defined by Ws = W ×S Spec(K).

EXAMPLE 1A.1. Let W be an irreducible cycle on X . By “platification”
[RG71, 5.2], there is a proper birational map T → S such that the proper trans-
form W̃ of W is flat over T . Given a point s0 : Spec(k0) → S, choose a finite field
extension field k1 of k0 such that s1 : Spec(k1)→ S has a lift t : Spec(k1)→ T ; then
the flat pullback t∗(W̃ ) is a candidate for the pullback s∗1(W ).

There are two problems with this candidate: it may depend upon the choice of
T and t (as in example 1A.4), and if k0 �= k1 we need to descend from the cycle

7
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t∗(W̃ ) on Xk1 to a cycle on Xk0 (as in example 1A.7).

Speck1
t � T � flat

W̃

Speck0

�

s0

�
s1

�

S

�

� W

One way to attack the first problem is to restrict our attention to “relative cy-
cles,” defined in 1A.5 using the notion of pullback along a fat point of S. This
approach was introduced in [RelCh], using discrete valuation rings (DVRs). Re-
call that if K is a field, a K-point of S (or point) is a morphism SpecK → S.

DEFINITION 1A.2. A fat point s of S is a DVR D, a field K and morphisms

SpecK
s0� SpecD

s1� S,

so that the closed point of SpecK goes to the closed point of SpecD and the generic
point SpecF of SpecD goes to a generic point of S. We say that the fat point
s = (s0,s1) lies over the underlying K-point SpecK → S.

Every point s in a Noetherian scheme S has a fat point lying over it in the sense
that there is a field extension k(s) ⊂ K and a fat point over SpecK → S. That is,
if s lies over a generic point s′ of S, then there is a DVR D and a map SpecD → S
sending the closed point (resp., generic point) of SpecD to s (resp., to s′); see
[EGA1, 0I .6.5.8] or [Har77, II.4.11]. The following trick now lets us take the
pullback of cycles to SpecD.

THEOREM 1A.3. Let D be a DVR with field of fractions F. If X is a scheme
of finite type over D and WF is closed in the generic fiber XF then there exists a
unique closed subscheme WD of WF in X which is flat over SpecD.

PROOF. Locally X has coordinate ring A, XF has coordinate ring A⊗D F , and
WF has coordinate ring (A⊗D F)/( f1, . . . , fn), where fi ∈ A for every i = 1, . . . ,n.
Let R0 be A/( f1, . . . , fn) and let R be R0/I where I is the torsion submodule of
the D-module R0. Is is easy to see that R is independent of the choice of the fi’s.
Locally WD is SpecR. �

We can now define the pullback along a fat point s of S over a K-point s. Given
a closed subscheme W in X , we may form the (classical) flat pullback WF along
SpecF → S, and consider the closed subscheme WD of WF flat over SpecD as in
1A.3. The pullback s∗(W ) of W is defined to be the cycle [WK] on XK associated to
the fiber WK of the scheme WD over the closed point SpecK of SpecD.

Since the pullback s∗(W ) is a cycle on Xs = X ×S Spec(K), it is a candidate
for the pullback of W along s. However, two fat points over the same K-point may
give two distinct candidates, as the following example shows.
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EXAMPLE 1A.4. Let S be the node over a field k and X its normalization.
There are two fat points over the singular point s ∈ S, corresponding to the two
k-points of Xs = {p0, p1}. The pullbacks of W = X along these fat points are [p0]
and [p1], respectively.

In order to have a useful pullback, we need to get rid of the dependence on the
choice of the fat point. The following definition is taken from [RelCh, 3.1.3].

DEFINITION 1A.5. Let W = ∑niWi be a cycle on X . We say that W is domi-
nant over S if each term Wi of W is dominant over a component of S. We say that a
dominant cycle W is a relative cycle on X over S if its pullbacks s∗(W ) and t∗(W )
coincide for any pair s, t of fat points over a common K-point s. We will write
s∗(W ) for this pullback cycle on Xs.

For example, any dominant cycle W which is flat and equidimensional over S
is a relative cycle, because the pullback s∗(W ) coincides with the classical pullback
of a cycle along the K-point. This follows easily from the observation that since
WD is W ×S SpecD, we have WK = W ×S SpecK.

We write Cycl(X/S,r) for the free abelian group of the relative cycles W on X
over S such that each component has dimension r over S. It turns out that every ef-
fective relative cycle in Cycl(X/S,r) must be equidimensional over S; see [RelCh,
3.1.7]. If S is normal, the following result shows that this is also a sufficient condi-
tion for being a relative cycle; it is proven in [RelCh, 3.4.2].

THEOREM 1A.6. If S is normal or geometrically unibranch, and W is a cycle
on X which is dominant equidimensional over S, then W is a relative cycle.

The use of relative cycles solves the first problem raised in the situation of
example 1A.1. Given a relative cycle W , find a proper birational map T → S as
in 1A.1 so that the components of W have flat proper transforms in XT . By the
Valuative Criterion for Properness, fat points s of S are in 1–1 correspondence with
fat points t of T . Given any pair of liftings t ′, t ′′ : Spec(k1) → T of a k1-point
s1 on S, we can find fat points s′ and s′′ of S over a field extension η : k1 → K
whose lifts to T factor through t ′ and t ′′. Since W is a relative cycle, we see that
η∗t ′∗(W̃ ) = (s′)∗(W ) and η∗t ′′∗(W̃ ) = (s′′)∗(W ) agree as cycles on XK . Since η∗

is an injection, we get t ′∗(W̃ ) = t ′′∗(W̃ ).

Speck1

t ′ �

t ′′
� T � W̃

SpecK

η
�

s′ �

s′′
� S

�
�

s1

�

W

Now that we have a good definition for the pullback of a relative cycle along a
k1-point s1 : Speck1 → S which lifts to a k1-point t of T , we need to solve the second
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problem raised in 1A.1, descending from s∗1(W ) to the pullback s∗(W ) along any
Zariski point s : Spec(k0) → S.

If k1 is separable over k0, elementary Galois theory allows us to descend from
the cycle t∗(W̃ ) on Xk1 to a cycle on Xk0 , which is the desired pullback s∗(W ). More
precisely, we may assume that i : k0 → k1 is a Galois extension with Galois group
G, in which case every G-invariant cycle on Xk1 comes from a unique cycle on Xk0 .
Since t∗(W̃ ) is G-invariant, there is a unique cycle, which we call s∗(W ), such that
t∗(W̃ ) = i∗(s∗(W )).

However, it may be that the fields k(t) are inseparable over k(s) for every point
t of T over s. To fix this, it turns out that we need to invert the characteristic p of
k(s) (see 1A.7 below). Fixing s and t, let K denote the maximal purely inseparable
extension of k(s) in k(t); by the preceding paragraph, t∗(W̃ ) descends to a unique
cycle Z′ on XK . Since the index [K : k(s)] is a power of p, and elementary field the-
ory shows that [K : k(s)]Z comes from a unique cycle Z on Xs, we write s∗(W ) for
the cycle Z/[K : k(s)]. This completes the solution of the second problem referred
to in 1A.1.

Speck(t)
t � T � W̃

SpecK
p.insep

�

sep.

�
Speck(s)

� s � S
�
� W

EXAMPLE 1A.7. Let K be a purely inseparable extension of k with [K : k] =
p and set W = X = Spec(K[t]). Let S = SpecA, where A ⊂ K[t] is the ring of
polynomials f (t) where f (0) ∈ k. If s : Spec(k) → S is the origin, and the K-point
s1 of S lies over s, then using the fat point with D = K[[t]] we have s∗1(W ) = [s1] on
XK . It follows that s∗(W ) = [s]/p as a cycle on Xk = Spec(K).

Even if X is smooth and S is normal, there can be a relative cycle W for which
the coefficient 1/p occurs in its pullbacks s∗(W ). An example, due to Merkurjev,
is given in Example 3.5.10 in [RelCh].

THEOREM 1A.8. Let W be a relative cycle on X over a Noetherian scheme S.
For each map f : T → S, there exists a unique and well-defined relative cycle WT of
X ×S T over T , whose coefficients may lie in Z[1/p] in characteristic p, satisfying
the following condition: for every point t of T , the pullback t∗(W ) to Xt agrees with
the pullback f (t)∗(W ). The relative cycle WT is called the pullback of W.

PROOF. For each generic point t of T, consider the pullback cycles t∗(W ) =
∑ntiZ′

t,i on Xt constructed above. Let Zt,i denote the closure of Z′
t,i in X ×S T .

Then WT = ∑t,i ntiZt,i is the desired cycle on X ×S T over T. The verification is
straightforward but lengthy, and is given in [RelCh, 3.3]. �

DEFINITION 1A.9. A relative cycle W is called universally integral when its
pullbacks WT always have integer coefficients; see [RelCh, 3.3.9].

We define c(X/S,0) to be the free abelian group on the universally inte-
gral relative cycles of X which are finite and surjective over S. Finally we set
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CorS(X ,Y ) = c(X ×S Y/X ,0). That is, CorS(X ,Y ) is the group of universally inte-
gral cycles on X ×S Y whose support is finite over X (i.e., proper over X of relative
dimension 0).

In [RelCh] the notation z(X/S,0) was used for the subgroup of Cycl(X/S,0)
generated by universally integral cycles, and the notation c(X/S,0) was introduced
for the subgroup generated by the proper cycles in z(X/S,0).

The following theorem was proved in [RelCh, 3.3.15] and [RelCh, 3.4.8].

THEOREM 1A.10. Any relative cycle of X over S is universally integral pro-
vided that either

(1) S is regular, or
(2) X is a smooth curve over S.

DEFINITION 1A.11. The composition of relative cycles V ∈ CorS(X ,Y ) and
W ∈ CorS(Y,Z) is defined as follows. Form the pullback WV of W with respect
to the map V → Y , as in 1A.8. The composition W ◦V is defined to be the push-
forward of WV along the projection p : X ×Y ×Z → X ×Z. By [RelCh, 3.7.5], the
composition will be a universally integral cycle which is finite and surjective over
X .

In the special case when V is the graph of f : X → Y , we see that W ◦V is just
the pullback WX of 1A.8. That is, CorS(Y,Z) →CorS(X ,Z) is W �→WX .

EXAMPLE 1A.12. By definition, c(X/S,0) = CorS(S,X). If S and X are
smooth over a field k, then clearly CorS(S,X)⊆Cork(S,X) via the embedding of X
in S×X . Hence, for every map S′ → S, there is a map c(X/S,0)→ c(X ×S S′/S′,0)
induced by composition in Cork.

c(X/S,0) ⊂ � Cork(S,X)

c(X ×S S′/S′,0)
�

........
⊂� Cork(S′,X)

�

EXAMPLE 1A.13. If S = Speck for a field k and X and Y are smooth over S,
then the group CorS(X ,Y ) = c(X ×Y/X ,0) agrees with the group Cork(X ,Y ) of
definition 1.1.

To see this, note that c(X ×Y/X ,0) ⊆ Cork(X ,Y ) by definition. By 1A.6 and
1A.10, every cycle in X ×Y which is finite and surjective over X is a universally
integral relative cycle, so we have equality.

Since composition in CorS (as defined in 1A.11) evidently agrees with compo-
sition in Cork, we see that Cork is just the restriction of CorS to Sm/k.

EXAMPLE 1A.14. Suppose that V ⊂ S is a closed immersion of regular
schemes and let W be an equidimensional cycle on a scheme X of finite type over
S. It it shown in [RelCh, 3.5.8] that the pullback cycle WV coincides with the im-
age of W under the pullback homomorphism for the map V ×S X → X as defined
in [Ser65] and [Ful84], using an alternating sum of Tor terms.





LECTURE 2

Presheaves with transfers

In order to define motivic cohomology we need to introduce the notion of
a presheaf with transfers. In this lecture we develop the basic properties of
presheaves with transfers.

DEFINITION 2.1. A presheaf with transfers is a contravariant additive func-
tor F : Cork → Ab. We will write PreSh(Cork), or PST(k) or PST if the field is
understood, for the functor category whose objects are presheaves with transfers
and whose morphisms are natural transformations.

By additivity, there is a pairing Cork(X ,Y )⊗F(Y ) → F(X) for all F , X and
Y .

Restricting to the subcategory Sm/k of Cork, we see that a presheaf with trans-
fers F may be regarded as a presheaf of abelian groups on Sm/k which is equipped
with extra “transfer” maps F(Y ) → F(X) indexed by finite correspondences from
X to Y .

EXAMPLE 2.2. Every constant presheaf A on Sm/k may be regarded as a
presheaf with transfers. If W is an elementary correspondence from X to Y (both
connected), the homomorphism A → A defined by W is multiplication by the de-
gree of W over X .

The following theorem is a special case of a well known result on functor
categories, see [Wei94] 1.6.4 and Exercises 2.3.7 and 2.3.8.

THEOREM 2.3. The category PST(k) is abelian and has enough injectives and
projectives.

EXAMPLE 2.4. The sheaf O∗ of global units and the sheaf O of global func-
tions are two examples of presheaves with transfers.

Recall first that if X is normal and W → X is finite and surjective then there is a
norm map N : O∗(W ) → O∗(X) induced from the usual norm map on the function
fields, k(W )∗ → k(X)∗. Indeed, if f ∈ O∗(W ) then N f and N f−1 are both in the
integrally closed subring O(X) of k(X).

Similarly, there is a trace map Tr : O(W )→O(X) induced from the usual trace
map on the function fields, k(W ) → k(X). Indeed, if f ∈ O(W ) then Tr f belongs
to the integrally closed subring O(X) of k(X).

13
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If W ⊂ X ×Y is an elementary correspondence from X to Y , we define the
transfer map O∗(Y ) → O∗(X) associated to W to be the composition

O∗(Y ) � O∗(W )
N� O∗(X).

We define the transfer O(Y ) → O(X) associated to W to be the composition

O(Y ) � O(W )
Tr� O(X).

We omit the verification that these transfers are compatible with the composition
in Cork. It is clear from the transfer formula that the subsheaf µn of nth roots of
unity in O∗ is also a presheaf with transfers, and that the subsheaf k of O is just the
constant sheaf with transfers described in 2.2.

EXAMPLE 2.5. The classical Chow groups CHi(−) are presheaves with trans-
fers. To see this, we need to construct a map φW : CHi(Y ) → CHi(X) for each
elementary finite correspondence W from a smooth scheme X to a smooth scheme
Y , and check that this defines a functor from Cork to abelian groups.

The correspondence homomorphism φW is given by the formula φW (α) =
q∗(W · p∗α), where α ∈CHi(Y ). Here p∗ : CHi(Y ) →CHi(X ×Y ) is the flat pull-
back along the projection X ×Y →Y , the ‘·’ is the intersection product (see 17A.1),
and q : X ×Y → X is the projection. If Y were proper, this would be exactly the
formula given in Chapter 16 of [Ful84]. For general Y , we need to observe that
W · p∗α has finite support over X , so that the push-forward q∗(W · p∗α) is defined
in CHi(X).

The verification that the definition of φW is compatible with the composition
of correspondences is now a routine calculation using the projection formula; it is
practically the same as the calculation in the proper case, which is given in [Ful84,
16.1.2].

EXAMPLE 2.6. We will see in 13.11 that the motivic cohomology groups
H p,q(−,Z) of 3.4 are presheaves with transfers.

EXAMPLE 2.7. The functor K0, considered as a presheaf of abelian groups
on Sm/k, has no extension to a presheaf with transfers. To see this, it suffices to
find a finite étale cover f : Y → X of degree 2 and an element x ∈ K0(X) such
that f ∗(x) = 0 but 2x �= 0. Indeed, if Φ ∈ Cor(X ,Y ) is the canonical “transfer”
morphism defined by f , then f ◦Φ = 2 in Cor(X ,X) (cf. 1.11), so any presheaf
with transfers F would have F(Φ) f ∗(x) = 2x for all x ∈ F(X).

Let L be a line bundle on a smooth variety X satisfying L 2 ∼= OX but [L ⊕
L ] �= [OX ⊕OX ] in K0(X). It is well-known that such L exists; see [Swa62]. It
is also well-known that there is an étale cover f : Y → X of degree 2 with Y =
Spec(OX ⊕L ); see [Har77, IV Ex.2.7]. Since f ∗L ∼= OY , the element x = [L ]−
[OX ] of K0(X) satisfies f ∗(x) = 0 but 2x �= 0, as required.

Representable functors provide another important class of presheaves with
transfers. We will use the notation Ztr(X), which was introduced in [SV00]; the
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alternate terminology L(X) was used in [TriCa], while cequi(X/Speck,0) was used
in [RelCh] and [CohTh].

By the Yoneda lemma, representable functors provide embeddings of Sm/k
and Cork into an abelian category, namely PST(k):

Sm/k � Cork
� PST(k)

X � X � Ztr(X).

DEFINITION 2.8. If X is a smooth scheme over k we let Ztr(X) denote the
presheaf with transfers represented by X , so that Ztr(X)(U) = Cor(U,X). By the
Yoneda lemma,

HomPST(Ztr(X),F) ∼= F(X).
It follows that Ztr(X) is a projective object in PST(k).

For every X and U , Ztr(X)(U) is the group of finite correspondences from U
to X and the map Ztr(X)(U) → Ztr(X)(V ) associated to a morphism f : V →U is
defined to be composition with the correspondence associated to f .

We will write Z for the presheaf with transfers Ztr(Speck); it is just the con-
stant Zariski sheaf Z on Sm/k, equipped with the transfer maps of 2.2. Thus the
structure map X → Speck induces a natural map Ztr(X) → Z.

Here are three exercises. Carefully writing up their solutions requires some
knowledge about cycles, such as that found in [Ful84].

EXERCISE 2.9. If F is a presheaf with transfers and T is a smooth scheme,
define FT (U) = F(U×T ). Show that FT is a presheaf with transfers and that every
morphism S → T induces a morphism FT → FS of presheaves with transfers. If
F is constant and T is geometrically connected, then FT = F .

EXERCISE 2.10. If k ⊂ L is a separable field extension, every X in Sm/L is an
inverse limit of schemes Xα in Sm/k. For every presheaf with transfers F over k,
we set F(X) = lim−→F(Xα). Show that this makes F a presheaf with transfers over
L.

EXERCISE 2.11. Let X be a (non-smooth) scheme of finite type over k. For
each smooth U , define Ztr(X)(U) to be the group Cor(U,X) of 1.1. Show that the
composition ◦ defined after lemma 1.4 makes Ztr(X) into a presheaf with transfers.

Given a pointed scheme (X ,x), we define Ztr(X ,x) to be the cokernel of the
map x∗ : Z → Ztr(X) associated to the point x : Speck → X . Since x∗ splits the
structure map Ztr(X) → Z, we have a natural splitting Ztr(X) ∼= Z⊕Ztr(X ,x).

The pointed scheme Gm = (A1−0,1) and its associated presheaf with transfers
Ztr(Gm) = Ztr(A1 −0,1) will be of particular interest to us.

DEFINITION 2.12. If (Xi,xi) are pointed schemes for i = 1, . . . ,n we define
Ztr((X1,x1)∧·· ·∧ (Xn,xn)), or Ztr(X1 ∧·· ·∧Xn), to be:

coker

(⊕
i

Ztr(X1 ×·· · X̂i · · ·×Xn)
id×···×xi×···×id� Ztr(X1 ×·· ·×Xn)

)
.
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By definition Ztr((X ,x)∧1) = Ztr(X ,x) and Ztr((X ,x)∧q) = Ztr((X ,x)∧ ·· · ∧
(X ,x)) for q > 0. By convention Ztr((X ,x)∧0) = Z and Ztr((X ,x)∧q) = 0 when
q < 0.

LEMMA 2.13. The presheaf Ztr((X1,x1)∧ ·· · ∧ (Xn,xn)) is a direct summand
of Ztr(X1 ×·· ·×Xn). In particular, it is a projective object of PST.

Moreover, the following sequence of presheaves with transfers is split-exact:

0 → Z
{xi}→ ⊕iZtr(Xi) →⊕i, jZtr(Xi ×Xj) → ·· ·

· · · → ⊕i, jZtr(X1 ×·· · X̂i · · · X̂ j · · ·×Xn) →⊕iZtr(X ×·· · X̂i · · ·×Xn) →
→ Ztr(X1 ×·· ·×Xn) → Ztr(X1 ∧·· ·∧Xn) → 0.

This lemma is illustrated by the formulas Ztr(X) ∼= Z⊕Ztr(X ,x) and

Ztr(X1 ×X2) ∼= Z⊕Ztr(X1,x1)⊕Ztr(X2,x2)⊕Ztr(X1 ∧X2).

PROOF. The projections [xi] : Xi →{xi}→ Xi are idempotent, as are the corre-
spondences ei = 1Xi − [xi]. These idempotents induce a decomposition of Ztr(X1 ×
·· ·×Xn) into 2n summands, and we see by inspection that Ztr(X1 ∧·· ·∧Xn) is the
image of e1×·· ·×en. Since Ztr(X1∧·· ·∧Xn) is a summand of a projective object,
it is projective. The individual terms in the indicated sequence decompose in a
similar fashion, and each map is a projection followed by an inclusion; it is easy to
see from this description that the sequence is split-exact (see [Wei94, 1.4.1]). �

We shall also need a functorial construction of a chain complex associated to
a presheaf with transfers. For this we use the cosimplicial scheme ∆• over k which
is defined by:

∆n = Speck[x0, . . . ,xn]/

(
n

∑
i=0

xi = 1

)
.

The jth face map ∂ j : ∆n → ∆n+1 is given by the equation x j = 0. Although this
construction is clearly taken from topology, the use of ∆• in an algebraic setting
originated with D. Rector in [Rec71].

DEFINITION 2.14. If F is a presheaf of abelian groups on Sm/k, F(∆•) and
F(U × ∆•) are simplicial abelian groups. We will write C•F for the simplicial
presheaf U �→ F(U ×∆•), i.e., Cn(F)(U) = F(U ×∆n). If F is a presheaf with
transfers, C•F is a simplicial presheaf with transfers by exercise 2.9.

As usual, we can take the alternating sum of the face maps to get a chain
complex of presheaves (resp., presheaves with transfers) which (using ∗ in place of
•), we will call C∗F . It sends U to the complex of abelian groups:

· · · → F(U ×∆2) → F(U ×∆1) → F(U) → 0.

Both F �→C•F and F �→C∗F are exact functors. Moreover, the Dold-Kan corre-
spondence (see [Wei94, 8.4.1]), which describes an equivalence between simplicial
objects and positive chain complexes, associates to C•F a normalized subcomplex
CDK
∗ F of the complex C∗F , which is quasi-isomorphic to the complex C∗F .
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If A is the constant presheaf with transfers A(U) = A then C∗A is the complex

· · ·→A
id� A

0� A→ 0; it is quasi-isomorphic to CDK
∗ (A), which is A regarded

as a complex concentrated in degree zero.

Homotopy invariant presheaves

We now introduce a special class of presheaves which will play a major role in
these notes.

DEFINITION 2.15. A presheaf F is homotopy invariant if for every X the map
p∗ : F(X) → F(X ×A1) is an isomorphism. As p : X ×A1 → X has a section, p∗

is always split injective. Thus homotopy invariance of F is equivalent to p∗ being
onto.

The homotopy invariant presheaves of abelian groups form a Serre subcategory
of presheaves, meaning that if 0 → F0 → F1 → F2 → 0 is an exact sequence of
presheaves then F1 is homotopy invariant if and only if both F0 and F2 are. In
particular, if F and G are homotopy invariant presheaves with transfers then the
kernel and the cokernel of every map f : F → G are homotopy invariant presheaves
with transfers.

Let iα : X ⊂ � X ×A1 be the inclusion x �→ (x,α). We shall write i∗α for
F(iα) : F(X ×A1) → F(X).

LEMMA 2.16. F is homotopy invariant if and only if

i∗0 = i∗1 : F(X ×A1) → F(X) for all X.

PROOF. ([Swa72, 4.1]) One direction is clear, so suppose that i∗0 = i∗1 for all
X . Applying F to the multiplication map m : A1×A1 → A1, (x,y) �→ xy, yields the
diagram

F(X ×A1)
i∗0 � F(X)

F(X ×A1) �(i1 ×1A1)∗

1X×A1

�
F(X ×A1 ×A1)

(1X ×m)∗

� (i0 ×1A1)∗� F(X ×A1).

p∗

�

Hence p∗i∗0 = (1× i0)∗m∗ = (1× i1)∗m∗ = id. Since i∗0 p∗ = id, p∗ is an isomor-
phism. �

DEFINITION 2.17. For i = 0, . . . ,n we define θi : ∆n+1 → ∆n ×A1 to be the
map that sends the vertex v j to v j ×{0} for j ≤ i and to v j−1×{1} otherwise. (See
figure 2.1.) These are the algebraic analogues of the top-dimensional simplices in
the standard simplicial decomposition of the polyhedron ∆n ×∆1.

LEMMA 2.18. Let F be a presheaf. Then the maps i∗0, i
∗
1 : C∗F(X ×A1) →

C∗F(X) are chain homotopic.
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FIGURE 2.1. Simplicial decomposition of ∆n ×A1

PROOF. The maps θi defined in 2.17 induce maps

hi = F(1X ×θi) : CnF(X ×A1) →Cn+1F(X).

The hi form a simplicial homotopy ([Wei94, 8.3.11]) from i∗1 = ∂0h0 to i∗0 = ∂n+1hn.
By [Wei94, 8.3.13], the alternating sum sn = ∑(−1)ihi is a chain homotopy from
i∗1 to i∗0. �

Combining lemmas 2.16 and 2.18, we obtain

COROLLARY 2.19. If F is a presheaf then the homology presheaves

HnC∗F : X �→ HnC∗F(X)

are homotopy invariant for all n.

EXAMPLE 2.20. ([Swa72, 4.2]) The surjection F → H0C∗F is the universal
morphism from F to a homotopy invariant presheaf.

EXERCISE 2.21. Set Hsing
0 (X/k) = H0C∗Ztr(X)(Speck). Show that there is

a natural surjection from Hsing
0 (X/k) to CH0(X), the Chow group of zero cycles

modulo rational equivalence (see exercise 1.10). If X is projective, Hsing
0 (X/k) ∼=

CH0(X). If X = A1, show that Hsing
0 (A1/k) = Z. We will return to this point in 7.1.

LEMMA 2.22. Let F be a presheaf of abelian groups. Suppose that for every
smooth scheme X there is a natural homomorphism hX : F(X)→ F(X ×A1) which
fits into the diagram

F(X)

F(X) �
F(i0)

0

�
F(X ×A1)

hX
�

F(i1)
� F(X).

id
�

Then the complex C∗F is chain contractible.
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The assertion that hX is natural means that for every map f : X → Y we have a
commutative diagram

F(X)
hX� F(X ×A1)

F(Y )

�

hY� F(Y ×A1).

�

PROOF. By naturality, hX induces a map C∗h : C∗F(X) → C∗F(X ×A1). By
lemma 2.18, the identity map id = i∗1(C∗h) is chain homotopic to 0 = i∗0(C∗h). �

EXAMPLE 2.23. The prototype for lemma 2.22 is the sheaf of global func-
tions. The complex C∗O is chain contractible, because O(X ×A1) ∼= O(X)[t] and
hX( f ) = t f satisfies the conditions of lemma 2.22.

Here is a second application of lemma 2.22. Note that the projection p : X ×
A1 → X induces a map Ztr(X ×A1) → Ztr(X).

COROLLARY 2.24. C∗Ztr(X ×A1) → C∗Ztr(X) is a chain homotopy equiva-
lence.

PROOF. Let F denote the cokernel of Ztr(i0) : Ztr(X) → Ztr(X ×A1) induced
by i0 : X → X ×A1. That is, each F(U) is the cokernel of Cor(U,X)→Cor(U,X ×
A1). Let HU denote the composition of the product with A1 and multiplication
A1 ×A1 → A1 :

Cor(U,X ×A1) →Cor(U ×A1,(X ×A1)×A1) →Cor(U ×A1,X ×A1).

Since HU sends Cor(U,X ×{0}) to Cor(U ×A1,X ×{0}), it induces a natural
map hU : F(U) → F(U ×A1). For U = X ×A1 it is easy to see that the compo-
sition of HU with i0, i1 : U → U ×A1 sends 1U ∈ Cor(U,X ×A1) to the projec-
tion i0 p : U → X → X ×A1 and 1U , respectively. Therefore F(i0)hU(1U) = 0 and
F(i1)hU(1U) = 1U for U = X ×A1. For any other U , every element f̄ ∈ F(U)
is the image of 1X×A1 under some correspondence f : U → X × A1, so again
F(i0)hU( f̄ ) = 0 and F(i1)hU( f̄ ) = f̄ . Therefore lemma 2.22 applies to show
that C∗F is chain contractible. Since C∗Ztr(X ×A1) ∼= C∗Ztr(X)⊕C∗F , we are
done. �

An elementary A1-homotopy between two morphisms f ,g : X → Y is a map
h : X ×A1 →Y so that f and g are the restrictions of h along X ×0 and X ×1. This
relation is not transitive (exercise!). To correct this, we pass to correspondences.

DEFINITION 2.25. We say that two finite correspondences from X to Y are
A1-homotopic if they are the restrictions along X ×0 and X ×1 of an element of
Cor(X ×A1,Y ). This is an equivalence relation on Cor(X ,Y ). The sum and com-
position of A1-homotopic maps are A1-homotopic, so the A1-homotopy classes of
finite correspondences form the morphisms of an additive category.

We say that f : X → Y is an A1-homotopy equivalence if there exists a g :
Y → X so that f g and g f are A1-homotopic to the identity.
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The projection p : X ×A1 → X is the prototype of an A1-homotopy equiva-
lence; its A1-homotopy inverse is given by the zero-section.

LEMMA 2.26. If f : X →Y is an A1-homotopy equivalence with A1-homotopy
inverse g, then f∗ : C∗Ztr(X) → C∗Ztr(Y ) is a chain homotopy equivalence with
chain homotopy inverse g∗.

PROOF. Applying C∗Ztr to the data gives a diagram

C∗Ztr(X)

C∗Ztr(X)
(i0)∗
∼=
�

g∗ f∗
�

C∗Ztr(X ×A1)

h∗

�

�(i1)∗∼=
C∗Ztr(X)

1X

�

and similarly for Y . The horizontal maps are chain homotopy equivalences by 2.24,
and are homotopy inverses to p∗. From the right triangle, h∗ � p∗. From the left
triangle, we get g∗ f∗ � 1X . Similarly, the diagram for Y gives f∗g∗ � 1Y . Hence
f∗ : C∗Ztr(X) →C∗Ztr(Y ) is a chain homotopy equivalence with inverse g∗. �

EXERCISE 2.27. Show that there is a natural identification for every X and Y :

H0C∗Ztr(Y )(X) = Cor(X ,Y )/A1-homotopy.

We will return to the subject of A1-homotopy in lectures 7, 9, 13, and 14; see
7.2, 9.9 and 14.14.

The motive associated to X will be the class M(X) of C∗Ztr(X) in an appropri-
ate triangulated category DMeff,−

Nis (k,R) constructed in 14.1 from the derived cate-
gory of PST(k). By 2.24, we have M(X) ∼= M(X ×A1) for all X . More generally,
any A1-homotopy equivalence X → Y induces an isomorphism M(X) ∼= M(Y ) by
2.26.

EXERCISE 2.28. If k ⊂ F is a finite separable field extension, exercise 1.12 im-
plies that there are adjoint functors i∗ : PST(k)→ PST(F), i∗ : PST(F)→ PST(k).
Show that there is a natural transformation π : i∗i∗M → M whose composition πη
with the adjunction map η : M → i∗i∗M is multiplication by [F : k] on M. Hint:
XF → X is finite.



LECTURE 3

Motivic cohomology

Using the tools developed in the last lecture, we will define motivic cohomol-
ogy. It will be hypercohomology with coefficients in the special cochain com-
plexes Z(q), called motivic complexes.

DEFINITION 3.1. For every integer q ≥ 0 the motivic complex Z(q) is defined
as the following complex of presheaves with transfers:

Z(q) = C∗Ztr(G∧q
m )[−q].

We consider Z(q) to be a bounded above cochain complex; the shifting convention
for [−q] implies that the terms Z(q)i = Cq−iZtr(G

∧q
m ) vanish whenever i > q, and

the term with i = q is Ztr(G
∧q
m ).

If A is any other abelian group then A(q) = Z(q)⊗A is another complex of
presheaves with transfers.

When q = 0, we have Z(0) = C∗(Z). As observed after 2.14 above, Z(0) is
quasi-isomorphic to Z, regarded as a complex concentrated in degree 0.

When q = 1, we have Z(1) =C∗Ztr(Gm)[−1]. We will give another description
of Z(1) in the next lecture.

By convention Z(q) = 0 if q < 0.

We now show that these complexes of presheaves are actually complexes of
sheaves with respect to the Zariski topology. Later on, in 6.2, we will show that
the Ztr(Y ) are also sheaves in the étale topology.

LEMMA 3.2. For every scheme Y over k, Ztr(Y ) is a sheaf in the Zariski topol-
ogy, and C∗Ztr(Y ) is a chain complex of sheaves.

Similarly, if A is any abelian group, the proof of 3.2 shows that A⊗Ztr(Y ) is a
sheaf in the Zariski topology, and A⊗C∗Ztr(Y ) is a complex of sheaves.

PROOF. We have to prove that whenever U is covered by U1 and U2 the se-
quence

0 →Cor(U,Y )
diag� Cor(U1,Y )⊕Cor(U2,Y )

(+,−)� Cor(U1 ∩U2,Y )

is exact. We may suppose that U is connected and therefore (being smooth) ir-
reducible. As every finite correspondence from U to Y is dominant over U , it is
completely determined by the fiber at the generic point of U . Hence Cor(U,Y )
injects into each Cor(Ui,Y ).

21
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To see that the sequence is exact at the other spot, take cycles Z1 = ∑i∈I miZ1i ⊂
U1 ×Y and Z2 = ∑ j∈J n jZ2 j ⊂U2 ×Y that coincide on (U1 ∩U2)×Y . It is possible
to pair up the Z1i and Z2 j, since they are determined by their fibers at the common
generic point of U , U1 and U2. Hence there is a bijection between I and J such that,
if i ∈ I corresponds to j ∈ J then mi = n j and the restrictions of Z1i and Z2 j agree
in (U1 ∩U2)×Y . Thus we may assume that Z1 and Z2 are elementary correspon-
dences. But then their union Z = Z1 ∪Z2 in U ×Y is a finite correspondence from
U to Y , and its restriction to both Ui ×Y is Zi, i.e., Z is a preimage of the pair.

Now whenever F is a sheaf and X is smooth, each presheaf U �→ F(U ×X) is
also a sheaf for the Zariski topology. In particular each CnF is a sheaf and C∗F is a
complex of sheaves. Thus C∗Ztr(Y ) is a complex of Zariski sheaves. �

We have already seen (in exercises 2.21 and 2.27 above) that the complex
C∗Ztr(Y ) is not exact. There we showed that the last map may not be surjective,
because its cokernel H0C∗Ztr(Y )(S) = Cor(S,Y )/A1-homotopy can be non-zero.
When S = Spec(k), it is the group Hsing

0 (Y/k) described in exercise 2.21 above and
7.3 below.

Recall that the (small) Zariski site XZar over a scheme X is the category of open
subschemes of X , equipped with the Zariski topology.

COROLLARY 3.3. The restriction Z(q)X of Z(q) to the Zariski site over X is a
complex of sheaves in the Zariski topology.

Similarly, if A is any abelian group, A(q) is a complex of Zariski sheaves.

PROOF. Set Y = (A1−0)q. By lemma 3.2 we know that C∗Ztr(Y ) is a complex
of sheaves. The complex Z(q)[q] is a direct summand of C∗Ztr(Y ) by lemma 2.13,
so it must be a complex of sheaves too. �

Note that A(q) represents the derived sheaf tensor product Z(q)⊗L A, since
Z(q) is a flat complex of sheaves.

DEFINITION 3.4. The motivic cohomology groups H p,q(X ,Z) are defined to
be the hypercohomology of the motivic complexes Z(q) with respect to the Zariski
topology:

H p,q(X ,Z) = Hp
Zar(X ,Z(q)).

If A is any abelian group, we define:

H p,q(X ,A) = Hp
Zar(X ,A(q)).

REMARK 3.5. Motivic cohomology is well-defined even if the Z(q) are un-
bounded complexes because the X in Sm/k are finite dimensional; see [Wei94,
10.6.8]. We will see in 13.11 and 14.16 that motivic cohomology is representable
in several derived categories.

VANISHING THEOREM 3.6. For every smooth scheme X and any abelian
group A, we have H p,q(X ,A) = 0 when p > q+dimX.
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PROOF. By definition, the complex Z(q) is zero in degrees greater then q.
Since Hi

Zar(X ,F) vanishes for every sheaf F when i > dimX , the result is now an
immediate consequence of the hypercohomology spectral sequence. �

We will prove in theorem 19.3 that, for every smooth variety X and any abelian
group A, we have H p,q(X ,A) = 0 for p > 2q as well.

REMARK 3.7. The groups H p,q(X ,Z) are contravariantly functorial in X . To
see this we need to check that for a morphism f : X →Y we can construct a natural
map Z(q)Y → f∗Z(q)X . But this is true for any complex C of presheaves on Sm/k:
for each open U ⊂ Y , the restriction f−1U → U induces the desired map from
CY (U) = C(U) to f∗CX(U) = C( f−1U).

The groups H p,q(X ,A) are also covariantly functorial in k. That is, if i : k ⊂F is
a field extension, there is a natural map H∗,∗(X ,A)→ H∗,∗(XF ,A). It is induced by
the sheaf map Z(q)X → i∗Z(q)XF assembled from the natural maps Ztr(Y )(U) →
i∗Ztr(YF)(U) = Ztr(YF)(UF) of exercise 1.12.

PROPOSITION 3.8. If k ⊂ F is a finite and separable field extension and U is
smooth over F, then the two motivic chain complexes Z(q)U (defined using Cork

and CorF , respectively) are isomorphic. Hence the motivic cohomology groups
H p,q(U,A) are independent of the choice of the ground field.

PROOF. Let T be any smooth scheme over k, and TF its base change
over F . By exercise 1.12 the groups CnZtr(TF)(U) = CorF(U ×F ∆n

F ,TF) and
C∗Ztr(T )(U) = Cork(U ×k ∆n

k ,T ) are isomorphic. That is, C∗Ztr(TF)(U) ∼=
C∗Ztr(T )(U). Letting T be (A1

k −0)q, the result follows from lemma 2.13, which
says that the complex Z(q)[q] is a direct summand of C∗Ztr(T ) over k, and of
C∗Ztr(TF) over F . �

The following colimit lemmas are elementary consequences of exercise 1.13.
They will be useful later on.

LEMMA 3.9. (Colimits) Let k ⊂ F be a field extension and X smooth over k.
Then:

H∗,∗(XF ,A) = colim
k⊂E⊂F

E of finite type

H∗,∗(XE ,A).

If f : X → S is a smooth morphism of smooth schemes over k such that S is
connected and F = k(S), then:

H∗,∗(X ×S SpecF,A) = colim
U⊂S

nonempty

H∗,∗(X ×S U,A).

And now we want to introduce a multiplicative structure on the sheaves Z(n).
We will need the following construction:

CONSTRUCTION 3.10. If (Xs,xs) are pointed schemes for s = 1, . . . , j, then for
every i < j we define a morphism of presheaves with transfers:

Ztr(X1 ∧·· ·∧Xi)⊗Ztr(Xi+1 ∧·· ·∧Xj) → Ztr(X1 ∧·· ·∧Xj).
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Indeed, definition 1.9 provides a map:

Ztr(X1 ×·· ·×Xi)(U)⊗Ztr(Xi+1 ×·· ·×Xj)(U)

= Cork(U,X1 ×·· ·×Xi)⊗Cork(U,Xi+1 ×·· ·×Xj) →
→Cork(U ×U,X1 ×·· ·×Xj) = Ztr(X1 ×·· ·×Xj)(U ×U).

Composing with the diagonal U →U ×U , we have:

Ztr(X1 ×·· ·×Xi)(U)⊗Ztr(Xi+1 ×·· ·×Xj)(U)
∆� Ztr(X1 ×·· ·×Xj)(U).

Now recall that by definition Ztr(X1 ∧ ·· ·∧Xn) is a quotient of Ztr(X1 ×·· ·×Xn).
It is easy to check that the map ∆ factors through the quotient, giving the required
morphism.

CONSTRUCTION 3.11. For each m and n we construct a map

Z(m)⊗Z(n) → Z(m+n)

using the map Ztr(G∧m
m )⊗Ztr(G∧n

m ) → Ztr(G∧m+n
m ) of 3.10, as follows.

For any smooth U we need to build a map of complexes of abelian groups:

Z(m)[m](U)⊗Z(n)[n](U) → Z(m+n)[m+n](U),

or equivalently, Z(m)(U)⊗Z(n)(U) → Z(m + n)(U). Recall that by definition
3.1, Z(n)[n](U) is the chain complex C∗Ztr(G∧n

m )(U). Let us write the underlying
simplicial object as An

• = Ztr(G∧n
m )(U×∆•), and the associated unnormalized chain

complex Z(n)[n] as An
∗. Similarly, we write (Am

• ⊗ An
•)∗ for the chain complex

associated to diag(Am
• ⊗An

•). The Eilenberg-Zilber theorem ([Wei94, 8.5.1]) yields
a quasi-isomorphism ∇ : Am

∗ ⊗An
∗ → (Am

• ⊗An
•)∗.

Therefore if we find a simplicial map m : diagAm
• ⊗An

• → Am+n
• we have also a

map (Am
• ⊗An

•)∗ → Am+n
∗ which, composed with the previous one, gives the multi-

plicative structure. Unfolding the definitions again, we have:

An
i = Ztr(G∧n

m )(U ×∆i).

We define the components of m to be the maps of 3.10:

Ztr(G∧m
m )(U ×∆i)⊗Ztr(G∧n

m )(U ×∆i) → Ztr(G
∧(m+n)
m )(U ×∆i).

The morphisms in 3.10 are associative and the map ∇ in the Eilenberg-Zilber
theorem is homotopy associative ([Wei94, 8.5.4]). It follows that the pairing of
construction 3.11 is homotopy associative.

COROLLARY 3.12. For each smooth X, there are pairings:

H p,q(X ,Z)⊗H p′,q′(X ,Z) → H p+p′,q+q′(X ,Z).

In 15.9 we will show that this pairing is skew-commutative with respect to the
first grading, so that H∗,∗(X ,Z) is an associative graded-commutative ring.



LECTURE 4

Weight one motivic cohomology

In this lecture we describe Z(1) and Z/l(1) in terms of units and roots of unity.

THEOREM 4.1. There is a quasi-isomorphism of complexes of presheaves with
transfers:

Z(1)
�� O∗[−1].

COROLLARY 4.2. Let X be a smooth scheme over k. Then we have:

H p,q(X ,Z) =


0 q ≤ 1 and (p,q) �= (0,0),(1,1),(2,1)
Z(X) (p,q) = (0,0)
O∗(X) (p,q) = (1,1)
Pic(X) (p,q) = (2,1).

�

�

q

p

H0,2 H1,2

0 0 0

Z(X)00

0 0

000

H2,2H−1,2H−2,2
H3,2

Pic(X)O∗(X)0

0 0 00

FIGURE 4.1. Weight q motivic cohomology

This theorem will follow from lemmas 4.3–4.6 below. An alternative proof is
given in [SV96].

Consider the functor M ∗(P1;0,∞) : Sm/k → Ab which sends a scheme X to
the group of rational functions on X ×P1 which are regular in a neighborhood of
X ×{0,∞} and equal to 1 on X ×{0,∞}. Clearly M ∗(P1;0,∞) is a sheaf for the
Zariski topology. Given a rational function f on X ×P1 let D( f ) denote its (Weil)
divisor.

25



26 4. WEIGHT ONE MOTIVIC COHOMOLOGY

LEMMA 4.3. For all f in M ∗(P1;0,∞)(X), the Weil divisor D( f ) belongs to
the subgroup Cor(X ,A1 −0) of the group of cycles on X ×P1.

PROOF. Since the support of D( f ) is disjoint from X ×{0,∞}, D( f ) is a cycle
in X ×A1−0. To see that it is finite and surjective over X we may assume that X =
SpecA is an affine domain. We may write f = f+/ f− where f+ = amtm + · · ·+a0

and f− = bntn + · · ·+ b0 are in A[t] and am, a0, bn and b0 are nonzero. Since f is
regular near X ×{0}, f− is relatively prime to t, and we may assume that b0 is a
unit of A. Similarly, we may assume that bn is a unit of A. Since f = 1 on X ×∞,
we have m = n and may assume that an = bn = 1. But then the divisors D( f+) of
f+ = tn + · · ·+a0 and D( f−) of f− = tn + · · ·+b0 are finite and surjective over X .
Since they belong to Cor(X ,A1 −0), so does D( f ) = D( f+)−D( f−). �

From 4.3 we get a morphism of sheaves: M ∗(P1;0,∞) ⊂ � Ztr(A1 −0).

LEMMA 4.4. For any connected X there is a short exact sequence in Ab:

0 � M ∗(P1;0,∞)(X) � Ztr(A1 −{0})(X)
λ� Z⊕O∗(X) � 0.

PROOF. We know that Pic(X×P1)∼= Pic(X)×Z, so for any Z in Cor(X ,A1)⊂
Cor(X ,P1) there is a unique rational function f on X ×P1 and an integer n so that
D( f ) = Z and f /tn = 1 on X×{∞}. If Z lies in Cor(X ,A1−0), then f (0)∈O∗(X).
We define λ : Ztr(A1 −0) → Z⊕O∗ by λ (Z) = (n,(−1)n f (0)). If u ∈ O∗(X) and
Zu = D(t −u) then λ (Zu) = (1,u). Since λ (Zu−Z1) = (0,u) λ is onto. The kernel
of λ consists of all Z whose f lies in M ∗(P1;0,∞)(X), so we are done. �

LEMMA 4.5. The map λ respects transfers. Hence M ∗(P1;0,∞) is a PST.

PROOF. It is easy to see that the first component of λ is a morphism in PST
because it is the map Cork(X ,A1 −0) →Cork(X ,Speck), induced by the structure
map π : A1 − 0 → Speck. To check the second component of λ , we see from
exercise 1.13 that it suffices to check that the following diagram commutes for
every finite field extension F ⊂ E.

Ztr(A1 −0)(SpecE) � E∗

Ztr(A1 −0)(SpecF)
�

� F∗

NE/F
�

This is a straightforward verification using exercise 1.10. �
Write M ∗ for M ∗(P1;0,∞). By 2.14, (CiF)(U) = F(U ×∆i), so 4.4 gives us:

0 →C∗(M ∗) →C∗Ztr(A1 −0) →C∗(Z⊕O∗) → 0.

Splitting off 0 →C∗Z = C∗Z → 0 we get an exact sequence:

0 →C∗(M ∗) → Z(1)[1] →C∗(O∗) → 0.

But C∗(O∗) � O∗ because O∗(U ×∆n) = O∗(U). We will prove in lemma 4.6
that the first term C∗(M ∗) is acyclic. Therefore Z(1)[1] is quasi-isomorphic to O∗.
This is the statement of theorem 4.1, shifted once.
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LEMMA 4.6. If X is a smooth scheme over k, then C∗(M ∗)(X) is an acyclic
complex of abelian groups. Hence C∗(M ∗) is an acyclic complex of sheaves.

PROOF. Let f ∈ CDK
i (M ∗)(X) be a cycle, i.e., an element vanishing in

CDK
i−1(M

∗)(X). Then f is a regular function on some neighborhood U of Z =
X ×∆i×{0,∞} in X ×∆i×P1, and f = 1 on each face X ×∆i−1×P1, as well as on
Z. Consider the regular function hX( f ) = 1− t(1− f ) on the neighborhood A1×U
of A1×Z in A1×X ×∆i×P1, where t denotes the coordinate function of A1. Then
hX( f ) is a cycle in CDK

i (M ∗)(A1 ×X), because it equals 1 where f equals 1. The
restrictions along t = 0,1, from CDK

i (M ∗)(A1 ×X) to CDK
i (M ∗)(X), send hX( f )

to 1 and f , respectively. Since these restrictions are chain homotopy equivalent by
2.18, f is a boundary. �

This completes the proof of theorem 4.1.

REMARK 4.7. We will revisit this in lecture 7 in 7.11.
Lemma 4.6 works more generally to show that C∗M ∗(Y ;Z)(X) is acyclic for

every affine X , where M ∗(Y ;Z)(X) is the group of rational functions on X ×Y
which are regular in a neighborhood of X ×Z and equal to 1 on X ×Z.

Now let us consider the complex Z/l(1). By theorem 4.1 Z(1) is quasi-
isomorphic to O∗[−1]. Tensoring with Z/l we have Z/l(1) � O∗[−1]⊗L Z/l,

which is just the complex [O∗ l � O∗] in degrees 0 and 1. Then we have the
universal coefficients sequence:

0 � H p,q(X ,Z)/l � H p,q(X ,Z/l) �
lH

p+1,q(X ,Z) � 0.

COROLLARY 4.8. There is a quasi-isomorphism of complexes of étale sheaves

Z/l(1)ét � µl.

PROOF. Since sheafification is exact ([Mil80] p. 63), theorem 4.1 gives
Z(1)ét � O∗

ét [−1], and hence

Z/l(1)ét � O∗
ét [−1]⊗L Z/l � µl. �

COROLLARY 4.9. If 1/l ∈ k and X is smooth, then H p,1(X ,Z/l) = 0 for p �=
0,1,2 while:

H0,1(X ,Z/l) = µl(X), H1,1(X ,Z/l) = H1
ét(X ,µl),

H2,1(X ,Z/l) = Pic(X)/l Pic(X).

PROOF. The calculation of H p,1 for p �= 1 follows from the universal coeffi-
cients sequence, since the only nonzero Zariski cohomology groups of O∗ on a
smooth scheme are H0 and H1(X ,O∗) = Pic(X). For p = 1 note that corollary 4.8
gives a natural map

H∗
Zar(X ,Z/l(1)) → H∗

ét(X ,Z/l(1)ét) = H1
ét(X ,µl)
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fitting into the diagram:

H1
Zar(X ,Z(1))/l ⊂� H1

Zar(X ,Z/l(1)) ��
lH

2
Zar(X ,Z(1))

H1
ét(X ,Z(1))/l

∼=
�

⊂ � H1
ét(X ,Z/l(1))

�
��

lH
2
ét(X ,Z(1)).

∼=
�

Since H1
ét(X ,O∗) = H1

Zar(X ,O∗) by Hilbert’s Theorem 90 (see [Mil80, III 4.9]),
the 5-lemma concludes the proof. �

REMARK 4.10. (Deligne) If chark = l then H1,1(X ,Z/l)∼= H1
ffp(X ,µl). In fact,

the proof of 4.9 is valid in this setting.



LECTURE 5

Relation to Milnor K-Theory

The Milnor K-theory KM
∗ (F) of a field F is defined to be the quotient of the

tensor algebra T (F∗) over Z by the ideal generated by the elements of the form
x⊗ (1− x) where x ∈ F∗. In particular, KM

0 (F) = Z and KM
1 (F) = F∗.

The goal of this lecture is to prove the following:

THEOREM 5.1. For any field F and any n we have:

Hn,n(SpecF,Z) ∼= KM
n (F).

We have already seen that this holds for n = 0,1, because by definition 3.4
H0,0(SpecF,Z) = H0

Zar(SpecF,Z) = Z and by theorem 4.1,

H1,1(SpecF,Z) = H1
Zar(SpecF,O∗[−1]) = H0

Zar(SpecF,O∗) = F∗.

The proof of theorem 5.1 will follow [SV00, 3.4] which is based on [NS89]. It
will consist of three steps:

(1) Construction of θ : Hn,n(SpecF,Z) → KM
n (F). This will use 5.5.

(2) Construction of λF : KM
n (F) → Hn,n(SpecF,Z). This will be done using

proposition 5.9 and lemma 5.6. The proof of 5.9 will need 5.8.

5.6+(5.8 ⇒ 5.9) ⇒∃ λF

(3) Proof that these two maps are inverse to each other. For this we will need
lemma 5.10 (proved using lemma 5.11).

Before starting the proof of the theorem we need some additional properties of
motivic cohomology and Milnor K-theory.

Recall that Ztr(G∧n
m )(SpecF) is a quotient of Ztr((A1 − 0)n)(SpecF), which

by 1.10 is the group of zero cycles of (A1 −0)n.

LEMMA 5.2. We have H p,q(SpecF,Z) = Hq−p
(
C∗Ztr(G

∧q
m )(SpecF)

)
for all p

and q. In particular we have

Hn,n(SpecF,Z) =H0
(
C∗Ztr(G∧n

m )(SpecF)
)

=coker
(
Ztr(G∧n

m )(A1)
∂0−∂1� Ztr(G∧n

m )(SpecF)
)

.

PROOF. Write A∗ for C∗Ztr(G
∧q
m )(SpecF) so the right side is Hq−pA∗ =

H p−qA∗. By definition 3.1, the restriction of Z(q) to SpecF is the chain com-
plex A∗[−q]. Since Zariski cohomology on SpecF is just ordinary cohomology,
we have

H p,q(SpecF,Z) = H p(A∗[−q]) = H p−q(A∗) = Hq−p(A∗). �
29
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LEMMA 5.3. If F ⊂ E is a finite field extension, then the proper push-forward
of cycles induces a map NE/F : H∗,∗(SpecE,Z) → H∗,∗(SpecF,Z). Moreover, if
x ∈ H∗,∗(SpecE,Z) and y ∈ H∗,∗(SpecF,Z) then:

(1) NE/F : H0,0(SpecE,Z) = Z → Z = H0,0(SpecF,Z) is multiplication by
the degree of E/F.

(2) NE/F : H1,1(SpecE,Z) = E∗ → F∗ = H1,1(SpecF,Z) is the classical
norm map E∗ → F∗.

(3) NE/F(yE · x) = y ·NE/F(x) and NE/F(x · yE) = NE/F(x) · y.
(4) If F ⊂ E ⊂ K, and K is normal over F, we have:

NE/F(x)K = [E : F]insep ∑
j:E ⊂ � K

j∗(x) in H∗,∗(SpecK,Z).

(5) If F ⊂ E ′ ⊂ E then NE/F(x) = NE ′/F(NE/E ′(x)).

PROOF. All but property 2 follow immediately from the corresponding proper-
ties of proper push-forward. Property 2 follows from property 4 since this formula
also holds for the classical norm map NE/F : E∗ → F∗. �

If F ⊂ E is a finite field extension, there is a “norm map” NE/F : KM
n (E) →

KM
n (F) satisfying the analogue of lemma 5.3. In addition, it satisfies the following

condition (see [Sus82]).

THEOREM 5.4 (Weil Reciprocity). Suppose that L is an algebraic function
field over k. For each discrete valuation w on L there is a map

∂w : KM
n+1(L) → KM

n (k(w)),

and for all x ∈ KM
n+1(L):

∑
w

Nk(w)/k∂w(x) = 0.

COROLLARY 5.5. Let p : Z →A1
F be a finite surjective morphism and suppose

that Z is integral. Let f1, . . . , fn ∈ O∗(Z) and:

p−1({0}) =� n0
i z0

i p−1({1}) =� n1
i z1

i

where nε
i are the multiplicities of the points zε

i = SpecEε
i (ε = 0,1). Define:

ϕ0 = ∑n0
i NE0

i /F({ f1, . . . , fn}E0
i
) ϕ1 = ∑n1

i NE1
i /F({ f1, . . . , fn}E1

i
).

Then we have:

ϕ0 = ϕ1 ∈ KM
n (F).

PROOF. Let L be the function field of Z and consider x = {t/t −1, f1, . . . , fn}.
At every infinite place, t/t − 1 equals 1 and ∂w(x) = 0. Similarly, ∂w(x) = 0 at
all finite places except those over 0 and 1. If wi lies over t = 0 then ∂wi(x) =
n0

i { f1, . . . , fn} in KM
n (E0

i ); if wi lies over t = 1 then ∂wi(x) = −n1
i { f1, . . . , fn} in

KM
n (E1

i ). By Weil Reciprocity 5.4, ∑N∂wi(x) = ϕ0 −ϕ1 vanishes in KM
n (F). �
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We are now ready to define the map θ . By lemma 5.2 it is enough to find a
map f from Ztr(G∧n

m )(SpecF) to KM
n (F) which composed with the difference of

the face operators is zero. Such a map must induce a unique map θ on the cokernel:

Ztr(G∧n
m )(A1)

∂0 −∂1� Ztr(G∧n
m )(SpecF) �� Hn,n(SpecF,Z)

KM
n (F).

θ

�

f

�

But now Ztr(G∧n
m )(SpecF) is a quotient of the free abelian group generated by

the closed points of (A1
F −{0})n (by exercise 1.10), modulo the subgroup generated

by all points of the form (x1, . . . ,1, . . . ,xn) where the 1’s can be in any position.
If x is a closed point of (A1

F −{0})n with residue field E then x is defined by a
canonical sequence (x1, . . . ,xn) of nonzero elements of E. Now E is a finite field
extension of F , and {x1, . . . ,xn} ∈ KM

n (E). Using the norm map for Milnor K-
theory NE/F : KM

n (E) → KM
n (F), we define

f (x) = NE/F({x1, . . . ,xn}).
Since {x1, . . . ,1, . . . ,xn} = 0 in KM

∗ (E), this induces a well-defined map f :
Ztr(G∧n

m )(SpecF) → KM
n (F). By 5.5 the composition of f with the face opera-

tors is zero. We define θ to be the map induced on the cokernel.
If x is an F-point of (A1

F −0)n then its coordinates x1, . . . ,xn are nonzero ele-
ments of F . We shall write [x1 : · · · : xn] for the class of x in Hn,n(SpecF,Z). The
map θ is obviously surjective since θ([x1 : · · · : xn]) = {x1, . . . ,xn} for x1, . . . ,xn in
F .

Now let us build the opposite map, λF . For this, we will use the multiplicative
structure (3.12) on H∗,∗(X ,Z). The following lemma is immediate from construc-
tion 3.11 and lemma 5.2.

LEMMA 5.6. For a1, . . . ,an ∈ F we have [a1 : · · · : an] = [a1] · · · [an].

By definition KM
∗ (F) = T (F∗)/(x⊗ (1− x)). Therefore we define a map:

T (F∗) →⊕nHn,n(SpecF,Z), a1 ⊗·· ·⊗an �→ [a1] · · · [an].

We will prove that this maps factors through KM
n (F). By 5.6, it is enough to prove

that [a : 1−a] is zero, which is the statement of proposition 5.9 below.

EXAMPLE 5.7. We can use a special cycle to show that [a : −a] = 0. Consider
the correspondence Z from A1 (parametrized by t) to X = A1 −{0} (parametrized
by x) defined by

x2 − t(a+b)x− (1− t)(1+ab)x+ab = 0.

Restricting along t = 0,1 yields correspondences [ab] + [1] and [a] + [b] in
Cor(SpecF,X). Setting these equal recovers the identity [ab] = [a] + [b] in
H1,1(SpecF,Z) ∼= F∗, because [1] = 0.



32 5. RELATION TO MILNOR K-THEORY

Let Y denote the composition of Z with the diagonal embedding X ⊂ � X2.
Since [1 : 1] = [1][1] = 0, equating the restrictions along t = 0,1 yields the identity
[ab : ab] = [ab : ab]+ [1 : 1] = [a : a]+ [b : b] in H2,2(SpecF,Z). Bilinearity (5.6)
yields skew-commutativity: [a : b]+ [b : a] = 0. In particular, 2[a : a] = 0.

Passing to E = F(
√

a), we see that 0 = 2[
√

a :
√

a] = [a :
√

a] in
H2,2(SpecE,Z). By 5.3, applying NE/F yields 0 = [a : −a] in H2,2(SpecF,Z).

LEMMA 5.8. Suppose that there exists an n > 0 so that n[x : 1− x] = 0 for all
finite extensions of F and x �= 0,1 in F. Then [x : 1− x] = 0 in H2,2(SpecF,Z) for
every x �= 0,1.

PROOF. Suppose n = m · p where p is a prime; we want to prove m[x : 1−x] =
0. Let us consider y = p

√
x and E = F(y). Then 0 = mp[y : 1−y] = m[x : 1−y], and

1− x = NE/F(1− y). Hence

0 = NE/F(m[x : 1− x]) = m · [x : NE/F(1− y)] = m[x : 1− x].

The formula [x : 1− x] = 0 follows by induction on n. �

PROPOSITION 5.9. The element [x : 1− x] in H2,2(SpecF,Z) is the zero ele-
ment.

PROOF. Let Z be the finite correspondence from A1 (parametrized by t) to
X = A1 −0 (parametrized by x) defined by:

x3 − t(a3 +1)x2 + t(a3 +1)x−a3 = 0.

Let ω be a root of x2 + x + 1, so ω3 = 1, and E = F(ω). The fiber over t = 0
consists of a,ωa, and ω2a and the fiber over t = 1 consists of a3 and two sixth
roots of 1. Using the embedding x �→ (x,1− x) of A1 −{0,1} into X2, Z yields a
correspondence Z′ from A1 to X2. Then in H2,2(SpecE,Z)

∂0(Z′) = [a : 1−a]+ [ωa : 1−ωa]+ [ω2a : 1−ω2a]

= [a : 1−a3]+ [ω : (1−ωa)(1−ω2a)2]

is equal to

∂1(Z′) = [a3 : 1−a3]+ [−ω : 1+ω]+ [−ω2 : 1+ω2].

Multiplying by 3 eliminates terms [ω : b], noting that [−1 : 1+ω]+[−1 : 1+ω2] =
0 as (1+ω)(1+ω2) = 1. Therefore 0 = 2[a3 : 1−a3] over E. Applying the norm
yields 0 = 4[a3 : 1− a3] over F . Passing to the extension F( 3

√
a) and norming

yields 0 = 12[a : 1− a] over F . Applying lemma 5.8 with n = 12, we see that
0 = [a : 1−a] as well. �

Proposition 5.9 shows that the algebra map of lemma 5.6 induces a map on the
quotient λF : KM

n (F) → Hn,n(SpecF,Z). Now we need to check that λF and θ are
inverse to each other. Since θ ◦λF is the identity by construction, it is enough to
prove that λF is surjective.

LEMMA 5.10. The map λF is surjective.
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PROOF. By 5.2, it suffices to show that if x is a closed point of X = (A1
F −0)n

then [x] ∈ Hn.n(SpecF,Z) belongs to the image of λF . Set E = k(x), and choose a
lift x̃ ∈ XE of x. Since x is the proper push-forward of x̃, the definition of the norm
map (see 5.3) implies that:

[x] = NE/F([x̃]) x̃ = (a1, . . . ,an) ∈ (A1 −0)n(E).

Since x̃ is a rational point of XE , [x̃] is the image under λE of its coordinates. So
[x] = NE/FλE{a1, . . . ,an}. The lemma now follows from the assertion, proven in
5.11 below, that the diagram (5.10.1) commutes. �

(5.10.1)

KM
n (E)

λE� Hn,n(SpecE,Z)

KM
n (F)

NE/F

�

λF

� Hn,n(SpecF,Z).

NE/F

�

LEMMA 5.11. If F ⊂ E is any finite field extension, then the diagram (5.10.1)
commutes.

PROOF. By 5.3 (3) we may assume that [E : F] = l for some prime number
l. Assume first that F has no extensions of degree prime to l and [E : F] = l. The
Bass-Tate lemma (5.3) in [BT73] states that in this case KM

n (E) is generated by the
symbols a = {a1, . . . ,an−1,b} where ai ∈ F and b ∈ E. The properties of the norm
on KM

∗ and 5.6 yield:

λFN{a1, . . . ,an−1,b} = λF{a1, . . . ,an−1,N(b)} = [a1 : · · · : an−1] · [Nb].

But using the assertions of lemma 5.3 we have:

NλE(a) = N[a1 : · · · : an−1 : b]
(2)
= [a1 : · · · : an−1] ·N[b]

(4)
= [a1 : · · · : an−1] · [Nb].

This concludes the proof in this case.
Now we use a standard reduction. For simplicity, we will write H p,q(F) for

H p,q(SpecF,Z). If F ′ is a maximal prime-to-l extension of F then the kernel of
Hn,n(F)→ Hn,n(F ′) is a torsion group of exponent prime to l by (1) and (3) of 5.3.
Fix a ∈ KM

n (E). By the above case, t = NλE(a)−λFN(a) is a torsion element of
Hn,n(F), of exponent prime to l.

Since the kernel of Hn,n(F) → Hn.n(E) has exponent l, tE �= 0 if and only if
t = 0. If E is an inseparable extension of F then by 5.3 (4) we have tE = lλE(a)−
λE(la) = 0. If E is separable over F then E ⊗F E is a finite product of fields Ei
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with [Ei : E] < l. Moreover, Weil Reciprocity implies that the diagrams

KM
n (E)

diag� ⊕KM
n (Ei) Hn,n(E)

diag� ⊕Hn,n(Ei)

KM
n (F)

NE/F

�
� KM

n (E)

⊕NEi/E

�
Hn,n(F)

NE/F

�
� Hn,n(E)

⊕NEi/E

�

commute (see p. 387 of [BT73]). By induction on l, we have

tE = ⊕NEi/EλEi(aEi)−⊕λENEi/E(aEi) = 0.

Since tE = 0 we also have t = 0. �
This completes the proof of theorem 5.1.
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LECTURE 6

Étale sheaves with transfers

The goal of this lecture is to study the relations between presheaves with trans-
fers and étale sheaves. The main result (theorem 6.17) will be that sheafification
preserves transfers.

DEFINITION 6.1. A presheaf F of abelian groups on Sm/k is an étale sheaf if
it restricts to an étale sheaf on each X in Sm/k. That is, if:

(1) the sequence 0 → F(X)
diag� F(U)

(+,−)� F(U ×X U) is exact for every
surjective étale morphism of smooth schemes U → X ;

(2) F(X � Y ) = F(X)⊕F(Y ) for all X and Y .

We will write Shét(Sm/k) for the category of étale sheaves, which is a full subcat-
egory of the category of presheaves of abelian groups.

A presheaf with transfers F is an étale sheaf with transfers if its underlying
presheaf is an étale sheaf on Sm/k. We will write Shét(Cork) for the full subcate-
gory of PST(k) whose objects are the étale sheaves with transfers.

For example, we saw in lecture 2 that the étale sheaves Z and O∗ have transfers,
so they are étale sheaves with transfers. Lemma 6.2 shows that Ztr(T ) is an étale
sheaf with transfers, even if T is singular (see 2.11).

LEMMA 6.2. For any scheme T over k, Ztr(T ) is an étale sheaf.

PROOF. Since PST(k) is an additive category, we have the required decom-
position of Ztr(T )(X � Y ) = HomCork(X � Y,T ). To check the sheaf axiom for
surjective étale maps U → X , we proceed as in the proof of 3.2.

As U × T → X × T is flat, the pullback of cycles is well-defined and is an
injection. Hence the subgroup Ztr(T )(X) = Cork(X ,T ) of cycles on X ×T injects
into the subgroup Ztr(T )(U) = Cork(U,T ) of cycles on U ×T .

To see that the sequence 6.1 (1) is exact at Ztr(T )(U), take ZU in Cork(U,T )
whose images in Cork(U ×X U,T ) coincide. We may assume that X and U are
integral, with function fields F and L, respectively. Since CorF(F,TF) is the
equalizer of CorF(L,TF) ⇒ CorF(L⊗F L,TF) by 1.11, ZL ∈ CorF(L,TF) comes
from a cycle ZF in CorF(F,TF). Thus by 1.13 there is a Zariski open V ⊂ X and a
cycle ZV in Cork(V,T ) agreeing with ZU in Cor(U ×X V,T ). Writing ZV = ∑niZi,
we see that we can decompose ZU = ∑niZ′

i so that Zi and Z′
i agree in Cor(U ×X

V,T ). By restricting attention to Zi and Z′
i , we may assume that ZV is an elementary

correspondence.

37
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Let Z be the closure of ZV in X ×T ; it is irreducible and dominant over X since
Z ×X V is. Since the group of cycles on U ×T meeting (U ×X V )×T injects into
the group of cycles on (U ×X V )×T , we see that the lift of Z to a cycle on U ×T
must be ZU . Hence the components of Z ×X U are finite over U . But by faithfully
flat descent, this implies that Z is finite over X , i.e., a finite correspondence in
Cork(X ,T ). �

COROLLARY 6.3. Let F be an étale sheaf with transfers. If X is smooth, then

HomShét(Cork)(Ztr(X),F) = HomPST(Ztr(X),F) = F(X).

COROLLARY 6.4. For any abelian group A, the A(n) are complexes of étale
sheaves. If 1/n ∈ k, the motivic complex of étale sheaves Z/n(1) is quasi-
isomorphic to the étale sheaf µn.

PROOF. The Z(n) are étale sheaves with transfers by lemmas 2.13 and 6.2,
as in 3.3. We know that the Ztr(T ) are sheaves of free abelian groups. Hence
A⊗Ztr(T ) are étale sheaves. We conclude that the A(n) are étale sheaves by the
same argument we used for the Z(n). The last assertion is just a restatement of
corollary 4.8 using 6.2. �

EXERCISE 6.5. Let π : X → S be a finite étale map, and πt the induced finite
correspondence from S to X . If F is any étale sheaf with transfers, show that
π∗

t : F(X) → F(S) is the étale trace map of [Mil80, V.1.12]. Hint: If Y → S is
Galois with group G, and factors through X , then Cor(S,X) = Cor(Y,X)G by 6.2.
Show that the image of π in Cor(Y,X) is the sum ∑ f of all S-maps from f : Y → X ,
and hence determines πt ∈Cor(S,X).

Locally constant étale sheaves form a second important class of étale sheaves
with transfers.

DEFINITION 6.6. The full subcategory Et/k of Sm/k consists of all the
schemes of finite type over k which are smooth of dimension zero. Every S in
Et/k is a finite disjoint union of spectra of separable field extensions of k.

It is well known (see [Mil80] and [SGA4, VIII 2.2]) that the category of étale
sheaves on Et/k is equivalent to the category of discrete modules over the profinite
group Gal(ksep/k). If F corresponds to the Galois module M and S = Spec(�) then
F(S) = MH , where H = Gal(ksep/�).

We have the following functors:

Shét(Et/k) �π∗

π∗
� Shét(Sm/k),

where the restriction π∗ is the right adjoint of π∗; they are both exact functors.

DEFINITION 6.7. An étale sheaf is locally constant if π∗π∗F → F is an iso-
morphism. We will write Shlc

ét for the full subcategory of Shét(Sm/k) consisting of
all locally constant sheaves.
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EXERCISE 6.8. Let F be the locally constant sheaf π∗M corresponding to the
G-module M. If X is connected, and l is the separable closure of k in H0(X ,OX),
show that F(X) = MH where H = Gal(ksep/l). Conclude that π∗F is the Galois
module M. Note that F(X) = MH is also defined if X is normal.

LEMMA 6.9. The functors π∗ and π∗ induce an equivalence between the cate-
gory Shlc

ét and the category of discrete modules over the profinite group Gal(ksep/k).

PROOF. If M is in Shét(Et/k), then M → π∗π∗M is an isomorphism by exercise
6.8. Thus π∗ is faithful. By category theory, π∗π∗π∗ ∼= π∗, so for F locally constant
we have a natural isomorphism π∗π∗F ∼= F . �

EXERCISE 6.10. Let L be a Galois extension of k, and let G = Gal(L/k). Show
that Ztr(L) is the locally constant étale sheaf corresponding to the G-module ZG of
maps G → Z. Hint: (ZG)H = ZG/H .

LEMMA 6.11. Any locally constant étale sheaf has a unique underlying étale
sheaf with transfers.

PROOF. Let Z′ ⊂ X ×Y be an elementary correspondence and let Z be the
normalization of Z′ in a normal field extension L of F = k(X) containing K = k(Z′).
If G = Gal(L/F) then we also have G = AutX(Z), and it is well known that the set
HomX(Z,Z′) of maps q : Z → Z′ over X is in one-to-one correspondence with the
set of field maps HomF(K,L). The cardinality of this set is the separable degree of
K over F .

Let M be a Galois module, considered as a locally constant étale sheaf. It is
easy to check using exercise 6.8 that M(X) is isomorphic to M(Z′)G.

Write i for the inseparable degree of K over F . Then the transfer map M(Y )→
M(X) is defined to be the composite of M(Y ) → M(Z′), multiplication by i, and
the sum over all maps q : Z → Z′ over X of q∗ : M(Z′) → M(Z).

The verification that this gives M the structure of a presheaf with transfers is
now straightforward, and we refer the reader to [SV96, 5.17] for details. �

It is clear that the locally constant étale sheaves form an abelian subcategory
of Shét(Cork), i.e., the inclusion is an exact functor.

In order to describe the relation between presheaves and étale sheaves with
transfers (see 6.18), we need two preliminary results.

If p : U → X is an étale cover, we define Ztr(Ǔ) to be the Čech complex

· · · p0−p1+p2� Ztr(U ×X U)
p0−p1� Ztr(U) � 0.

PROPOSITION 6.12. Let p : U → X be an étale covering of a scheme X. Then
Ztr(Ǔ) is an étale resolution of the sheaf Ztr(X), i.e., the following complex is exact
as a complex of étale sheaves.

· · · p0−p1+p2� Ztr(U ×X U)
p0−p1� Ztr(U)

p� Ztr(X) → 0
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PROOF. As this is a complex of sheaves it suffices to verify the exactness of
the sequence at every étale point. Since points in the étale topology are strictly
Hensel local schemes, it is enough to prove that, for every Hensel local scheme S
over k, the following sequence of abelian groups is exact.

(6.12.1) · · · → Ztr(U)(S) → Ztr(X)(S) → 0.

Here S is an inverse limit of smooth schemes Si, and by abuse of notation Ztr(T )(S)
denotes limZtr(T )(Si).

To prove that (6.12.1) is exact we need another reduction step. Let Z be a
closed subscheme of X × S which is quasi-finite over S. We write L(Z/S) for the
free abelian group generated by the irreducible connected components of Z which
are finite and surjective over S. L(Z/S) is covariantly functorial on Z with respect
to morphisms of quasi-finite schemes over S. Clearly, the sequence (6.12.1) is the
colimit of complexes of the form:

(6.12.2) · · · → L(ZU ×Z ZU/S) → L(ZU/S) → L(Z/S) → 0

where ZU = Z ×X U and the limit is taken over all Z closed subschemes of X × S
which are finite and surjective over S. Therefore the proof of proposition 6.12 will
be completed once we show that the sequence (6.12.2) is exact for every subscheme
Z of X ×S which is finite and surjective over S.

Since S is Hensel local and Z is finite over S, Z is also Hensel. Therefore the
covering ZU → Z splits. Let s1 : Z → ZU be a splitting. We set (ZU)k

Z = ZU ×Z

· · ·×Z ZU . It is enough to check that the maps sk : L((ZU)k
Z/S)→ L((ZU)k+1

Z /S) are

contracting homotopies where sk = L
(

s1 ×Z id(ZU )k
Z

)
.

This is the end of the proof of proposition 6.12. �

The proof shows that Ztr(Ǔ) is also a Nisnevich resolution of Ztr(X), i.e., the
sequence of 6.12 is also exact as a complex of Nisnevich sheaves. We can pinpoint
why this proof holds in the étale topology and in the Nisnevich topology, but does
not hold in the Zariski topology. This is because:

• if S is strictly Hensel local (i.e., a point in the étale topology) and Z is
finite over S then Z is strictly Hensel;

• if S is Hensel local (i.e., a point in the Nisnevich topology) and Z is finite
over S then Z is Hensel;

• if S is local (i.e., a point in the Zariski topology) and Z is finite over S
then Z need not be local but will be semilocal.

EXAMPLE 6.13. Let X be a connected semilocal scheme finite over a local
scheme S. X is covered by its local subschemes Ui. If X is not local, its graph Γ
defines an element of Ztr(X)(S) that cannot come from ⊕Ztr(Ui)(S), because Γ
does not lie in any S×Ui. (By 1.4, every elementary correspondence from �Ui

to S is an elementary correspondence from X to S, and they form a basis for the
image of ⊕Ztr(Ui)(S)→ Ztr(X)(S).) Hence ⊕Ztr(Ui)→ Ztr(X) is not a surjection
of Zariski sheaves.
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We will see in 13.14 that Tot(C∗Ztr(Ǔ)) is a Zariski resolution of C∗Ztr(X).
If U = {Ui → X} is a Zariski covering, we can replace the infinite complex

Ztr(Ǔ) of 6.12 by the bounded complex

Ztr(Ǔ ) : 0 → Ztr(U1 ∩·· ·∩Un) → ·· · → ⊕iZtr(Ui) → 0.

PROPOSITION 6.14. Let U = {Ui →X} be a Zariski open covering of X. Then
Ztr(Ǔ ) is an étale resolution of Ztr(X), i.e., the following sequence is exact as a
complex of étale sheaves:

0 → Ztr(U1 ∩·· ·∩Un) → ·· · → ⊕iZtr(Ui) → Ztr(X) → 0.

PROOF. If n = 2, we apply 6.12 to U = U1 �U2. Since U ×X U = U1 �U2 �
(U1 ∩U2), we see that the image of Ztr(U×3) in Ztr(U ×X U) is Ztr(U1)⊕Ztr(U2)
in the exact complex of 6.12. It follows that Ztr(Ǔ ) → Ztr(X) is exact for n = 2.
For n > 2, the exactness follows by induction on n. �

EXAMPLE 6.15. If U is the cover of P1 by A1 = Speck[t] and Speck[t−1], and
we mod out by the basepoint t = 1, we obtain the exact sequence

0 → Ztr(Gm) → 2Ztr(A1,1) → Ztr(P1,1) → 0.

Applying C∗ yields an exact sequence of complexes (see 2.14). Recalling that
C∗Ztr(A1,1) � 0, we obtain quasi-isomorphisms of étale complexes (or even Nis-
nevich complexes)

C∗Ztr(P1,1) �C∗Ztr(Gm)[1] = Z(1).

LEMMA 6.16. Let p : U →Y be an étale covering and f : X →Y a finite corre-
spondence. Then there is an étale covering p′ : V → X and a finite correspondence
f ′ : V →U so that the following diagram commutes in Cork.

V
f ′ � U

X

p′

�

f
� Y

p

�

PROOF. We may suppose that f is defined by the elementary correspondence
Z ⊂ X ×Y . (For a general correspondence f , we take a disjoint union of such V ’s.)
Form the pullback ZU = Z ×Y U inside X ×U . Since the projection ZU → Z is
étale and Z → X is finite, the projection splits étale-locally on X . That is, there
is an étale cover V → X so that V ×X ZU → V ×X Z has a section s. But then
s(V ×X Z) ⊂ V ×U is finite over V and defines the required finite correspondence
V →U . �
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V ×X ZU
� ZU

⊂ � X ×U � U

V ×X Z

split

�
� Z

�
⊂ � X ×Y � Y

�

V
�

� X
��

�

As in [Mil80] pp. 61–65, the inclusion i : Shét(Sm/k) → PreSh(Sm/k) has a
left adjoint aét , and i◦aét is left exact. Hence the category of étale sheaves on Sm/k
is abelian, and the functor aét is exact.

If F is a presheaf with transfers, the following theorem shows that its étale
sheafification admits transfers. The same holds in the Nisnevich topology but not in
the Zariski topology. However, we will prove later (in 22.15) that if F is a homotopy
invariant presheaf with transfers, its Zariski sheafification admits transfers.

Recall that there is a forgetful functor ϕ : PST(k) → PreSh(Sm/k).

THEOREM 6.17. Let F be a presheaf with transfers, and write Fét for aétϕF.
Then Fét has a unique structure of presheaf with transfers such that F → Fét is a
morphism of presheaves with transfers.

COROLLARY 6.18. The inclusion functor Shét(Cork) ⊂ i� PST(k) has a left
adjoint aét . The category Shét(Cork) is abelian, aét is exact and commutes with the
forgetful functor ϕ to (pre)sheaves on Sm/k.

The connections between these abelian categories, given by 6.17 and 6.18, are
described by the following diagram, where the ϕ are (exact) forgetful functors and
both functors aét are exact.

PreSh(Sm/k) �ϕ
PST(k)

Shét(Sm/k)

i
∪

�
aét
�

�ϕ
Shét(Cork)

i
∪

�
aét
�

PROOF OF 6.17. Uniqueness. Suppose that two étale sheaves with transfers
F1 and F2 satisfy the conditions of the theorem. We already know that F1(X) =
F2(X) = Fét(X) for all X and we just need to check that F1( f ) = F2( f ) holds when
f : X → Y is a morphism in Cork. This is given if f comes from Sm/k.

Let y ∈ F1(Y ) = F2(Y ) = Fét(Y ). Choose an étale covering p : U → Y so that
y|U ∈ Fét(U) is the image of some u ∈ F(U). Lemma 6.16 yields the following
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diagram.

V
f ′ � U

X

p′

� f � Y

p
�

Because y|U comes from F(U), we have F1( f ′)(y|U) = F2( f ′)(y|U).

F1(p′)F1( f )(y) = F1( f ′)F1(p)(y) as the diagram commutes,

= F1( f ′)(y|U) as p comes from Sm/k,

= F2( f ′)(y|U) as y|U comes from F(U),

= F2(p′)F2( f )(y) as the diagram commutes,

= F1(p′)F2( f )(y) as p′ comes from Sm/k.

This implies that F1( f ) = F2( f ) as p′ is a covering and F1 is an étale sheaf.
Existence. We need to define a morphism Fét(Y ) → Fét(X) for each finite cor-

respondence from X to Y . We first produce a map

Fét(Y ) → HomSh(Ztr(Y ),Fét)

natural in Cork and compatible with F(Y ) → HomPST(Ztr(Y ),F).
For all y ∈ Fét(Y ) there is an étale covering p : U → Y and an element u ∈

F(U) so that y and u agree in Fét(U). By representability (see 2.8), u determines
a morphism Ztr(U) → F of presheaves with transfers. By shrinking U , we may
arrange that the difference map sends u to zero in F(U ×Y U). A chase in the
commutative diagram below (where U2

Y denotes U ×Y U) will produce the map of
sheaves [y] : Ztr(Y ) → Fét . The top row is exact by 6.12.

0 → HomSh(Ztr(Y ),Fét) � HomSh(Ztr(U),Fét) � HomSh(Ztr(U2
Y ),Fét)

HomPST(Ztr(U),F)
�

� HomPST(Ztr(U2
Y ),F)

�

It is easy to see that [y] is independent of the choice of U and u. We can now
define a pairing Cor(X ,Y )⊗Fét(Y ) → Fét(X). Let f be a correspondence from X
to Y and y ∈ Fét(Y ). By the map just described, y induces a morphism of sheaves
[y] : Ztr(Y ) → Fét . Consider the composition:

Ztr(X)
f� Ztr(Y )

[y]� Fét .

Hence there is a map Ztr(X)(X) → Fét(X). The image of the identity map will be
the pairing of f and y. �

We conclude with an application of these ideas to homological algebra.

PROPOSITION 6.19. The abelian category Shét(Cork) has enough injectives.
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PROOF. The category S = Shét(Cork) has products and filtered direct limits
are exact, because this is separately true for presheaves with transfers and for étale
sheaves. That is, S satisfies axioms (AB5) and (AB3∗). By 6.3, the family of
sheaves Ztr(X) is a family of generators of S . It is well known (see [Gro57,
1.10.1]) that this implies that S has enough injectives. �

EXAMPLE 6.20. Let F be an étale sheaf with transfers. We claim that the terms
En(F) in its canonical flasque resolution (as an étale sheaf, see [Mil80] p. 90) are
actually étale sheaves with transfers. For this it suffices to consider E = E0(F).
Fix an algebraic closure k̄ of k. For every X we define:

E(X) = ∏
x̄∈X(k̄)

Fx̄,

where X(k̄) is the set of k̄-points of X , and Fx̄ denotes the fiber of F at x̄. If U → X
is étale, E(U) is the product ∏Fx̄ over x̄ ∈ U(k̄). From this it follows that E is an
étale sheaf, not only on X but on the big étale site of Sm/k. It is also easy to see
that F(X) → E(X) is an injection.

In addition, E is a presheaf with transfers and F → E is a morphism in PST.
For if Z ⊂ X ×Y is an elementary correspondence from X to Y , we define the
transfer E(Y ) → E(X)

E(Y ) = ∏
ȳ∈Y (k̄)

Fȳ → ∏
x̄∈X(k̄)

Fx̄ = E(X)

by stating that the component for x̄ ∈ X(k̄) is the sum of the induced transfers
Fȳ → Fx̄, taken over all ȳ ∈ Y (k̄) such that z = (x̄, ȳ) ∈ Z(k̄). To see that F → E is
a morphism in PST, we may take X to be strictly Hensel local, so F(X) = E(X).
Since this forces Y to also be strictly Hensel semilocal, so F(Y ) = E(Y ), this is a
tautology.

The same construction works in the Nisnevich topology, letting E(X) be the
product over all closed points x ∈ X of F(SpecOh

X ,x) (see 13.3). However, exam-
ple 6.13 shows that it does not work in the Zariski topology, because the transfer
E(X) → E(S) need not factor through the sum of the E(Ui).

LEMMA 6.21. If F is any étale sheaf with transfers, then its cohomology
presheaves Hn

ét(−,F) are presheaves with transfers.

PROOF. The canonical flasque resolution F → E∗(F) of 6.20 is a resolution
of sheaves with transfers. Since the forgetful functor from PST(k) to presheaves is
exact, and Hn(−,F) is the cohomology E∗(F) as a presheaf, we see that Hn(−,F)
is also the cohomology of E∗(F) in the abelian category PST(k). �

EXAMPLE 6.22. By 2.4, F = Gm is an étale sheaf with transfers. By 6.21,
both the Picard group Pic(X) = H1

ét(X ,Gm) and the cohomological Brauer group
Br′(X) = H2

ét(X ,Gm)tors are presheaves with transfers.
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LEMMA 6.23. For any F ∈ Shét(Cork) and any smooth X and i ∈ Z we have:

ExtiShét(Cork)(Ztr(X),F) = Hi
ét(X ,F).

PROOF. The case i = 0 is Hom(Ztr(X),F) = F(X); this is 6.3. For i > 0 it
suffices to show that if F is an injective étale sheaf with transfers then Hi(X ,F) is
zero. Consider the canonical flasque resolution E∗(F) of example 6.20. Since F is
injective, the canonical inclusion F → E0 must split, i.e., F is a direct factor of E0

in Shét(Cork). Since Hi
ét(X ,F) is a direct summand of Hi(X ,E0), it must vanish

for i > 0. �
If we restrict to the category Shét(Cork,R) of étale sheaves of R-modules with

transfers, E0(F) is a flasque sheaf of R-modules with transfers by 6.20. The proof
of 6.23 goes through word for word to prove the following variation.

PORISM 6.24. For any F ∈ Shét(Cork,R) and any smooth X and i ∈ Z:

ExtiShét(Cork,R)(Rtr(X),F) = Hi
ét(X ,F).

The same proof also shows that lemma 6.23 and porism 6.24 hold for the Nis-
nevich topology (see 13.4). See [TriCa, 3.1.8] for an alternative proof.

EXERCISE 6.25. Let K be any complex of étale sheaves of R-modules with
transfers. Show that its hyperext and hypercohomology agree in the sense that for
any smooth X and i ∈ Z:

Exti(Rtr(X),K) ∼= Hi
ét(X ,K).

(For simplicity, the reader may assume that cdR(k) < ∞.)

If one is interested in extending the constructions of this lecture to possibly sin-
gular schemes, it would be useful to assume that k admits resolution of singularities
and use the cdh topology, which we will introduce in lecture 12.





LECTURE 7

The relative Picard group and Suslin’s Rigidity Theorem

In this lecture we introduce the relative Picard group Pic(X̄ ,X∞). When X̄ is a
good compactification of X over S, its elements determine maps F(X) → F(S) for
every homotopy invariant F . This pairing will be used to prove Suslin’s Rigidity
Theorem 7.20.

Recall from 1A.9 and 1A.10 that if S is a smooth connected scheme and p :
X → S a smooth morphism then we write c(X/S,0) for the free abelian group
generated by the irreducible closed subsets of X which are finite and surjective
over S. In this lecture we will write C0(X/S) for c(X/S,0).

By 1A.12, given a map S′ → S, there is a map C0(X/S) → C0(X ×S S′/S′),
induced from

C0(X/S) ⊂ � Ztr(X)(S) = Cork(S,X).

DEFINITION 7.1. We define Hsing
0 (X/S) to be the cokernel of the map

C0(X ×A1/S×A1)
∂0−∂1� C0(X/S)

where ∂i is induced by “t = i” : Speck → A1
k .

EXAMPLE 7.2. If X = Y ×k S then C0(X/S) = Cor(S,Y ) = Ztr(Y )(S). In ad-
dition, X ×A1 = Y ×k (S×A1) and the following diagram commutes:

C0(X ×A1/S×A1) � C0(X/S)

Ztr(Y )(S×A1)

=
�

� Ztr(Y )(S).

=
�

Taking cokernels, we conclude (using 2.27) that:

Hsing
0 (Y ×S/S) = H0C∗Ztr(Y )(S) = Cor(S,Y )/A1-homotopy.

In particular, this implies that two elements of Cor(S,Y ) are A1-homotopic exactly
when they agree in Hsing

0 (Y ×S/S).

If S = Speck then Hsing
0 (X/S) is the cokernel Hsing

0 (X/k) of Ztr(X)(A1) →
Ztr(X)(S) discussed in exercise 2.21, because C0(X/S) = Ztr(X)(Speck). Also by
2.21, there is a natural surjection Hsing

0 (X/S) → CH0(X). If X is projective, this
surjection is an isomorphism.

EXAMPLE 7.3. If S = Speck, then 7.16 below shows that Hsing
0 (P1/S) =

Hsing
0 (A1/S) = Z but Hsing

0 (A1 −0/S) = Z⊕ k∗.

47
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REMARK 7.4. In [SV96] the groups Hsing
∗ (X/S) are defined to be the homol-

ogy of the evident chain complex C∗(X/S) with

Cn(X/S) = C0(X ×∆n/S×∆n).

We will consider the singular homology Hsing
∗ (X/S) in lecture 10 below when S =

Speck, and C∗(X/S) = C∗Ztr(X)(S).

Let F be a PST. The map Tr : C0(X/S)⊗F(X) → F(S) is defined to be the
inclusion C0(X/S) ⊂Cork(S,X) (see 1A.12) followed by evaluation on F(X).

C0(X/S)⊗F(X)
Tr� F(S)

Cork(S,X)⊗F(X)
�

∩

evaluate

�

LEMMA 7.5. If F is a homotopy invariant presheaf with transfers then the map
Tr factors through Hsing

0 (X/S)⊗F(X) → F(S).

PROOF. Since F(X) = F(X ×A1), we have a diagram

C0(X ×A1/S×A1)⊗F(X)
Tr � F(S×A1)

C0(X/S)⊗F(X)

∂0 −∂1
� Tr � F(S). �

i0 − i1 = 0
�

EXAMPLE 7.6. If σ : S → X is a section of p, regarded as an element of
Hsing

0 (X/S), then Tr(σ ,−) is the usual map σ∗ : F(X) → F(S).

REMARK 7.7. The pairing Hsing
0 (X/S)⊗F(X) → F(S) is fundamental. It can

be defined more generally for homotopy invariant presheaves equipped only with
transfer maps TrD : F(X)→ F(S) for any relative smooth curve X/S and any effec-
tive divisor D ⊂ X which is finite and surjective over S, such that the transfer maps
form a “pseudo pretheory”. This construction applies to the K-theory presheaves
Kn(X), equipped with the transfer maps of exercise 2.7, even though these are not
presheaves with transfers.

In order to compute Hsing
0 (X/S), it is useful to embed X in a slightly larger

scheme X̄ .

DEFINITION 7.8. A smooth curve p : X → S admits a good compactification
X̄ if it factors as:

X ⊂
j � X̄

S

p̄

�

p
�
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where j is an open embedding, X̄ is a proper normal but not necessarily smooth
curve over S and Y = X̄ −X has an affine open neighborhood in X̄ .

If S is affine, for example, then X = A1 ×S admits P1 ×S as a good compact-
ification. Similarly, if C is any smooth affine curve over k then C× S → S admits
C̄× S as a good compactification. The following result implies that every point x
of every X has an open neighborhood U which has a good compactification over a
generic projection X → Al−1.

LEMMA 7.9. Let p : X → Al be an étale map. If k is infinite, there exists a
linear projection Al → Al−1 so that the composition X → Al−1 is a curve with a
good compactification.

PROOF. There is an open U ⊂ Al so that X is quasi-finite and surjective over
U . Choose a linear projection Al → Al−1 so that the restriction to Al −U is finite;
Al has good compactification Y = P1 ×Al−1. By Zariski’s Main Theorem (as for-
mulated in [EGA4, 8.12.6]), the map X →Y may be factored as an open immersion
X ⊂ � X̄ followed by a finite map p̄ : X̄ → Y . Replacing X̄ by its normalization,
we may assume that X̄ is normal. Note that p̄ is an affine map. Since Y is a good
compactification of U , X̄ is a good compactification of X . �

DEFINITION 7.10. If Y ⊂ i � X̄ is closed we set GX̄ ,Y = Ker(O∗
X̄ → i∗O∗

Y ).
The relative Picard group is defined to be:

Pic(X̄ ,Y ) = H1
Zar(X̄ ,GX̄ ,Y ).

By [Mil80] p. 124, we also have Pic(X̄ ,Y ) = H1
ét(X̄ ,GX̄ ,Y ).

By [SV96, 2.1], the elements of Pic(X̄ ,Y ) are the isomorphism classes (L , t)
of line bundles L on X̄ with a trivialization t on Y . The group operation is ⊗, i.e.,
(L , t)⊗ (L ′, t ′) = (L ⊗L ′, t ⊗ t ′).

REMARK 7.11. For X̄ = S×P1 and Y = S×{0,∞}, the “stalk” (i∗GX̄ ,Y )(Y )
of GX̄ ,Y at Y is the group M ∗(P1;0,∞)(S) of lecture 4.

The cohomology of O∗ → i∗O∗
Y yields the exact sequence

O∗(X̄) → O∗(Y ) → Pic(X̄ ,Y ) → Pic(X̄) → Pic(Y ).

Comparing this exact sequence for X̄ and X̄ ×A1 yields:

COROLLARY 7.12. If X̄ is a normal scheme and Y is reduced, we have:

Pic(X̄ ,Y ) = Pic(X̄ ×A1,Y ×A1).

Let us write j for the open embedding of X = X̄ −Y into X̄ .

LEMMA 7.13. If 1/n ∈ k, there is a natural injection

Pic(X̄ ,Y )/n ⊂ � H2
ét(X̄ , j!µn).
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PROOF. By Kummer Theory we have an exact sequence of étale sheaves:

(7.13.1) 0 � j!µn
� GX̄ ,Y

n� GX̄ ,Y
� 0.

Applying étale cohomology yields:

H1(X̄ , j!µn) � H1(X̄ ,GX̄ ,Y )
n� H1(X̄ ,GX̄ ,Y ) � H2

ét(X̄ , j!µn).

But the middle groups are both Pic(X̄ ,Y ). �

EXAMPLE 7.14. Suppose that S = Speck and k is algebraically closed. If X̄
is a smooth connected curve, then Pic(X̄ ,Y ) is an extension of Pic(X̄) by a finite
product of |Y |−1 copies of k∗. Hence Pic(X̄ ,Y )/n ∼= H2

ét(X̄ ,µn) ∼= Z/n.

Recall that C0(X/S) is generated by closed subsets Z of X which are finite and
surjective over S. Because X is smooth, each such subset is an effective Cartier
divisor on X̄ , and has an associated line bundle L equipped with a canonical map
O → L . This map gives a trivialization of L on X̄ −Z, which is a neighborhood
of Y . Thus a good compactification X̄ induces a homomorphism

C0(X/S) → Pic(X̄ ,Y ).

When Y lies in an affine open neighborhood, this map is onto because every trivi-
alization on Y extends to a neighborhood of Y .

EXERCISE 7.15. In this exercise we make the lifting to C0(X/S) explicit. Sup-
pose that L is a line bundle on X̄ with a fixed trivialization t on an open neigh-
borhood U of Y . Show that t gives a canonical isomorphism of L with a Cartier
divisor L (D), i.e., an invertible subsheaf of the sheaf K of total quotient rings of
O . (See [Har77, II.6].) Show that L (D) comes from a Weil divisor D = ∑niZi on
X̄ with the Zi supported on X̄ −U . Then show that the map C0(X/S) → Pic(X̄ ,Y )
sends ∑niZi to (L , t).

Because C1(X/S) → Pic(X̄ ,Y ) factors through Pic(X̄ ×A1,Y ×A1), corollary
7.12 shows that C0(X/S) → Pic(X̄ ,Y ) induces a homomorphism

Hsing
0 (X/S) → Pic(X̄ ,Y ).

THEOREM 7.16. Let S be a smooth scheme. If p : X → S is a smooth quasi-
affine curve with a good compactification (X̄ ,Y ), then:

Hsing
0 (X/S)

∼=� Pic(X̄ ,Y ).

PROOF. The kernel of C0(X/S) → Pic(X̄ ,Y ) consists of f ∈ K(X̄) which are
defined and equal to 1 on Y . Since X is quasi-affine over S, Y contains at least
one point in every irreducible component of every fiber of X̄ over S. Therefore the
divisor D of t f +(1− t) defines an element of C0(X ×A1/S×A1) with ∂0D = 0
and ∂1D = ( f ). Hence ( f ) represents 0 in Hsing

0 (X/S). This proves that the map
Hsing

0 (X/S) → Pic(X̄ ,Y ) is an injection, hence an isomorphism. �
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Theorem 7.16 also holds when X is not quasi-affine over S, but the proof is
more involved.

COROLLARY 7.17. If F is a homotopy invariant presheaf with transfers, there
is a pairing

Pic(X̄ ,Y )⊗F(X) → F(S).

EXAMPLE 7.18. If X is a smooth curve over k and 1/n ∈ k, then any two
geometric points x,x′ : Spec k̄ → X induce the same map F(X) → F(Spec k̄). Here
F is any homotopy invariant presheaf with transfers satisfying nF = 0. Indeed,
[x] = [x′] in Pic(X̄ ,Y )/n by example 7.14. This phenomenon is known as “rigidity,”
and is a simple case of theorem 7.20 below.

COROLLARY 7.19. Let p : X → S be a smooth curve with a good compacti-
fication. Assume that S is Hensel local and let X0 → S0 be the closed fiber of p.
Then for every n prime to chark the following map is injective:

Hsing
0 (X/S)/n → Hsing

0 (X0/S0)/n.

PROOF. Kummer Theory yields the exact sequence 7.13.1 of étale sheaves,
and similarly for (X̄0,Y0). Applying étale cohomology yields:

H1(X̄ , j!µn) � H1(X̄ ,GX̄ ,Y )
n� H1(X̄ ,GX̄ ,Y ) � H2

ét(X̄ , j!µn)

H1(X̄0, j!µn)
�

� H1(X̄0,GX̄ ,Y )
�

n� H1(X̄0,GX̄ ,Y )
�

� H2
ét(X̄0, j!µn).

∼=
�

Since H2(X̄ , j!µn) = H2
c (X ,µn), the right vertical map is an isomorphism by proper

base change with compact supports (see [Mil80, VI.3.2]). We have a diagram:

Pic(X̄ ,Y )/n ⊂ � H2
ét(X̄ , j!µn)

Pic(X0,Y0)/n
�

⊂� H2
ét(X̄0, j!µn).

∼=
�

Corollary 7.19 now follows from theorem 7.16. �
It follows from 6.8 that every locally constant étale sheaf F is homotopy in-

variant, because H0(X ×A1,O) ∼= H0(X ,O)⊗k k[t]. The following result shows
that the converse is true for torsion sheaves. (Cf. [SV96, 4.5].)

THEOREM 7.20. (Suslin’s “Rigidity Theorem”) Let F be a homotopy invariant
presheaf with transfers, such that the groups F(X) are torsion of exponent prime
to chark. Then Fét is locally constant.

PROOF. Let F0 = π∗π∗(F) be the locally constant sheaf for the group M =
F(ksep). We want to show that the adjunction F0 → F is an isomorphism of étale
sheaves. It suffices to check this on stalks. Since Osh

X ,x contains a separable closure
of k, we may assume that k is separably closed. In this case 7.20 asserts that Fét
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is the constant sheaf for the group M = F(Speck). Since X is smooth at x, Osh
X ,x

is isomorphic to the Henselization of Al at {0}. Thus the Rigidity Theorem is a
consequence of proposition 7.21 below. �

PROPOSITION 7.21. Let Sl be the Henselization at {0} in Al over a separably
closed field k. Assume that F is as in 7.20. Then F(Sl) = F(Speck).

PROOF. The hypothesis on F is inherited by F(X)n = {x ∈ F(X) : nx = 0}.
Therefore we may assume that F has exponent n for some prime n.

We use the following sequence of inclusions:

Speck = S0 ⊂ ·· · ⊂ Sl−1
i
⊂ Sl.

By induction on l, it is enough to prove that the map F(i) : F(Sl) → F(Sl−1) is an
isomorphism. For this it suffices to prove that F(i) is an injection, because it is
split by the projection π

Sl−1
�π

i
� Sl.

But F(Sl) = colim(X ,x0)→(Al ,0) F(X) where the colimit is taken over all dia-
grams:

Sl
π� X

p� Al.

It suffices to show for every X that if ϕ ∈ F(X) has i∗l π∗ϕ = 0 then π∗ϕ = 0. By
lemma 7.9 there is a curve X → Al−1 with a good compactification. Let X ′ be the
pullback in the following diagram.

Sl−1
il � Sl

X ′ q �

s1

�

X

π

�

Sl

� πl �

Id

�

Sl−1
� Al−1

�

The maps π and πilπl : Sl →X induce two sections s1,s2 : Sl →X ′ of X ′ → Sl which
agree on the closed fiber X0 = X ×S S0. Given ϕ ∈ F(X) we need to show that
π∗

l i∗l π∗ϕ = π∗ϕ . But π∗ϕ = s∗1q∗(ϕ) and π∗
l i∗l π∗ϕ = s∗2q∗(ϕ). The si coincide on

the closed point of Sl by construction. So we are left to prove that s∗(ψ) = (s′)∗(ψ)
for all ψ ∈ F(X ′) and any s,s′ : Sl → X ′ with s0 = s′0. Consider the following
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diagram:

(Γs −Γs′)⊗ψ � s∗(ψ)− s′∗(ψ)

C0(X ′/Sl)⊗F(X ′) �� H0(X ′/Sl)⊗F(X ′)
Tr � F(Sl)

H0(X ′
0/S0)⊗F(X ′)

�

∩

Tr � F(S0).
�

By assumption, the element (Γs −Γs′)⊗ψ in the top left group goes to zero in
H0(X ′

0/S0)⊗F(X ′). Hence it vanishes in H0(X ′/Sl)⊗F(X ′) by the immersion of
H0(X ′/S)/n in H0(X ′

0/S0)/n of 7.19. Therefore s∗(ψ)− s′∗(ψ) vanishes in F(Sl).
�

We conclude this lecture with a description of the behavior of the relative Pi-
card group for finite morphisms. We will need this description in the proof of 21.9.

DEFINITION 7.22. Let (Ȳ ,Y∞) and (X̄ ,X∞) be two good compactifications,
say of Y and X , respectively. Any finite map f : Ȳ → X̄ which restricts to a map
f : Y → X , yields a map f∗ : O∗(Y∞) → O∗(X∞) constructed as follows.

Consider α ∈ O∗(Y∞). We may extend α to α̃ ∈ O∗(U) where U is an affine
open neighborhood of Y∞. Since f is finite, we may assume that U = f−1(V ),
where V is an open neighborhood of X∞. Since V is normal, there is a norm map
N : O∗(U) → O∗(V ) (see example 2.4). We define f∗(α) = N(α̃)|X∞ . By 7.23
below, f∗(α) is independent of the choice of the extension α̃ .

EXERCISE 7.23. Let f : U → V be a finite morphism of normal schemes and
let Z ⊂V be a reduced closed subscheme. If α ∈ O∗(U) and α = 1 on the reduced
closed subscheme f−1(Z), show that N(α) = 1 on Z.

LEMMA 7.24. Let (Ȳ ,Y∞) and (X̄ ,X∞) be good compactifications of Y and X,
respectively. Let f be a finite map f : Ȳ → X̄ which restricts to a map f : Y → X.
Then the following diagram is commutative:

O∗(Y∞) � Pic(Ȳ ,Y∞)
∼=� H0(Y/S)

O∗(X∞)

f∗
�

� Pic(X̄ ,X∞)
∼=� H0(X/S),

�

where f∗ was defined in 7.22 and the right vertical map is induced by the push-
forward of cycles.

PROOF. Choose α ∈ O∗(Y∞) and extend it to a rational function t on Ȳ which
is regular in a neighborhood of the form f−1(V ). By definition, f∗(α) extends to
the regular function N(t) on V . The horizontal maps send α and f∗(α) to (OȲ ,α)
and (OX̄ , f∗α). Let D and D′ be the Weil divisors on Ȳ and X̄ associated to t and
N(t), respectively. We may regard D and D′ as classes in C0(Y/S) and C0(X/S).
By 7.15, D and D′ represent the images of (OȲ ,α) and (OX̄ , f∗α) in H0(Y/S) and
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H0(X/S), respectively. The right vertical map sends D to D′ because D′ = div(Nt)
is the push-forward of D = div(t) (see [Ful84, 1.4]). �



LECTURE 8

Derived tensor products

The goal of this lecture is to define a tensor product on the derived category of
étale sheaves with transfers, starting with the tensor product X ⊗Y = X ×Y on Cork

defined in 1.9. For this we first need to build a total tensor product on the category
PST(k), and this construction makes sense in somewhat greater generality.

Let A be a small additive category. We define Z(A ) to be the category of all
additive presheaves on A , i.e., all contravariant additive functors F : A → Ab. It
is an abelian category. The Yoneda embedding h : A → Z(A ) allows us to define
the additive category A ⊕ as the closure of A under infinite direct sums in Z(A ).
If Xi are in A , we will consider X = ⊕Xi to be the object of A ⊕ corresponding to
the presheaf hX = ⊕hXi in Z(A ).

More generally, if R is a ring, we define R(A ) to be the (abelian) category of
all additive functors F : A → R-mod. By abuse of notation, we will write hX for
the functor A �→ R⊗Z HomA (A,X) and call it “representable”.

LEMMA 8.1. Every representable presheaf hX is a projective object of R(A ),
every projective object of R(A ) is a direct summand of a direct sum of repre-
sentable functors, and every F in R(A ) has a projective resolution.

PROOF. Since HomR(A )(hX ,F) ∼= F(X), each hX is a projective object in
R(A ). Moreover every F in R(A ) is a quotient of some hX , X ∈ A ⊕, because
of the natural surjection ⊕

X inA

⊕
x∈F(X)

x �=0

hX
x� F. �

Now suppose that A has an additive symmetric monoidal structure ⊗, such as
A = Cork. (By this, we mean that ⊗ commutes with direct sums; see 8A.3.) We
may extend ⊗ to a tensor product on A ⊕ in the obvious way, and this extends to
tensor product of projectives. We now extend ⊗ to a tensor product on all of R(A ).

If F and G are in R(A ), we can form the presheaf tensor product (F ⊗R

G)(X) = F(X)⊗R G(X). However, it does not belong to R(A ), since F ⊗R G is not
additive. In order to get a tensor product on R(A ), we need a more complicated
construction.

Our construction of ⊗ is dictated by the requirement that if X and Y are in
A , then the tensor product hX ⊗ hY of their representable presheaves should be
represented by X ⊗Y . As a first step, note that we can extend ⊗ to a tensor product
⊗ : A ⊕ ×A ⊕ → A ⊕ commuting with ⊕. Thus if L1 and L2 are in the category

55
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Ch−(A ⊕) of bounded above cochain complexes (· · · → Fn → 0 → ·· · ), the chain
complex L1 ⊗L2 is defined as the total complex of the double complex L∗

1 ⊗L∗
2.

DEFINITION 8.2. If F and G are objects of R(A ), choose projective resolu-
tions P∗ → F and Q∗ → G and define F ⊗L G to be P⊗Q, i.e., Tot(P∗ ⊗Q∗). We
define the tensor product and Hom presheaves to be:

F ⊗G = H0(F ⊗L G),

Hom(F,G) : X �→ HomR(A )(F ⊗hX ,G).

Since any two projective resolutions of F are chain homotopy equivalent, the
chain complex F ⊗L G is well-defined up to chain homotopy equivalence, and
similarly for Hom(F,G). In particular, since hX and hY are projective, we have
hX ⊗L hY = hX ⊗hY = hX⊗Y for all X and Y in A ⊕.

The following result implies that R(A ) is an additive symmetric monoidal
category (see 8A.3).

LEMMA 8.3. The functor Hom(F,−) is right adjoint to F ⊗−. In particular,
Hom(F,−) is left exact and F ⊗− is right exact.

PROOF. Because R(A ) has enough projectives, it suffices to observe that

HomR(A )(hX ,Hom(hY ,G)) = G(X ⊗Y ) = HomR(A )(hX ⊗hY ,G). �
EXAMPLE 8.4. If A is the category of free R-modules over a commutative ring

R, R(A ) is equivalent to the category of all R-modules; the presheaf associated to
M is M⊗R, and Hom and ⊗ are the familiar HomR and ⊗R.

EXERCISE 8.5. If Fi and Gi are in R(A ), show that there is a natural map

Hom(F1,G1)⊗Hom(F2,G2) → Hom(F1 ⊗F2,G1 ⊗G2),

compatible with the monoidal pairing HomA (U ×A1,X1)⊗HomA (U ×A2,X2)→
HomA (U ×U ×A1 ×A2,X1 ×X2) → HomA (U ×A1 ×A2,X1 ×X2).

REMARK 8.6. If the (projective) objects hX are flat, i.e., hX ⊗− is an exact
functor, then ⊗ is called a balanced functor ([Wei94, 2.7.7]). In this case F ⊗L G
agrees (up to chain equivalence) with the usual left derived functor L(F ⊗−)G.
But we do not know when the hX are flat. It is true in example 8.4, but probably
not true in PST = Z(Cork).

We can now extend ⊗L to a total tensor product on the category Ch−R(A )
of bounded above cochain complexes (· · · → Fn → 0 → ·· · ). This would be the
usual derived functor if ⊗ were balanced (see [Wei94, 10.6]), and our construction

is parallel. If C is a complex in Ch−R(A ), there is a quasi-isomorphism P
�� C

with P a complex of projective objects. Any such complex P is called a projective
resolution of C, and any other projective resolution of C is chain homotopic to P;

see [Wei94, 5.7]. If D is any other complex in Ch−R(A ), and Q
�� D is a

projective resolution, we define

C⊗L D = P⊗Q.
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Because P and Q are bounded above, each (P⊗ Q)n = ⊕i+ j=nPi ⊗ Q j is a
finite sum, and C⊗L D is bounded above. Because P and Q are defined up to chain
homotopy, the complex C⊗L D is independent (up to chain homotopy equivalence)
of the choice of P and Q. There is a natural map C⊗L D →C⊗D, which extends
the map F ⊗L G → F ⊗G of definition 8.2.

LEMMA 8.7. Let C, C′ and D be bounded above complexes of presheaves.

(1) If C and D are complexes over A ⊕, or complexes of projectives, then

C⊗L D
�� C⊗D is a chain homotopy equivalence.

(2) If f : C
�� C′ is a quasi-isomorphism of complexes, then C⊗L D →

C′ ⊗L D is a chain homotopy equivalence.

PROOF. If C is a complex over A ⊕, it is a complex of projectives. We may
take P = C in the definition of ⊗L: C ⊗L D = C ⊗Q. If D is also a complex of
projectives, we may take Q = D as well. Part 1 is now immediate. In part 2,
we may take P to be a projective resolution of both C and C′, so that C ⊗L D =
C′ ⊗L D = P⊗Q. �

PROPOSITION 8.8. The derived category D−R(A ), equipped with ⊗L, is a
tensor triangulated category.

PROOF. The category P of projective objects in R(A ) is additive symmetric
monoidal, and D−R(A ) is equivalent to the chain homotopy category K−(P) by
[Wei94, 10.4.8]. By 8A.4, this is a tensor triangulated category under ⊗. The result
now follows from the natural isomorphism ⊗∼= ⊗L in P of 8.7. �

DEFINITION 8.9. If C and D are bounded above complexes of presheaves,
there is a canonical map from the presheaf tensor product C ⊗R D to the tensor
product C ⊗D of 8.2. By right exactness of ⊗R and ⊗ (see 8.3), it suffices to
construct a natural map of presheaves η : hX ⊗R hY → hX⊗Y . For U in A , ηU is
just the monoidal product in A , followed by the diagonal ∆ : U →U ⊗U :

hX (U)⊗R hY (U) = HomA (U,X)⊗R HomA (U,Y )
⊗� HomA (U ⊗U,X ⊗Y )

∆∗
� HomA (U,X ⊗Y ) = hX⊗Y (U).

Having disposed with these generalities, we now specialize to the case where
A is Cork and ⊗ is the tensor product X ⊗Y = X ×Y of 1.9. We have the Yoneda
embedding

Cork ⊂Cor⊕k ⊂ PST(k).

We will write ⊗tr for the tensor product on PST = Z(Cork), or on PST(k,R) =
R(Cork), and ⊗tr

L for ⊗L. Thus there are natural maps C⊗tr
L D →C⊗tr D.

EXAMPLE 8.10. By lemma 8.1, hX = Rtr(X) is projective and

Rtr(X)⊗tr Rtr(Y ) = Rtr(X ×Y ).
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Similarly if (Xi,xi) are pointed schemes then the Rtr(Xi,xi) are projective and from
2.13 we see that

Rtr(X1,x1)⊗tr · · ·⊗tr Rtr(Xn,xn) = Rtr((X1,x1)∧·· ·∧ (Xn,xn)).

In particular, Rtr(Gm)⊗
trn = Rtr(G∧n

m ).

The next example, in which R = Z, shows that ⊗tr does not behave well on
locally constant sheaves.

EXAMPLE 8.11. The complex Z
n� Z is a projective resolution of Z/n, so

we have Z/n⊗tr Ztr(X) = Z/n⊗Z Ztr(X) = (Z/n)tr(X) by 8.7.
If

√
−1 �∈ k and l = k(

√
−1), let Zε = Ztr(l)/Z denote the locally constant

sheaf corresponding to the sign representation of G = Gal(l/k). We see from 8.7
that Z/n⊗tr

L Zε is quasi-isomorphic to the complex (Z/n)⊗L (Z → Ztr(l)), i.e.,

0 → Z/n → (Z/n)tr(l) → 0.

Hence the presheaf (Z/n)⊗tr Zε sends Speck to 0 and Spec l to Z/n. If n = 4, this
is not an étale sheaf because (Zε/4Zε)G �= 0. It is easy to see, however, that its
sheafification is the locally constant étale sheaf:(

(Z/4)⊗tr Zε
)

ét
∼= µ4.

The étale sheaf µ4 is the tensor product (Z/4)⊗ét Zε of the two underlying étale
sheaves.

DEFINITION 8.12. If F and G are presheaves of R-modules with transfers, we
write F ⊗tr

ét G for (F ⊗tr G)ét , the étale sheaf associated to F ⊗tr G. If C and D are
bounded above complexes of presheaves with transfers, we shall write C⊗tr

ét D for
(C⊗tr D)ét , and C⊗tr

L,ét D for (C⊗tr
L D)ét � P⊗tr

ét Q, where P and Q are complexes
of representable sheaves with transfers, and P � C and Q � D. There is a natural
map C⊗tr

L,ét D →C⊗tr
ét D, induced by C⊗tr

L D →C⊗tr D.

LEMMA 8.13. If F,F ′ are étale sheaves of R-modules with transfers, and F is
locally constant, then the map of 8.9 induces an isomorphism

F ⊗ét F ′ ∼=� F ⊗tr
ét F ′.

PROOF. Let F correspond to the discrete Galois module M. As M =∪MH and
⊗tr commutes with colimits, we may assume that M = MH for some open normal
H of Gal(ksep/k). Thus M is a G-module, where G = Gal(ksep/k)/H. Choose a
presentation over R[G]:

⊕R[G]α →⊕R[G]β → M → 0.

As ⊗ét and ⊗tr
ét are both right exact, we may assume M = R[G] and F ′ = Rtr(X). If

L = (ksep)H and T = Spec(L) then F = Rtr(T ) by exercise 6.10. But then F⊗tr F ′ =
Rtr(T × X), so it suffices to observe that Rtr(T )⊗ét Rtr(X) → Rtr(T × X) is an
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isomorphism. Since T ×Y → Y is an étale cover, it suffices to observe that for Y
over T

Rtr(T )⊗ét Rtr(X)(Y ) ∼= R[G]⊗Cor(Y,X)
∼= R⊗Z Cor(Y,T ×X) = Rtr(T ×X)(Y ). �

We are now going to show (in 8.16) that the tensor product ⊗tr
L,ét induces a

tensor triangulated structure on the derived category of étale sheaves of R-modules
with transfers. Using proposition 8.8, we have C⊗tr

L,ét D ∼= D⊗tr
L,ét C, and it suffices

to show that ⊗tr
L,ét preserves quasi-isomorphisms.

As a first step, fix Y and consider the right exact functor Φ(F) = Rtr(Y )⊗tr
ét

F , from the category PST(k,R) of presheaves of R-modules with transfers to the
category of étale sheaves of R-modules with transfers. Its left derived functors
Lp Φ(F) are the homology sheaves of the total left derived functor Rtr(Y )⊗tr

L,ét F . If
C is a chain complex (bounded below in homological notation), the hyperhomology
spectral sequence (see [Wei94, 5.7.6]) is

E2
p,q = Lp Φ(HqC) ⇒ Lp+q Φ(C).

EXAMPLE 8.14. If U → X is an étale cover, consider the augmented Čech
complex

Č : · · · → Rtr(U ×X U) → Rtr(U) → Rtr(X) → 0.

Since Čét is exact by 6.12, each homology presheaf Hq(U/X) = Hq(Č) satisfies
Hq(U/X)ét = 0. By definition, Rtr(Y )⊗tr Č is the augmented Čech complex

· · · → Rtr(U ×X U ×Y ) → Rtr(U ×Y ) → Rtr(X ×Y ) → 0

for the étale cover U ×Y → X ×Y , so Rtr(Y )⊗tr
ét Č is again exact by 6.12. Thus

Ln Φ(Č) = 0 for all n. In particular, the 0th homology presheaf H0(U/X) satisfies

ΦH0(U/X) = Rtr(Y )⊗tr
ét H0(U/X) = H0

(
Rtr(Y )⊗tr

ét Č
)

= 0.

The following lemma shows that in fact every derived functor Ln Φ vanishes
on H0(U/X).

LEMMA 8.15. Fix Y and set Φ = Rtr(Y )⊗tr
ét . If F is a presheaf of R-modules

with transfers such that Fét = 0, then Ln Φ(F) = 0 for all n.

PROOF. Suppose that Fét = 0. Each map Rtr(X) → F is defined by an x ∈
F(X), and there is an étale cover Ux → X such that x vanishes in F(Ux). Thus the
composition Rtr(Ux) → Rtr(X) → F is zero, i.e., the given map factors through the
cokernel H0(Ux/X) of Rtr(Ux) → Rtr(X). It follows that the canonical surjection
⊕X ,xRtr(X)→ F factors through a surjection ⊕X ,xH0(Ux/X)→ F . If K denotes the
kernel of this surjection then Két = 0.

We now proceed by induction on n, noting that Ln Φ = 0 for n < 0. For n = 0,
we know that ΦH0(Ux/X) = 0 by example 8.14. Since Φ is right exact, this yields
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Φ(F) = 0. For n > 0, we may assume that the lemma holds for Lp Φ when p < n.
From the exact sequence

⊕X ,x(Ln Φ)H0(Ux/X) → Ln Φ(F) → Ln−1 Φ(K)

we see that it suffices to prove that (Ln Φ)H0(U/X) = 0. We saw in 8.14 that
Hq(U/X)ét = 0, so Lp ΦHq(U/X) = 0 by the inductive assumption. Hence the
hypercohomology sequence for the complex Č collapses to yield

Ln Φ(Č) ∼= (Ln Φ)H0(Č) = (Ln Φ)H0(U/X).

But we saw in example 8.14 that Ln Φ(Č) = 0, whence the result. �

Now we prove that ⊗tr
L,ét preserves quasi-isomorphisms.

PROPOSITION 8.16. Let f : C → C′ be a morphism of bounded above com-
plexes of presheaves of R-modules with transfers. If f induces a quasi-isomorphism
Cét → C′

ét between the associated complexes of étale sheaves, then C ⊗tr
L,ét D →

C′ ⊗tr
L,ét D is a quasi-isomorphism for every D.

PROOF. If P
�� C is a projective resolution of presheaves, then Pét → Cét

is a quasi-isomorphism of complexes of étale sheaves. Thus we may assume that
C, C′ and D are complexes of representable presheaves. If A denotes the mapping
cone of C →C′, it suffices to show that A⊗tr

L,ét D = A⊗tr
ét D is acyclic. As each row

of the double complex underlying A⊗tr
ét D is a sum of terms A⊗tr

ét Rtr(Y ), it suffices
to show that A⊗tr

ét Rtr(Y ) is acyclic. As in the proof of 8.15, its homology sheaves
are the hyper-derived functors Ln Φ(A), Φ = ⊗tr

étRtr(Y ). In the hypercohomology
spectral sequence

E2
p,q = Lp Φ(HqA) ⇒ Lp+q Φ(A)

the presheaves HqA have (HqA)ét = 0 because Aét is acyclic. By lemma 8.15 we
have Lq Φ(HqA) = 0 for all p and q. Hence the spectral sequence collapses to yield
Ln Φ(A) = 0 for all n, i.e., LΦ(A) � Rtr(Y )⊗tr

ét A is acyclic. �

COROLLARY 8.17. The derived category of bounded above complexes of étale
sheaves of R-modules with transfers is a tensor triangulated category.

PROOF. By 8.8, D−PST(k,R) is tensor triangulated. Now combine 8.16 and
8A.7, letting W be the system of morphisms inducing quasi-isomorphisms on the
associated complexes of étale sheaves. �

LEMMA 8.18. Let F be a locally constant étale sheaf of flat R-modules. Then
the map E ⊗tr

L,ét F → E ⊗tr
ét F is a quasi-isomorphism for every étale sheaf with

transfers E.

PROOF. Suppose first that E = Rtr(Y ). Choose a resolution C → F in the
category of locally constant sheaves in which each Cn is a sum of representa-
bles Rtr(Ln,α) for finite Galois field extensions Ln,α of k. (This is equivalent to
resolving the Galois module M corresponding to F by Galois modules R[Gn,α ],
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and the existence of such a resolution of M is well known.) By proposition 8.16,
E ⊗tr

ét C = E ⊗tr
L,ét C is quasi-isomorphic to E ⊗tr

L,ét F . By lemma 8.13,

E ⊗tr
ét C = E ⊗ét C

�� E ⊗ét F ��
E ⊗tr

ét F.

Hence the result is true for E = Rtr(Y ).
In the general case, choose a projective resolution P → E in the category of

presheaves of R-modules with transfers. Then we have quasi-isomorphisms

E ⊗tr
L,ét F = P⊗tr

L,ét F
�� P⊗tr

ét F
�� P⊗ét F.

Because sheafification is exact, P → E is also a resolution in the category of étale
sheaves of R-modules. Since F is flat in this category, we have the final quasi-
isomorphism:

P⊗ét F
�� E ⊗ét F ��

E ⊗tr
ét F. �

It is clear that 8.18 also holds if E is a bounded above complex of étale sheaves
with transfers.

COROLLARY 8.19. In the derived category of étale sheaves of Z/m-modules
with transfers, the operation M �→ M(1) = M⊗tr

L,ét Z/m(1) is invertible.

PROOF. Indeed, if µ∗
m is the Pontrjagin dual of µm, then combining 8.18, 8.13,

and 4.8 yields:

µ∗
m ⊗tr

L,ét Z/m(1)
8.18� µ∗

m ⊗tr
ét Z/m(1)

8.13∼= µ∗
m ⊗ét Z/m(1)

4.8∼= µ∗
m ⊗ét µm

∼= Z/m. �

EXERCISE 8.20. If E and F are bounded above complexes of locally constant
étale sheaves of R-modules, show that E ⊗tr

L,ét F is quasi-isomorphic to E ⊗L
R F ,

their total tensor product as complexes of étale sheaves of R-modules. (Hint: Use
8.13, 8.16, and 8.18.)

REMARK 8.21. If B → I is a flasque resolution of B as a sheaf with trans-
fers, we define RHom(RtrX ,B) to be Hom(RtrX , I), so that RHom(RtrX ,B)(U) =
RHom(U ×X ,B) for all U . If cd(k) < ∞ and X is proper then RHom(RtrX ,B) is
bounded above by proper base change (citing 9.26); this construction extends to
bounded above complexes B in the usual way. If A and B are both bounded above,
a short calculation shows that in the derived category D−(Sh(Cork,R)) of sheaves
with transfers we have the adjunction:

HomD−(A⊗tr
L,ét Rtr(X),B) ∼= HomD−(A,RHom(RtrX ,B)).





APPENDIX 8A

Tensor triangulated categories

The notion of a tensor triangulated category is a generalization of the tensor
product structure on the derived category of modules over a scheme, which played
a central role in the development of the subject.

DEFINITION 8A.1. A tensor triangulated category is an additive category
with two structures: that of a triangulated category and that of a symmetric
monoidal category. In addition, we are given natural isomorphisms r and l of the
form

C[1]⊗D
∼=

lC,D

� (C⊗D)[1] �
∼=

rC,D
C⊗D[1],

which commute in the obvious sense with the associativity, commutativity and
unity isomorphisms. There are two additional axioms:

(TTC1) For any distinguished triangle C0 � C1 � C2
∂� C0[1] and any

D, the following triangles are distinguished:

C0 ⊗D � C1 ⊗D � C2 ⊗D
l(∂ ⊗D)� (C0 ⊗D)[1],

D⊗C0 � D⊗C1 � D⊗C2
r(D⊗∂ )� (D⊗C0)[1].

(TTC2) For any C and D, the following diagram commutes up to multiplication
by −1, i.e., rl = −lr:

C[1]⊗D[1]
r� (C[1]⊗D)[1]

−1

(C⊗D[1])[1]

l

� r� (C⊗D)[2].

l

�

This description is not minimal. For example the commutativity isomorphism
τ : C⊗D ∼= D⊗C allows us to recover r from l and vice versa using the formula
τlτ = r. In addition, lC,D can be recovered from l1,D : 1[1]⊗D ∼= D[1], where 1
is the identity object for ⊗. Moreover, if either of the two triangles in (TTC1) is
distinguished, then both are distinguished.

The definition of tensor triangulated category that we have given is sufficient
for our purposes. However, it is possible to add extra axioms in order to work
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with a richer structure. For example, many more axioms are postulated by May in
[May01].

EXERCISE 8A.2. Show that the canonical isomorphisms lir j,r jli : C[i] ⊗
D[ j] ∼= (C⊗D)[i + j] differ by (−1)i j, and are interchanged by the twist isomor-
phism τ on C⊗D and C[i]⊗D[ j].

DEFINITION 8A.3. Let A be an additive category with a symmetric monoidal
structure ⊗. We say that A is an additive symmetric monoidal category if (�
Ai)⊗B ∼=� (Ai ⊗B) for every direct sum � Ai in A .

If C and D are bounded above complexes in A , the tensor product C⊗D has
(C⊗D)n = ⊕p+q=nCp ⊗Dq and differential d ⊗ 1 +(−1)p ⊗ d on Cp ⊗Dq. It is
associative.

We define the twist isomorphism τ : C⊗D→D⊗C componentwise, as (−1)pq

times the natural isomorphism Cp ⊗Dq → Dq ⊗Cp in A . It is a straightforward
exercise to verify that the category Ch−(A ) is an additive symmetric monoidal
category.

The degree n part of each of C⊗D[1], (C⊗D)[1], and C[1]⊗D are the same,
and we define lC,D to be the canonical isomorphism. The map rC,D is multiplication
by (−1)p on the summand Cp ⊗Dq. A routine calculation verifies the following.

PROPOSITION 8A.4. Let A be an additive symmetric monoidal category.
Then the chain homotopy category K−(A ) of bounded above cochain complexes
is a tensor triangulated category.

EXAMPLE 8A.5. (See [Ver96].) Let A be the category of modules over a
commutative ring, or more generally over a scheme. Then not only is K−(A )
a tensor triangulated category, but the total tensor product ⊗L makes the derived
category D−(A ) into a tensor triangulated category. In effect, D−(A ) is equivalent
to the tensor triangulated subcategory of flat complexes in K−(A ).

EXAMPLE 8A.6. The smash product of based topological spaces leads to an-
other example. If A → X → X/A → SA is a cofibration sequence, there is a natural
homeomorphism (X/A)∧Y ∼= (X ∧Y )/(A∧Y ); see [Whi78, III.2.3]. The suspen-
sion SX = S1 ∧X has homeomorphisms

X ∧ (SY )
∼=
r
� S(X ∧Y ) �

∼=
l

(SX)∧Y

satisfying (TTC1) and (TTC2) up to homotopy. It follows easily that the stable
homotopy category, which is triangulated by [Wei94, 10.9.18] and a symmetric
monoidal category by [Ada74, III.4], is a tensor triangulated category.

If W is a saturated multiplicative system of morphisms in a triangulated cate-
gory D, closed under ⊕, translations, and cones, Verdier proved in [Ver96] that the
localization D[W−1] is also a triangulated category.

PROPOSITION 8A.7. Let D be a tensor triangulated category. Suppose that if
C →C′ is in W then C⊗D →C′ ⊗D is in W for every D in D. Then the localization
D[W−1] is also a tensor triangulated category.
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PROOF. Because each ⊗D : D → D preserves W , ⊗ induces a symmetric
monoidal pairing D[W−1]×D[W−1] → D[W−1] by the universal property of lo-
calization (applied to W ×W ). Similarly, the natural isomorphisms r and l descend
to D[W−1]. Axiom (TTC2) is automatic, and axiom (TTC1) may be routinely ver-
ified for Verdier’s description of distinguished triangles in D[W−1]. �

Inverting twists X �→ X ⊗T is another construction which often preserves the
tensor triangulated structure. For example, it is used to construct the tensor trian-
gulated category DM−

ét(k,Z/m) from DMeff,−
ét (k,Z/m); see 9.7.

Let T be an object in a symmetric monoidal category (C ,⊗,1). Let C [T−1] de-
note the category whose objects are pairs (X ,m) with X in C and m∈Z; morphisms
(X ,m) → (Y,n) in C [T−1] are just elements of the direct limit limi→∞ Hom(X ⊗
T⊗m+i,Y ⊗T⊗n+i), where the bonding maps are given by the functor ⊗T : C →C .
Composition is defined in the obvious way, and it’s easy to check that C [T−1] is a
category. There is a universal functor C → C [T−1] sending X to (X ,0). Note that
(X ,m) ∼= X ⊗T⊗m in C [T−1] for m ≥ 0.

EXERCISE 8A.8. Let T be an object in a tensor triangulated category C . Show
that C [T−1] is a triangulated category, and that C → C [T−1] is triangulated.

In order for the formula (X ,m)⊗(Y,n)= (X⊗Y,m+n) to extend to a bifunctor
on C [T−1], we need to define the tensor f ⊗ g of two C [T−1]-morphisms in a
natural way. In general, C [T−1] need not be symmetric monoidal, as exercise 8A.9
shows.

EXERCISE 8A.9. Let T be an invertible object in a symmetric monoidal cate-
gory C , i.e., an object such that T ⊗U ∼= 1 for some U . It is well known that endo-
morphisms of 1 commute; show that the same must be true for endomorphisms of
T . Then show that the cyclic permutation of T ⊗ (T ⊗T ) must equal the identity
morphism.

PROPOSITION 8A.10. Let T be an object in a symmetric monoidal category
(C ,⊗,1) such that the cyclic permutation on T⊗3 is the identity in C [T−1]. Then
(C [T−1],⊗,1) is also a symmetric monoidal category.

PROOF. The hypothesis implies that permutations on T⊗n commute with each
other for n≥ 3. The many ways to define f ⊗g on X ⊗T m+i⊗Y ⊗T n+ j are indexed
by the (i, j)-shuffles, and differ only by a permutation, so f ⊗g is independent of
this choice. Therefore the tensor product is a bifunctor on C [T−1]. The symmetric
monoidal axioms may now be routinely verified as in [Ada74, III.4]. The hexag-
onal axiom, that the two isomorphisms from X ⊗ (Y ⊗ Z) to (Z ⊗X)⊗Y agree,
follows because the cyclic permutation on T⊗3 is the identity. �

COROLLARY 8A.11. Let T be an object in a tensor triangulated category C
such that the cyclic permutation on T⊗3 is the identity in C [T−1]. Then C [T−1] is
a tensor triangulated category.
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PROOF. By 8A.8 and 8A.10, C [T−1] is both triangulated and symmetric
monoidal. The verification of the remaining axioms is straightforward. �

EXERCISE 8A.12. Let T be an object in a tensor triangulated category D such
that Hom(X ,Y ) → Hom(X ⊗T,Y ⊗T ) is an isomorphism for every X and Y in D.
Show that D[T−1] is a tensor triangulated category.



LECTURE 9

A1-weak equivalence

In this section we define the notion of A1-weak equivalence between bounded
above cochain complexes of étale sheaves with transfers, and A1-local complexes.
The category DMeff,−

ét is obtained by inverting A1-weak equivalences. The main
result in this lecture (9.35) is that when we restrict to sheaves of Z/m-modules the
category DMeff,−

ét is equivalent to the derived category of discrete Galois modules
for the group Gal(ksep/k). We will use these ideas in the next lecture to identify
étale motivic cohomology with ordinary étale cohomology.

Since quasi-isomorphic complexes will be A1-weak equivalent, it is appropri-
ate to define the notion in the derived category D− = D−(Shét(Cork,R)) of étale
sheaves of R-modules with transfers. In D−, we have the usual shift, and

A
f� B � cone( f ) � A[1]

is a distinguished triangle for each map f . We refer the reader to [GM03] or
[Wei94] for basic facts about derived categories. We will also need the notion of
a thick subcategory, which was introduced by Verdier in [Ver96]. We will use
Rickard’s definition (see [Ric89]); this is slightly different from, but equivalent to,
Verdier’s definition.

DEFINITION 9.1. A full additive subcategory E of D− is thick if:

(1) Let A → B → C → A[1] be a distinguished triangle. Then if two out of
A,B,C are in E then so is the third.

(2) if A⊕B is in E then both A and B are in E .

If E is a thick subcategory of D−, we can form a quotient triangulated cate-
gory D−/E as follows (see [Ver96]). Let WE be the set of maps whose cone is
in E ; WE is a saturated multiplicative system of morphisms. Then D−/E is the
localization D−[W−1

E ], which may be constructed using calculus of fractions; see
[Wei94, 10.3.7]. In particular, a morphism f : C →C′ becomes an isomorphism in
D−[W−1

E ] if and only if f is in WE .

DEFINITION 9.2. A morphism f in D− is called an A1-weak equivalence if f
is in WA = WEA , where EA is the smallest thick subcategory so that:

(1) the cone of Rtr(X ×A1) → Rtr(X) is in EA for every smooth scheme X ;
(2) EA is closed under any direct sum that exists in D−.

We set DMeff,−
ét (k,R) = D−[W−1

A ].
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REMARK 9.3. Alternatively, we can describe EA as the thick subcategory of
all complexes E such that C∗(E) is acyclic (i.e., quasi-isomorphic to zero). Indeed,
it follows from 2.24 that C∗(E) is acyclic for every E in EA. Conversely, if C∗(E)
is acyclic then E → 0 is in WA by 9.15 below, and hence E is in EA.

It is clear that the notion of A1-weak equivalence in D− = D−(Sh(Cork,R))
makes sense for other topologies. This includes the alternative description in 9.3.
For the Nisnevich topology, we will see in 14.11 that the localization DMeff,−

Nis (k,R)
of D− is the triangulated category of motivic complexes introduced and studied in
[TriCa].

LEMMA 9.4. The smallest class in D− which contains all the Rtr(X) and is
closed under quasi-isomorphisms, direct sums, shifts, and cones is all of D−.

PROOF. First we show that for any complex D∗, if all Dn are in the class, then
so is D∗. If βnD is the brutal truncation 0 → Dn → Dn−1 → ·· · of D∗, then D∗ is
the union of the βnD. Each βnD is a finite complex, belonging to the class, as an
inductive argument shows. Since there is an exact sequence

0 � ⊕βnD � ⊕βnD � D∗ � 0,

it follows that D∗ is in the class.
Thus it suffices to show that each sheaf F is in the class. Now there is a

resolution L∗ → F by sums of the representable sheaves Rtr(X), given by lemma
8.1. Since each Ln is in this class, so is L∗ and hence F . �

LEMMA 9.5. If f : C → C′ is an A1-weak equivalence, then for every D the
map f ⊗ Id : C⊗tr

L,ét D →C′ ⊗tr
L,ét D is an A1-weak equivalence.

PROOF. Since ⊗tr
L,ét commutes with cones and f is an A1-weak equivalence if

and only if its cone is in EA, it suffices to show that if C is in EA, then C⊗tr
L,ét D is

in EA for any D.
If D = Rtr(X), consider the subcategory E of all C in D− such that C⊗tr

L,ét D
is in EA. E is closed under direct sums and it is thick. Moreover, if Y is a smooth
scheme, then E contains the cone of Rtr(Y ×A1) → Rtr(Y ). Therefore EA ⊆ E .

Now fix C in EA and consider the full subcategory D of all D in D− such that
C⊗tr

L,ét D is in EA. D is closed under direct sums, it is thick and we have seen that
it contains Rtr(X) for all X . By 9.4, we conclude that D = D−. �

COROLLARY 9.6. The product ⊗tr
L,ét endows DMeff,−

ét (k,R) with the structure
of a tensor triangulated category.

PROOF. Given 8.17, this follows from 9.5 and proposition 8A.7. �

REMARK 9.7. The category DM−
ét(k,R) is obtained from DMeff,−

ét (k,R) by in-
verting the Tate twist operation M �→ M(1) = M ⊗tr

L,ét R(1). If R = Z/m, then the
Tate twist is already invertible by 8.19, so we have

DM−
ét(k,Z/m) = DMeff,−

ét (k,Z/m).
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For any coefficients R, it will follow from 8A.11 and 15.8 below that
DM−

ét(k,R) is always a tensor triangulated category.

DEFINITION 9.8. Two morphisms F
f�
g
� G of sheaves of R-modules with

transfers are called A1-homotopic if there is a map h : F ⊗tr Rtr(A1) → G so that

the restrictions of h along R
1�
0
� Rtr(A1) coincide with f and g.

If G is an étale sheaf, h factors through (and is determined by) a map Fét ⊗tr
L,ét

Rtr(A1) → G.

EXAMPLE 9.9. Suppose we are given two maps f ,g : X → Y such that the
induced maps Ztr(X) → Ztr(Y ) are A1-homotopic in the sense of 9.8. By the
Yoneda lemma, this is equivalent to saying that f and g are restrictions of some
h ∈Cor(X ×A1,Y ), i.e., that f and g are A1-homotopic maps in the sense of 2.25.

LEMMA 9.10. Let f ,g : F → G be two maps between étale sheaves with trans-
fers. If f and g are A1-homotopic, then f = g in DMeff,−

ét (k,R).

PROOF. Any two sections of A1 → Speck yield the same map R → Rtr(A1) in
the localized category DMeff,−

ét (k,R), namely the inverse of the A1-weak equiva-
lence Rtr(A1) → R. Therefore the maps:

F
F×0�
F×1

� Rtr(A1)⊗tr
L,ét F

h� G

are the same in the localized category. �

There is a mistake in the proof of the corresponding lemma 3.2.5 in [TriCa] as
the proof there assumes that Ztr(A1) is flat in Cork. If we replace ⊗ by ⊗L in loc.
cit., the proof goes through as written.

COROLLARY 9.11. Every A1-homotopy equivalence is an A1-weak equiva-
lence.

Our next goal is to show that, F →C∗F is always an A1-weak equivalence (see
9.15 below). Hence F ∼= C∗F in DMeff,−

ét (k,R).
By the (direct sum) total complex Tot(B) of a double complex B, we mean the

cochain complex with nth term ⊕p+q=nBp,q; see [Wei94, 1.2.6].

LEMMA 9.12. Let f : B → B′ be a map of double complexes which are verti-
cally bounded above in the sense that there is a Q so that B∗,q = (B′)∗,q = 0 for all
q ≥ Q. Suppose that the restriction of f to each row is an A1-weak equivalence,
and that Tot(B) and Tot(B′) are bounded above.

Then Tot(B) → Tot(B′) is an A1-weak equivalence.

PROOF. Let S(n) be the double subcomplex of B consisting of the Bpq for
q ≥ n. Then TotS(n + 1) is a subcomplex of TotS(n) whose cokernel is a shift
of the nth row of B. If S′(n) is defined similarly, then each TotS(n) → TotS′(n)
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is an A1-weak equivalence by induction on n. Now Shét(Cork,R) satisfies (AB4),
meaning that ⊕, and hence Tot, is exact. Hence there is a short exact sequence of
complexes

0 �
∞⊕

n=1

TotS(n)
id−shift�

∞⊕
n=1

TotS(n) � TotB � 0

and similarly for B′. Since ⊕TotS(n) →⊕TotS′(n) is an A1-weak equivalence, so
is TotB → TotB′. �

COROLLARY 9.13. If f : C →C′ is a morphism of bounded above complexes,
and fn : Cn →C′

n is in WA for every n, then f is in WA.

PROOF. This is a special case of 9.12. �

LEMMA 9.14. For every F and every n, the map F
s� Hom(Rtr(∆n),F) =

Cn(F) is an A1-homotopy equivalence. A fortiori, it is an A1-weak equivalence.

PROOF. Since ∆n is isomorphic to An as a scheme, we have Cn(F) ∼=
C1Cn−1(F). Thus we may suppose that n = 1. We define a map m : C1F →C2F as
follows. For each X , the map

mX : C1(F)(X) = F(X ×A1) → F(X ×A2) = C2(F)

is induced by the multiplication map A2 → A1 by crossing it with X and applying
F . Since C2F = Hom(Rtr(A1),C1F), the adjunction of 8.2 associates to m a map
h :C1F⊗tr Rtr(A1)→C1F . Similarly the inclusions A1×{i}⊂A2 induce maps ηi :
C2F →C1F , and the compositions ηim : C1F → C1F are adjoint to the restriction
of h along i : R → Rtr(A1). Hence h induces an A1-homotopy between the identity
(η1m) and the composite

C1F
∂0� F

s� C1F,

corresponding to η0m. Since ∂0s is the identity on F , s and ∂0 are inverse A1-
homotopy equivalences. They are A1-weak equivalences by 9.11. �

LEMMA 9.15. For every bounded above complex F of sheaves of R-modules
with transfers, the morphism F → C∗(F) is an A1-weak equivalence. Hence F ∼=
C∗(F) in DMeff,−

ét (k,R).

PROOF. By 9.12, we may assume that F is a sheaf. Consider the diagram
whose rows are chain complexes

· · · � 0 � 0 � F

· · · 0 � F
� 1 � F

� 0 � F

=
�

· · · � C2F

�A1
�

� C1F

�A1
�

� F.

�A1

�



ÉTALE A1-LOCAL COMPLEXES 71

The first two rows are quasi-isomorphic. Now F�A1Cn(F) by 9.14. Using 9.13,
we see that the second and third rows are A1-weak equivalent. �

EXAMPLE 9.16. The identity map on O is A1-homotopic to zero by 2.23 and
9.15. Hence O is isomorphic to zero in DMeff,−

ét (k). When chark = � > 0 the
Artin-Schrier sequence of étale sheaves [Mil80, II 2.18(c)]

0 � Z/� � O
1−φ� O � 0

shows that Z/� ∼= 0 in DMeff,−
ét (k). Here R may be either Z or Z/�.

Étale A1-local complexes

In this section we will show that DMeff,−
ét (k,Z/m) can be identified with the

full subcategory L of A1-local complexes in D−(Shét(Cork,Z/m)).

DEFINITION 9.17. An object L in D− is called A1-local if for all A1-weak
equivalences K′ → K the induced map Hom(K,L) → Hom(K′,L) is bijective. We
write L for the full subcategory of A1-local objects in D−.

It is easy to see that L forms a thick triangulated subcategory of D−.

REMARK 9.18. We will see in 9.31 below that C∗ is a functor from D− to L ,
provided that R = Z/m and cdm(k) < ∞. Moreover, Hom(C∗(F),L) ∼= Hom(F,L)
for every L in L and F in D−, by 9.15 and definition 9.17. Hence C∗ is the left
adjoint to the inclusion L ⊂ D−.

LEMMA 9.19. If L is A1-local then for every K in D−

HomDMeff,−
ét (k,R)(K,L) = HomD−(K,L).

Hence the natural functor L → DMeff,−
ét (k,R) is full and faithful.

PROOF. By the calculus of fractions [Wei94, 10.3.7], the left side consists of

equivalence classes of diagrams K � s
K′ � L with s in WA. It suffices to

show that if K′ → K is an A1-weak equivalence then Hom(K,L) = Hom(K′,L).
But this holds since L is A1-local. �

LEMMA 9.20. An object L in D− is A1-local if and only if Hom(Rtr(X)[n],L)→
Hom(Rtr(X ×A1)[n],L) is an isomorphism for all X and n.

PROOF. Let K be the full subcategory of all K for which Hom(K[n],L) = 0
for all n. Clearly, K is a thick subcategory of D− and it is closed under direct
sums and shifts. Under the given hypothesis, K contains the cone of every map
Rtr(X ×A1) → Rtr(X). By definition, EA is a subcategory of K , i.e., L is A1-
local. �

LEMMA 9.21. If f : L → L′ is an A1-weak equivalence and L,L′ are A1-local
then f is an isomorphism in D−, i.e., a quasi-isomorphism of complexes of étale
sheaves with transfers.
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PROOF. By definition, f induces bijections Hom(L′,L) ∼= Hom(L,L) and
Hom(L′,L′) ∼= Hom(L,L′). Hence there is a unique g : L′ → L so that f g = 1L,
and f (g f ) = ( f g) f = f implies that g f = 1L′ . �

DEFINITION 9.22. An étale sheaf with transfers F is strictly A1-homotopy
invariant if the map Hn

ét(X ,F) → Hn
ét(X ×A1,F) is bijective for all smooth X and

every n ∈ N. In particular for n = 0 we must have that F is homotopy invariant
(2.15).

LEMMA 9.23. ([SGA4, XV 2.2]) If R is of torsion prime to chark then any
locally constant sheaf of R-modules is strictly A1-homotopy invariant.

LEMMA 9.24. Let F be an étale sheaf of R-modules with transfers. Then F is
A1-local if and only if F is strictly A1-homotopy invariant.

PROOF. By 6.23 or 6.24, we have

HomD−(Rtr(X),F[i]) = Ext i
Shét(Cork,R)(Rtr(X),F) = Hi

ét(X ,F)

for every smooth X . Since Rtr(X ×A1)[n] → Rtr(X)[n] is an A1-weak equivalence
for all n, 9.20 shows that F is A1-local if and only if the induced map

H−n
ét (X ,F) = Hom(Rtr(X)[n],F) → Hom(Rtr(X ×A1)[n],F) = H−n

ét (X ×A1,F)

is an isomorphism, that is, if and only if F is strictly A1-homotopy invariant. �

Here is a special case of 9.24 which includes the sheaves µ⊗q
n . It follows by

combining 9.23 with 9.24.

COROLLARY 9.25. Let M be a locally constant étale sheaf of torsion prime to
chark. Then M is A1-local.

We now make the running assumption that R is a commutative ring and that
cdR(k) < ∞, i.e., k is a field having finite étale cohomological dimension for coef-
ficients in R. If R = Z/m we will write cdm(k) for cdR(k). This assumption allows
us to invoke a classical result from [SGA4].

LEMMA 9.26. ([SGA4], [Mil80]) Let X be a scheme of finite type over k. If k
has finite R-cohomological dimension d then cdR(X) ≤ d +2dimk X.

COROLLARY 9.27. Set nX = cdR(k) + 2dimk X. Then Extn(Rtr(X),F) = 0
when n ≥ nX .

PROOF. Extn(Rtr(X),F) ∼= Hn
ét(X ,F) by 6.24. �

REMARK 9.28. If B is A1-local then so is the complex RHom(RtrX ,B) of 8.21.
Indeed, B is strictly A1-homotopy invariant by 9.24, so by 6.25, we have:

H∗RHom(RtrX ,B)(U) ∼= H∗(U ×X ,B)
∼= H∗(U ×X ×A1,B) ∼= H∗RHom(RtrX ,B)(U ×A1).
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If C is a cochain complex of presheaves, each cohomology Hn(C) is a presheaf.
We write aétHn(C) for its associated étale sheaf.

LEMMA 9.29. Assume that cdR(k) < ∞. Then for every (bounded above) chain
complex C there is a bounded, convergent spectral sequence:

E p,q
2 = Extp(Rtr(X),aétH

q(C)) =⇒ HomD−(Rtr(X),C[p+q]).

PROOF. This is well-known; see [Wei94, 5.7.9]. The spectral sequence is
bounded, and hence converges, by 9.27. �

PROPOSITION 9.30. Let C be a bounded above cochain complex of étale
sheaves of R-modules with transfers, where cdR(k) < ∞. If the sheaves aétHn(C)
are all strictly A1-homotopy invariant, then C is A1-local.

PROOF. Let C be a complex of étale sheaves with transfers. By 9.20, it suffices
to prove that cone( f ) is in this class when f is the projection Rtr(X×A1)→Rtr(X).
The map f induces a morphism between the spectral sequences of 9.29 for X and
X ×A1. Because the sheaves L = aétHqC are strictly A1-homotopy invariant, they
are A1-local by 9.24. Thus

Extp(Rtr(X),L) = HomD−(Rtr(X)[−p],L)
∼= HomD−(Rtr(X ×A1)[−p],L) = Extp(Rtr(X ×A1),L).

Hence the morphism of spectral sequences is an isomorphism on all E2 terms.
By the Comparison Theorem [Wei94, 5.2.12], f induces an isomorphism from
HomD−(Rtr(X)[n],C) to HomD−(Rtr(X ×A1)[n],C) for each n. Done. �

LEMMA 9.31. Suppose that 1/m ∈ k and cdm(k) < ∞. If K is a bounded above
complex of étale sheaves of Z/m-modules with transfers, then TotC∗(K) is A1-
local.

PROOF. Set C = TotC∗(K). By 2.19, each HiC is an A1-homotopy invariant
presheaf of Z/m-modules with transfers. By the Rigidity Theorem 7.20, the sheaf
aétHiC is locally constant. By 9.23, aétHiC is strictly A1-homotopy invariant. Fi-
nally, 9.30 lets us conclude that C is A1-local. �

Combining 9.21 with 9.31, we obtain:

COROLLARY 9.32. If F is A1-local then F ∼= C∗F in D−.

COROLLARY 9.33. If 1/m ∈ k then Z/m(q) is A1-local for all q.

PROOF. Take K to be (Z/m)trG
∧q
m [−q]; Z/m(q) = C∗K by definition 3.1. �

DEFINITION 9.34. If 1/m ∈ k, let L denote the full subcategory of D− con-
sisting of A1-local complexes of Z/m-modules with transfers. If E and F are
A1-local, we set E⊗L F = TotC∗(E⊗tr

L,ét F). By 9.31, E⊗L F is A1-local, so ⊗L

is a bifunctor from L ×L → L .
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Recall from 6.9 that the category of locally constant étale sheaves of Z/m-
modules is equivalent to the category Mod(G,Z/m) of discrete Z/m-modules
over the Galois group G = Gal(ksep/k). Let D−(G,Z/m) denote the (bounded
above) derived category of such modules. There is a triangulated functor π∗ from
D−(G,Z/m) to D− = D−(Shét(Cork,Z/m)).

THEOREM 9.35. If 1/m ∈ k, (L ,⊗L ) is a tensor triangulated category and
the functors

D−(G,Z/m)
π∗
� L � D−[W−1

A ] = DMeff,−
ét (k,Z/m)

are equivalences of tensor triangulated categories.

PROOF. Clearly, L is a thick subcategory of D−. By 9.19, the functor L →
D−[W−1

A ] is fully faithful. By 9.31, every object of D−[W−1
A ] is isomorphic to an

object of L . Hence L is equivalent to D−[W−1
A ] as a triangulated category.

By 9.6, DMeff,−
ét (k,Z/m) is a tensor triangulated category. Using the first part

of this proof, we conclude that L is a tensor triangulated category as well. More-
over, if E and F are A1-local, then E ⊗L F is isomorphic to E ⊗tr

L,ét F in D−[W−1
A ]

by 9.15, so the induced tensor operation on L is isomorphic to ⊗L .
Next we consider π∗. It is easy to see from 6.9 and 6.11 that π∗ induces an

equivalence between D−(G,Z/m) and the full subcategory of complexes of locally
constant sheaves in D−. By exercise 8.20, π∗ sends ⊗L

Z/m to ⊗tr
L,ét . It suffices to

show that every A1-local complex F is isomorphic to such a complex. By 9.15,
9.31, and 9.21 F → C∗F is a quasi-isomorphism. By 2.19, each aétHiF is A1-
homotopy invariant. By 7.20 the sheaves aétHiF are locally constant. Hence the
canonical map F → π∗π∗F is a quasi-isomorphism of complexes of étale sheaves.
But π∗F is a complex of modules in Mod(G,Z/m). �



LECTURE 10

Étale motivic cohomology and algebraic singular
homology

There are two ways one might define an étale version of motivic cohomol-
ogy. One way, which is natural from the viewpoint of these notes, is to use the
morphisms in the triangulated category DM−

ét , namely to define the integral coho-
mology group indexed by (p,q) as HomDM−

ét
(Ztr(X),Z(q)[p]), and similarly for

cohomology with coefficients in an abelian group A. The second approach, due to
Lichtenbaum, is to take the étale hypercohomology of the complex Z(q).

DEFINITION 10.1. For any abelian group A, we define the étale (or Lichten-
baum) motivic cohomology of X as the hypercohomology of A(q):

H p,q
L (X ,A) = Hp

ét(X ,A(q)|Xét ).

If q < 0 then H p,q
L (X ,A) = 0, because A(q) = 0. If q = 0 then H p,0

L (X ,A) ∼=
H p

ét(X ,A), because A(0) = A.
The two definitions agree in some cases of interest. We will see in 10.7 below

that H p,q
L (X ,Z/n) ∼= HomDM−

ét
(Ztr(X),Z/n(q)[p]) when 1/n ∈ k. Even further on,

in 14.27, we will see that H p,q
L (X ,Q) ∼= HomDM−

ét
(Ztr(X),Q(q)[p]). However, the

two definitions do not agree for �-torsion coefficients, for � = char(k). Indeed, for
q = 0 we have HomDM−

ét
(Ztr(X),Z/�[p]) = 0 in characteristic � by 9.16, yet the

groups H p,0
L (X ,Z/�) ∼= H p

ét(X ,Z/�) can certainly be nonzero.

By corollary 6.4 we have H p,1
L (X ,Z/n) ∼= H p

ét(X ,µn) when 1/n ∈ k. Here is
the generalization to all q.

THEOREM 10.2. Let n be an integer prime to the characteristic of k. Then:

H p,q
L (X ,Z/n) = H p

ét(X ,µ⊗q
n ) q ≥ 0, p ∈ Z.

By 6.4 there is a quasi-isomorphism µn → Z/n(1) of complexes of étale
sheaves. Because µn and the terms of Z/n(1) are flat as sheaves of Z/n-modules,
there is a morphism µ⊗q

n → (Z/n)(1)⊗q in the category of complexes of étale
sheaves of Z/n-modules. Combining with the multiplication of 3.11 gives a map

µ⊗q
n

� (Z/n)(1)⊗q � (Z/n)(q).

We may now reformulate theorem 10.2 as follows.

THEOREM 10.3. The map µ⊗q
n →Z/n(q) is a quasi-isomorphism of complexes

of étale sheaves.

75
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PROOF. The theorem is true for q = 1 by 6.4. By 9.25 and 9.31, both µ⊗q
n and

Z/n(q) are A1-local. We will show that the map µ⊗q
n → Z/n(q) is an A1-weak

equivalence in 10.6 below. By 9.21, it is also a quasi-isomorphism. �

Let R be any commutative ring. Recall that R(n) = R⊗Z Z(n). Clearly, the
multiplication map Z(m)⊗Z Z(n) → Z(m + n) of 3.11 induces a map R(m)⊗R

R(n) → R(m+n).

PROPOSITION 10.4. The multiplication map R(m)⊗R(n) → R(m+n) factors
through a map µ : R(m)⊗tr R(n) → R(m+n).

R(m)⊗R R(n)
mult. � R(m+n)

R(m)⊗tr R(n)

8.9
� µ

�

PROOF. We first reinterpret the left vertical map in simplicial language. Recall
that by definition 3.1, R(n)[n] = C∗(Rtr(G∧n

m )). Let us write An
• for the underlying

simplicial presheaf, viz., An
•(U) = Ztr(G∧n

m )(U ×∆•), and write the associated un-
normalized chain complex as An

∗. By 8.9, we have a natural map of bisimplicial
presheaves Am

• ⊗R An
• → Am

• ⊗tr An
•, and a map of their diagonal chain complexes,

(Am⊗R An)∗ → (Am⊗tr An)∗. As in 3.11, the Eilenberg-Zilber theorem yields quasi-
isomorphisms ∇ fitting into a commutative diagram:

R(m)⊗R R(n)[m+n]
= � Am

∗ ⊗R An
∗

∇ � (Am ⊗R An)∗

R(m)⊗tr R(n)[m+n]

8.9
� = � Am

∗ ⊗tr An
∗

8.9
� ∇ � (Am ⊗tr An)∗.

8.9
�

Comparing with 3.11, we see that it suffices to find a simplicial map for all X and
Y ,

(10.4.1) diag(C•Rtr(X)⊗tr C•Rtr(Y )) −→C•Rtr(X ×Y )

compatible with the corresponding construction 3.10 for ⊗R. The map µ will be
the composite of ∇ and the map induced by 10.4.1.

Let F be any presheaf with transfers. Definitions 8.2 and 2.14 imply that
Cn(F) ∼= Hom(Rtr(∆n),F) as presheaves and that C•(F) ∼= Hom(Rtr(∆•

k),F) as
simplicial presheaves. Using these identifications, we define the map 10.4.1 in
degree n as the composition:

Cn(Rtr(X))⊗tr Cn(Rtr(Y ))

= Hom(Rtr(∆n),Rtr(X))⊗tr Hom(Rtr(∆n),Rtr(Y ))
8.5� Hom(Rtr(∆n ×∆n),Rtr(X ×Y ))

diagonal� Hom(Rtr(∆n),Rtr(X ×Y ))

= Cn(Rtr(X ×Y )).
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Since Hom(Rtr(∆n ×∆n),Rtr(X ×Y ))(U) = Rtr(X ×Y )(U ×∆n ×∆n), the above
composition is the right vertical composition in the following commutative diagram
(see 8.5):

Rtr(X)(U ×∆n)⊗R Rtr(Y )(U ×∆n)
8.9 � (CnRtr(X)⊗tr CnRtr(Y ))(U)

Rtr(X ×Y )(U ×U ×∆n ×∆n)

⊗
� diag(U)� Rtr(X ×Y )(U ×∆n ×∆n)

8.5

�

Rtr(X ×Y )(U ×∆n).

diag(∆n)
�diag(U ×∆n) �

Since the left composite is the degree n part of construction 3.10, this shows that
the triangle in 10.4 commutes. �

PROPOSITION 10.5. The map Z/n(1)⊗
tr
L q → Z/n(q) is an A1-weak equiva-

lence in D−(Shét(Cork,Z/n)).

PROOF. The assertion follows from the diagram in figure 10.1, remembering
that by definition Z/n(q) is C∗(Z/n)tr(G∧n

m )[−q]. �

Z/n(1)⊗
tr
L q � Z/n(q)

(Z/n)tr(Gm)[−1]⊗
tr
L q

�A1 9.5+9.15

�

(Z/n)tr(G∧q
m )[−q]

9.15 �A1

�

((Z/n)tr(Gm))⊗
trq [−q]

8.10

=

�
8.7

�
�

FIGURE 10.1. The factorization in proposition 10.5

PROPOSITION 10.6. The map µ⊗q
n → Z/n(q) is an A1-weak equivalence in

D−(Shét(Cork,Z/n)).
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PROOF. Consider the following diagram, in which ⊗tr and ⊗tr
L are to be un-

derstood in Z/n-modules.

µ⊗tr
L q

n
�� Z/n(1)⊗

tr
L q

µ⊗q
n

� � µ⊗trq
n

�
�

� Z/n(1)⊗
trq

µ1

�

µ
� Z/n(q)

µ1 ◦µ

�

We already know that the top map is a quasi-isomorphism by 6.4 and 8.16. Lemma
8.13 proves that the bottom left map µ⊗q

n → µ⊗trq
n is a quasi-isomorphism. Lemma

8.18 proves that the left vertical map is a quasi-isomorphism. Hence the assertion
follows from proposition 10.5. �

Recall that when 1/n ∈ k we have DM−
ét = DMeff,−

ét (k,Z/n).

PROPOSITION 10.7. If 1/n ∈ k then

H p,q
L (X ,Z/n) ∼= HomDM−

ét
(Ztr(X),Z/n(q)[p]).

PROOF. Since A = Z/n(q) is A1-local by 9.33, the right side is

HomDM−
ét
(Ztr(X),Z/n(q)[p]) =HomD−(Ztr(X),Z/n(q)[p])

=Extp(Ztr(X),Z/n(q)).

By 6.25, this Ext group is Hp
ét(X ,Z/n(q)), which is the left side. �

As a bonus for all our hard work, we are able to give a nice interpretation of
Suslin’s algebraic singular homology. Recall that Rtr(X) = Ztr(X)⊗R.

DEFINITION 10.8. We define the algebraic singular homology of X by:

Hsing
p (X ,R) = Hp (C∗Rtr(X)(Speck)) .

By remark 7.4, Hsing
0 (X ,Z) agrees with the group Hsing

0 (X/Speck) of lecture
7. It is immediate from 5.2 that:

H p,q(Speck,R) = Hsing
q−p(G

∧q
m ,R).

Notice that Rtr(G
∧q
m ) is well-defined even though G∧q

m is not a scheme.
The following theorem was first proven in [SV96, 7.8] under the assumption

of resolution of singularities on k. The proof we give here doesn’t need resolution
of singularities, so it extends the result to fields of positive characteristic.

THEOREM 10.9. Let k be a separably closed field and X a smooth scheme
over k, and let l be a prime number different from chark. Then there exist natural
isomorphisms for all i:

Hsing
p (X ,Z/l)∗ ∼= H p

ét(X ,Z/l)

where the ∗ denotes the dual vector space over Z/l.
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It is amusing to note that this implies that Hi
ét(X ,Z/l) is finite, because it is a

countable-dimensional dual module.
To prove 10.9, we need one more lemma. To clarify the role of the coefficient

ring R, we will write D−
R for D−(Shét(Cork,R)), so that D−

Z is just the usual derived
category of Shét(Cork).

LEMMA 10.10. Let k be a separably closed field and C a bounded above chain
complex of étale sheaves of R-modules with transfers. Assume that the cohomology
sheaves of C are locally constant and projective (as R-modules).Then for any n∈Z
we have:

HomD−
R
(C,R[n]) = HomR−mod(Hn(C)(Speck),R).

PROOF. For simplicity, let us write Ext∗ for Ext in the category Shét(Cork,R).
(There are enough injectives to define Ext by 6.19.)

If P is a summand of ⊕αR, then Extn(P,R) injects into

Ext n(⊕αR,R) = ∏Ext n(R,R) = ∏Ext n(Rtr(Speck),R).

But Ext n(Rtr(Speck),R) = Hn
ét(Speck,R) by 6.24 and this vanishes if n �= 0 as k is

separably closed. If n = 0, this calculation yields Ext0(R,R) = R and Ext0(P,R) =
HomR−mod(P,R).

Now recall that Extn(F,R) = HomD−
R
(F,R[n]) for every sheaf F ; see [Wei94,

10.7.5]. More generally, if R → I∗ is an injective resolution then the total Hom
cochain complex RHom(C,R) of Hom∗(C, I[n]) satisfies

HnRHom(C,R) ∼= HomD−
R
(C,R[n]).

(See [Wei94, 10.7.4].) Since Hom∗(C, I[n]) is a bounded double complex, it gives
rise to a convergent spectral sequence which, as in [Wei94, 5.7.9], may be written

E pq
2 = Extp(HqC,R) =⇒ H p+qRHom(C,R) = HomD−

R
(C,R[p+q]).

The assumption on HqC makes the spectral sequence collapse to yield
Ext0(HnC,R) ∼= HomD−

R
(C,R[n]), whence the result. �

PROOF OF 10.9. Taking R = Z/l, this means that all R-modules are projec-
tive. Consider the diagram:

HomD−
R
(C∗Rtr(X),R[n])

∼=
10.10

� HomR−mod(Hsing
n (X ,R),R)

HomD−
R
(Rtr(X),R[n])

9.25 ∼=
� ∼=

6.24
� Hn

ét(X ,R).

By 2.19, each Hn = HnC∗Rtr(X) is a homotopy invariant presheaf of Z/l-modules
with transfers. Hence the sheaves aétHn are locally constant by the Rigidity Theo-
rem 7.20. Hence the top map is an isomorphism by 10.10. Since R is A1-local by
9.25, the left map is an isomorphism by 9.15. The bottom map is an isomorphism
by 6.24. �
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COROLLARY 10.11. Let k be a separably closed field and X a smooth scheme
over k, and let n be an integer relatively prime to chark. Then there exist natural
isomorphisms for all i:

Hsing
p (X ,Z/n)∗ ∼= H p

ét(X ,Z/n)

where the ∗ denotes the Pontrjagin dual Z/n-module.

PROOF. Using the sequences 0 → Z/l → Z/lm → Z/m → 0, the 5-lemma
shows that we may assume that n is prime. �



Part 3

Nisnevich Sheaves with Transfers





LECTURE 11

Standard triples

Our goal in this lecture is to prove proposition 11.1 below, which is one of
the main properties of homotopy invariant presheaves with transfers. It (or rather
its corollary 11.2) will be used in subsequent lectures to promote results from the
Nisnevich topology to the Zariski topology. It depends primarily upon the relative
Picard group introduced in lecture 7.

For all of this lecture, F will be a homotopy invariant presheaf with transfers.
Recall that a subgroup A of an abelian group B is called pure if nA = nB∩A

for every integer n. A homomorphism f : A → B of abelian groups is called pure
injective if it is injective and f (A) is a pure subgroup of B.

Any semilocal subscheme S of a smooth X is the intersection of the open sets
Xα which contain it; by abuse we call S smooth and write F(S) for lim−→F(Xα), as
in exercise 2.10. (If S is local, this is the stalk of F at the closed point of S.)

PROPOSITION 11.1. For any smooth semilocal S over k, any Zariski dense
open subset V ⊂ S, and any homotopy invariant presheaf with transfers F, the map
F(S) → F(V ) is pure injective.

The intersection of all such V is the coproduct of the generic points SpecEi of
S. Hence F(S) injects (as a pure subgroup) into ⊕F(SpecEi) = lim−→F(V ).

COROLLARY 11.2. Let F be a homotopy invariant presheaf with transfers. If
F(SpecE) = 0 for every field E over k, then FZar = 0.

Here is the proof of proposition 11.1; it is a consequence of a more precise
result, theorem 11.3, whose proof will take up most of this lecture.

PROOF. The semilocal scheme S is the intersection of a family Xα of smooth
varieties of finite type over k and V is the intersection of dense open subschemes
Vα ⊂ Xα . Hence F(S) → F(V ) is the filtered colimit of the maps iα : F(Xα) →
F(Vα). Since the Uα given by 11.3 contains some Xβ , the kernel of iα vanishes in
F(Xβ ) and the colimit is an injection. If a ∈ F(Xα) equals nb ∈ F(Vα) for some
b ∈ F(Vα), then the image of a in F(Uα), and hence in F(S), is n-divisible. �

THEOREM 11.3. Let X be smooth of finite type over a field k and let V be a
dense open subset. Then for every finite set of points x1, . . . ,xn ∈ X there exists
an open neighborhood U of these points such that the restriction F(X) → F(U)
factors through F(X) → F(V ). That is, there is a map F(V ) → F(U) such that the
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following diagram commutes.

F(X)

F(V )
� ∃ � F(U)

�

EXAMPLE 11.4. If V � X is a dense open subset, then F = Ztr(X)/Ztr(V ) is a
presheaf with transfers, but F(X) → F(V ) is not injective. (1X is nonzero in F(X)
but vanishes in F(V ).) This shows that homotopy invariance is necessary in 11.3.

To prepare for the proof of theorem 11.3, we need a technical digression.

DEFINITION 11.5. A standard triple is a triple (X̄
p̄� S,X∞,Z) where p̄ is

a proper morphism of relative dimension 1 and Z and X∞ are closed subschemes of
X̄ . The following conditions must be satisfied:

(1) S is smooth and X̄ is normal,
(2) X̄ −X∞ is quasi-affine and smooth over S,
(3) Z ∩X∞ = /0,
(4) X∞ ∪Z lies in an affine open neighborhood in X̄ .

Given a standard triple as above, we usually write X for X̄ −X∞. Note that X̄ is a
good compactification of both X and X −Z (see 7.8) by parts (2) and (4).

Conversely, if X̄ is a good compactification of a smooth quasi-affine curve
X → S (see 7.8), then (X̄ , X̄ −X , /0) is a standard triple.

We will see in 11.17 below that any pair of smooth quasi-projective varieties
Z ⊂ X is locally part of a standard triple, at least when k is infinite.

REMARK 11.6. (Gabber) Parts (4) and (2) imply that S is affine, and that Z
and X∞ are finite over S. Indeed, X∞ is finite and surjective over S by part (2), and
affine by part (4), so Chevalley’s theorem ([Har77, III Ex.4.2]) implies that S is
affine.

We will make use of the following observation. Recall from 7.10 that
Pic(X̄ ,X∞) is the group of isomorphism classes of pairs (L ,s) where L is a line
bundle on X̄ and s is a trivialization on X∞.

Given a standard triple (X̄ ,X∞,Z), any section x : S→X of p defines an element
[x] of Pic(X̄ ,X∞). Indeed, there is a homomorphism C0(X/S) → Pic(X̄ ,X∞).

REMARK 11.7. Let F be a homotopy invariant presheaf with transfers. Given
a standard triple (X̄ ,X∞,Z), by 7.5 there is a pairing:

( , ) : Pic(X̄ ,X∞)⊗F(X) → F(S).

Let x : S → X be a section of p. If [x] is the class of x in Pic(X̄ ,X∞), then ([x], f ) =
F(x)( f ) for all f ∈ F(X).
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LEMMA 11.8. Let (X̄ ,X∞,Z) be a standard triple over S and X = X̄ − X∞.
Then there is a commutative diagram for every homotopy invariant presheaf with
transfers F.

Pic(X̄ ,X∞ � Z)⊗F(X) � Pic(X̄ ,X∞ � Z)⊗F(X −Z)

Pic(X̄ ,X∞)⊗F(X)
�

� F(S)
�

PROOF. By definition, X̄ is a good compactification of both X and X − Z.
Thus the pairings exist by 7.5 (or 7.16) and are induced by the transfers pairing
Cork(S,X)⊗F(X) → F(S). Commutativity of the diagram is a restatement of the
fact that any presheaf with transfers is a functor on Cork. �

COROLLARY 11.9. If x : S → X is a section and [x] ∈ Pic(X̄ ,X∞) lifts to λ ∈
Pic(X̄ ,X∞ � Z), there is a commutative diagram:

F(X) � F(X −Z)

F(S).

[x]

�

λ
�

Moreover, if λ ′ ∈C0(X −Z/S)⊂Cor(S,X −Z) is any representative of λ (see 7.16
and 1A.12), the composition of λ ′ with the inclusion X −Z ⊂ X is A1-homotopic
to x in Cor(S,X).

EXERCISE 11.10. Use example 7.14 with F = O∗ to show that there can be
more than one lift λ : F(X −Z) → F(S).

More generally, observe that any unit s of O(Z) gives a trivialization of
O(X̄) on Z; combining this with the trivialization 1 on X∞ gives an element
σ(s) = (O,1 � s) of Pic(X̄ ,X∞ � Z). Show that λ + σ(s) is also a lift of [x] to
Pic(X̄ ,X∞ � Z), and that every other lift has this form for some s ∈ O∗(Z).

DEFINITION 11.11. A standard triple is split over an open subset U ⊂ X if
L∆|U×SZ is trivial, where L∆ is the line bundle on U ×S X̄ corresponding to the
graph of the diagonal map.

EXAMPLE 11.12. For any affine S, the standard triple (S×P1,S×∞,S× 0)
is split over any U in X = S×A1. Indeed, the line bundle L∆ is trivial on all of
X ×X .

EXERCISE 11.13. Let X̄ be a smooth projective curve over k, with affine open
X = Spec(A) and set X∞ = X̄ −X . Then (X̄ ,X∞,Z) is a standard triple for every
finite Z in X . Let P1, ... be the prime ideals of A defining the points of Z, and
suppose for simplicity that A/Pi

∼= k for all i. Show that the standard triple splits
over D( f ) if and only if each Pi becomes a principal ideal in the ring A[1/ f ].
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In particular, if X̄ = P1, the triple splits over all X because in this case A is a
principal ideal domain.

LEMMA 11.14. Any finite set of points in X has an open neighborhood U such
that the triple is split over U.

PROOF. The map f : X ×S Z → X is finite, as Z is finite over S. Given points
xi ∈ X , each f−1(xi) is finite. Now the line bundle L∆ is trivial in some neighbor-
hood V of ∪i f−1(xi), because every line bundle on a semilocal scheme is trivial.
But every such V contains an open of the form U ×S Z, and the triple is split over
such a U . �

PROPOSITION 11.15. Consider a standard triple split over an affine U. Then
there is an A1-equivalence class of finite correspondences λ : U → (X −Z) such
that the composite of λ with (X −Z) ⊂ X is A1-homotopic to the inclusion U ⊂ X.

In particular, F(X) → F(U) factors through λ : F(X −Z) → F(U):

F(X) � F(X −Z)

F(U).
�

∃λ
�

PROOF. Pulling back yields a standard triple (U ×S X̄ ,U ×S X∞,U ×S Z) over
the affine U . The diagonal ∆ : U → U ×S X is a section and its class in Pic(U ×S

X̄ ,U ×S X∞) is represented by the line bundle L∆. If the triple is split over an
affine U , then L∆ has a trivialization on U ×S Z as well, so [∆] lifts to a class λ
in Pic(U ×S X̄ ,U ×S (X∞ � Z)). By 7.2 and 7.16, λ is an A1-equivalence class of
maps in Cor(U,X −Z). By 11.9 we have a commutative diagram

U
λ � U ×S (X −Z)

[pr]� X −Z

U ×S X
� [pr] �

[∆] �
X
�

and it suffices to observe that pr ◦∆ : U →U ×S X → X is the inclusion. �

A different splitting (trivialization on U ×S Z) may yield a different lifting λ ′.
By exercise 11.10, λ ′ = λ +σ(s) for some unit s of O(U ×S Z).

EXERCISE 11.16. Suppose that λ is represented by an element D of
Cor(U,X −Z) = C0(U × (X −Z)/U), as in exercise 7.15. Show that the element
D− [∆(U)] of Cor(U,X) is represented by a principal divisor ( f ) on U × X̄ , with
f equal to 1 on U ×X∞.

THEOREM 11.17. Let W be a connected quasi-projective smooth scheme over
an infinite field k, Y a proper closed subset of W and y1, . . . ,yn ∈ Y . Then there is
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an affine open neighborhood X of these points in W and a standard triple (X̄ →
S,X∞,Z) such that (X ,X ∩Y ) ∼= (X̄ −X∞,Z).

PROOF. (Mark Walker) We may assume that W is affine, a closed (d + 1)-
dimensional subscheme of An. Embed An in AN by

(x1, . . . ,xn) �→ (x1, . . . ,xn,x
2
1,x1x2, . . . ,xix j, . . . ,x

2
n).

Given a closed point x ∈ W , Bertini’s Theorem (see [SGA4, XI.2.1]) implies that
the general linear projection p : AN → Ad is smooth near each point of W lying on
p−1(p(x)). It is also finite when restricted to Y , because Y has dimension ≤ d.

Let W̄ denote the closure of W in PN , H = PN −AN , and W∞ = W̄ ∩H. The
general projection defines a rational map p : W̄ .........� Pd whose center C is finite,
because C lies in the intersection of W∞ with a codimension d linear subspace of
H. Let X̄1 be the closure of the graph of p : (W̄ −C) → Pd in W̄ ×Pd . Then W is
naturally an open subscheme of X̄1 and X̄1 −W has finite fibers over Ad .

The singular points Σ of the projection X̄1 → Pd are closed, and finite over each
p(yi) because p is smooth near W ∩ p−1(p(yi)). Therefore there is an affine open
neighborhood S in Ad of {p(yi)} over which Σ is finite and disjoint from Y . Define
X to be p−1(S)∩W −Σ; by construction p : X → S is smooth. Define X̄ ⊂ X̄1 to
be the inverse image of S, and X∞ = X̄ −X . Then X ∩Y → S and X∞ → S are both
finite.

It remains to show that X∞ � (X ∩Y ) lies in an affine open neighborhood of X̄ .
As X̄ is projective over S, there is a global section of some very ample line bundle
L whose divisor D misses all of the finitely many points of X∞ and X ∩Y over any
p(yi). Because L is very ample and S is affine, X̄ −D is affine. Replacing S by
a smaller affine neighborhood of the p(yi), we can assume that D misses X∞ and
X ∩Y , i.e., that X∞ and X ∩Y lie in X̄ −D, as desired. �

PORISM 11.18. If k is finite, the proof shows that there is a finite extension k′

and an affine open X ′ of the points in W ×k Speck′ so that (X ′,X ′ ∩Y ′) comes from
a standard triple over k′, where Y ′ = Y ×k Speck′. In fact, for each prime l we can
assume that [k′ : k] is a power of l.

Finally, we will use 11.15, 11.14 and 11.17 to prove 11.3.

PROOF OF 11.3. We first assume that k is infinite. Since we may replace V
by V −{x1, . . . ,xn}, we may assume that the closed points x1, . . . ,xn of X lie in
Z = X −V . We can use 11.17 to shrink X about these points to assume that there
exists a standard triple with X = X̄ −X∞. By 11.14 the triple splits over an open
neighborhood U of the points. As X is quasi-projective, we may shrink U to make
it affine. By 11.15 we get the map F(X −Z) → F(U) factoring F(X) → F(U).

If k is finite, we proceed as follows. We see by porism 11.18 that there is an
open X ′ of X ×k Spec(k′) fitting into a standard triple over k′. The argument above
shows that there is an open neighborhood U of x1, . . . ,xn (depending on k′) such
that if U ′ = U ×k Spec(k′) and V ′ = V ×k Spec(k′), then F(X ′) → F(U ′) factors
through a map Φ′ : F(V ′)→ F(U ′). Let Φ(k′) : F(V )→ F(U) be the composite of
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Φ′ and the transfer F(U ′) → F(U). By 1.11, [k′ : k] times F(X) → F(U) factors
through Φ(k′). By 11.18, we can choose two such extensions k′,k′′ with [k′ : k] and
[k′′ : k] relatively prime. Shrinking U , we may assume that F(U) is the target of
both Φ(k′) and Φ(k′′). But then F(X)→F(U) factors through a linear combination
of Φ(k′) and Φ(k′′). �



LECTURE 12

Nisnevich sheaves

We have already mentioned the Nisnevich topology several times in previous
lectures, as an alternative to the étale and Zariski topologies. In this lecture we
develop some of its more elementary properties.

We begin by recalling the definition of the Nisnevich topology (see [Nis89]).
A family of étale morphisms {pi : Ui → X} is said to be a Nisnevich covering of
X if it has the Nisnevich lifting property:

• for all x ∈ X , there is an i and a u ∈Ui so that pi(u) = x and the induced
map k(x) → k(u) is an isomorphism.

It is easy to check that this notion of cover satisfies the axioms for a Grothendieck
topology (in the sense of [Mil80, I.1.1], or pre-topology in the sense of [SGA4]).
The Nisnevich topology is the class of all Nisnevich coverings.

EXAMPLE 12.1. Here is an example to illustrate the arithmetic nature of a

Nisnevich cover. When chark �= 2, the two morphisms U0 = A1−{a} ⊂ j� A1 and

U1 = A1 −{0} z�→z2
� A1 form a Nisnevich covering of A1 if and only if a ∈ (k∗)2.

They form an étale covering of A1 for any nonzero a ∈ k.

EXAMPLE 12.2. Let k be a field. The small Nisnevich site on Speck consists
of the étale U over Speck, together with their Nisnevich coverings. Every étale U
over Speck is a finite disjoint union � Spec li with the li finite and separable over
k; to be a Nisnevich cover, one of the li must equal k. Thus a Nisnevich sheaf F
on Speck merely consists of a family of sets F(l), natural in the finite separable
extension fields l of k. In fact, each such l determines a “point” of (Speck)Nis in
the sense of [SGA4, IV 6.1].

From this description it follows that Speck has Nisnevich cohomological di-
mension zero. This implies that the Nisnevich cohomological dimension of any
Noetherian scheme X is at most dimX ; see [KS86].

LEMMA 12.3. If {Ui → X} is a Nisnevich covering then there is a nonempty
open V ⊂ X and an index i such that Ui|V →V has a section.

PROOF. For each generic point x of X , there is a generic point u ∈ Ui so that
k(x) ∼= k(u). Hence Ui → X induces a rational isomorphism between the corre-
sponding components of Ui and X , i.e., Ui → X has a section over an open sub-
scheme V of X containing x. �

89
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EXAMPLE 12.4. A Hensel local ring or scheme (R,m) is a local ring such
that any finite R-algebra S is a product of local rings. It is well-known (see [Mil80,
I.4.2]) that if S is finite and étale over R, and if R/m ∼= S/mi for some maximal
ideal mi of S, then R → S splits; one of the factors of S is isomorphic to R. If
{Ui → SpecR} is a Nisnevich covering then some Ui is finite étale, so Ui → SpecR
splits. Thus every Nisnevich covering of SpecR has the trivial covering as a refine-
ment. Consequently, the Hensel local schemes SpecR determine “points” for the
Nisnevich topology.

As with any Grothendieck topology, the category ShNis(Sm/k) of Nisnevich
sheaves of abelian groups is abelian, and sheafification F �→FNis is an exact functor.
We know that exactness in ShNis(Sm/k) may be tested at the Hensel local rings Oh

X ,x
of all smooth X at all points x (see [Nis89, 1.17]). That is, for every presheaf F :

• FNis = 0 if and only if F(SpecOh
X ,x) = 0 for all (X ,x);

• FNis(SpecOh
X ,x) = F(SpecOh

X ,x).

By abuse of notation, we shall write F(Oh
X ,x) for F(SpecOh

X ,x), and refer to it as
the stalk of FNis at x.

DEFINITION 12.5. A commutative square Q = Q(X ,Y,A) of the form

B
i � Y

A

f

� i � X

f

�

is called upper distinguished if B = A×X Y , f is étale, i : A→X is an open embed-
ding and (Y −B) → (X −A) is an isomorphism. Clearly, any upper distinguished
square determines a Nisnevich covering of X : {Y → X ,A → X}.

EXERCISE 12.6. If dimX ≤ 1 show that any Nisnevich cover of X admits a
refinement {U,V} such that Q(X ,U,V ) is upper distinguished. Show that this fails
if dimX ≥ 2. Hint: Cover Pn by copies of An.

By definition, F(Q) is a pullback square if and only if F(X) is the pullback
F(Y )×F(B) F(A), i.e., the kernel of f − i : F(Y )×F(A) → F(B).

LEMMA 12.7. A presheaf F is a Nisnevich sheaf if and only if F(Q) is a pull-
back square for every upper distinguished square Q.

PROOF. For the “if” part, suppose that each F(Q) is a pullback square. To
prove that F is a Nisnevich sheaf, fix a Nisnevich covering {Ui → X}. Let us say
that an open subset V ⊂ X is good (for the covering) if

F(V ) � ∏F(Ui ×X V )
�� ∏F(Ui ×X Uj ×X V )

is an equalizer diagram. We need to show that X itself is good.
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By Noetherian induction, we may assume that there is a largest good V ⊂ X .
Suppose that V �= X and let Z = X −V . By lemma 12.3, there is a nonempty open
W ⊂ Z and an index i such that Ui|W →W splits. Let X ′ ⊂ X be the complement of
the closed set Z −W . Then V and U ′

i = Ui|X ′ form an upper distinguished square
Q over X ′. Pulling back along each U ′

j = Uj|X ′ also yields an upper distinguished
square. Thus we have pullback squares

F(X ′) � F(U ′
i ) F(U ′

j) � F(U ′
i ×X U ′

j)

F(V )
�

� F(U ′
i |V )
�

F(U ′
j|V )
�

� F(U ′
i ×X U ′

j|V ).
�

A diagram chase shows that X ′ is also good, contradicting the assumption that
V �= X . Hence X is good for each cover, i.e., F is a Nisnevich sheaf.

For “only if”, we assume that F is a Nisnevich sheaf and Q is upper distin-
guished and we need to prove that the map F(X)→ F(Y )×F(B) F(A) is an isomor-
phism. We already know the map is monic because {A,Y} is a Nisnevich cover
of X . For the surjectivity, note that the sheaf axiom for this covering yields the
equalizer sequence

F(X) → F(Y )×F(A) →→ F(B)×F(A)×F(Y ×X Y ).

Since {∆(Y ),B×A B} is a cover of Y ×X Y , we have an injection F(Y ×X Y ) →
F(Y )×F(B×A B). Now (a,y) ∈ F(A)×F(Y ) lies in F(A)×F(B) F(Y ) if the two
restrictions to F(B) are the same. The two maps to F(A) and F(Y ) are the same, so
it suffices to consider the maps from F(Y ) to F(B×A B). These both factor through
F(B), so the images of y are the same as the images of a. By construction the two
maps F(A) →→ F(B×A B) are the same. �

PORISM 12.8. Suppose more generally that F is a sheaf for some Grothendieck
topology, and that Q = Q(X ,Y,A) is a pullback square whose horizontal maps are
monomorphisms. If {A,Y} is a cover of X and {B×A B,Y} is a cover of Y ×X Y ,
the proof of lemma 12.7 shows that F(Q) is a pullback square.

EXERCISE 12.9. Write O∗/O∗l for the presheaf U �→ O∗(U)/O∗l(U), and
O∗/l for the Zariski sheaf associated to O∗/O∗l . Show that there is an exact se-
quence

0 → O∗(U)/O∗l(U) → O∗/l(U) → Pic(U)
l� Pic(U)

for all smooth U . Then show that O∗/l is a Nisnevich sheaf on Sm/k. If 1/l ∈
k, this is an example of a Nisnevich sheaf which is not an étale sheaf. In fact,
(O∗/l)ét = 0.
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EXERCISE 12.10. If F is a Nisnevich sheaf, consider the presheaf E0(F) de-
fined by:

E0(F)(X) = ∏
closed
x∈X

F(Oh
X ,x).

Show that E0(F) is a Nisnevich sheaf, and that the canonical map F → E0(F) is
an injection. Using 12.2, show that E0(F) is a flasque sheaf, i.e., that it has no
higher cohomology (see [SGA4, V.4.1]). Iteration of this construction yields the
canonical flasque resolution 0 → F → E0(F) → ·· · of a Nisnevich sheaf, which
may be used to compute the cohomology groups H∗

Nis(X ,F).

DEFINITION 12.11. Consider the presheaf hX sending U to Z[HomSm/k(U,X)].
We write Z(X) for its sheafification (hX)Nis with respect to the Nisnevich topology.
It is easily checked that Z(X)(U)= Z[Hom(−,X)](U) for every connected open U .
This is false for non-connected U , since Z(X)(U1 �U2) = Z(X)(U1)⊕Z(X)(U2)
but hX(U1 �U2) = hX(U1)⊗hX(U2).

By the Yoneda lemma, Hom(Z(X),G) = G(X) for every sheaf G. Since Ztr(X)
is a Nisnevich sheaf by 6.2, we see that Z(X) is a subsheaf of Ztr(X).

Let D−
Nis denote the derived category of cohomologically bounded above com-

plexes in ShNis(Sm/k). If F and G are Nisnevich sheaves, it is well known that
ExtnNis(F,G) = HomD−

Nis
(F,G[n]) (see [Wei94, 10.7.5]).

LEMMA 12.12. Let G be a complex of Nisnevich sheaves. Then for all X:

ExtnNis(Z(X),G) = Hn
Nis(X ,G).

PROOF. First suppose that G is a sheaf. If G → I∗ is a resolution by injective
Nisnevich sheaves, then the nth cohomology of G is Hn of I∗(X). But by [Wei94,
10.7.4] we know that the left side is Hn of HomShNis(Sm/k)(Z(X), I∗) = I∗(X). A
similar argument applies when G is a complex. �

LEMMA 12.13. The smallest class in D−
Nis which contains all the Z(X) and is

closed under quasi-isomorphisms, direct sums, shifts, and cones is all of D−
Nis.

PROOF. The proof of 9.4 goes through using Z(X) in place of Rtr(X). �

For the rest of this lecture, we shall write ⊗ for the presheaf tensor prod-
uct, (F ⊗G)(U) = F(U)⊗Z G(U), and ⊗Nis for the tensor product of Nisnevich
sheaves, i.e., the sheafification of ⊗. Note that if a sheaf F is flat as a presheaf then
F is also flat as a sheaf. This is true for example of the sheaves Z(X).

LEMMA 12.14. Z(X ×Y ) = Z(X)⊗Nis Z(Y ).

PROOF. Since Hom(U,X × Y ) = Hom(U,X) × Hom(U,Y ), we see that
Z[Hom(U,X ×Y )] = Z[Hom(U,X)]⊗Z[Hom(U,Y )]. Thus Z[Hom(−,X ×Y )] ∼=
Z[Hom(−,X)]⊗Z[Hom(−,Y )] as presheaves. Now sheafify. �
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LEMMA 12.15. Let G be a Nisnevich sheaf on Sm/k such that Hn
Nis(−,G) is

homotopy invariant for all n. Then for all n and all bounded above C:

Hom D−
Nis

(C,G[n]) ∼= Hom D−
Nis

(C⊗Nis Z(A1),G[n]).

PROOF. By 12.12, our assumption yields Extn(Z(X),G) ∼= Extn(Z(X ×
A1),G) for all X . Since Z(X ×A1) = Z(X)⊗Nis Z(A1) by 12.14, the conclusion
holds for C = Z(X). If C and C′ are quasi-isomorphic, then so are C⊗Nis Z(A1)
and C⊗Nis Z(A1), because Z(A1) is a flat sheaf. But the class of all complexes C
for which the conclusion holds is closed under direct sums and cones, so by 12.13
the conclusion holds for all C. �

We borrow yet another topological definition: deformation retract. For each F ,
note that the presheaf F ⊗Z[Hom(−,Speck)] is just F .

DEFINITION 12.16. An injection of presheaves i : F → G is called a (strong)
deformation retract if there is a map r : G → F such that r ◦ i = idF and a ho-
motopy h : G⊗Z[Hom(−,A1)] → G so that the restriction h|F is the projection
F ⊗Z[Hom(−,A1)] � F , h(G⊗0) = i◦ r and h(G⊗1) = id.

If F and G are sheaves, the condition in the definition is equivalent to the
condition that there is a sheaf map h : G⊗Nis Z(A1) → G so that the restriction h|F
is the projection F ⊗Nis Z(A1) → F , h(G⊗0) = i◦ r and h(G⊗1) = id.

For example, the zero-section Speck
0� A1 induces a deformation retract

Z → Z(A1); the homotopy map h is induced by the multiplication A1 ×A1 → A1

using 12.14. If I1 is the quotient presheaf Z(A1)/Z, so that Z(A1) ∼= Z⊕ I1, then
0 ⊂ I1 is also a deformation retract.

LEMMA 12.17. If F → G is a deformation retract, then the quotient presheaf
G/F is a direct summand of G/F ⊗ I1.

PROOF. The inclusion 0 ⊂ G/F is a deformation retract, whose homotopy is
induced from h. Therefore we may assume that F = 0.

Let K denote the kernel of h. Since the evaluation “t = 1” : G = G⊗Z →
G⊗Z(A1) is a section of both h and the projection G⊗Z(A1) → G, we see that K
is isomorphic to G⊗ I1. But “t = 0”: G → G⊗Z(A1) embeds G as a summand of
K. �

For every presheaf F we define C̃m(F) to be the quotient presheaf Cm(F)/F .
That is, C̃m(F)(U) is F(U ×Am)/F(U). Thus we have split exact sequences 0 →
F →Cm(F) → C̃m(F) → 0.

COROLLARY 12.18. C̃m(F) is a direct summand of C̃m(F)⊗ I1 for all m ≥ 0.

PROOF. It is easy to see that F → CmF is a deformation retract, so 12.18 is a
special case of 12.17. �
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PROPOSITION 12.19. Let G be a Nisnevich sheaf on Sm/k such that
Hn

Nis(−,G) is homotopy invariant for all n. Then for all n and for all presheaves
F, there is an isomorphism

Hom D−
Nis

((C∗F)Nis,G[n])
∼=� Hom D−

Nis
(FNis,G[n]).

PROOF. Write Extn(C,G) for HomD−
Nis

(C,G[n]). For each complex C, lemma

12.15 implies that Extq(C⊗Nis I1,G) = 0 for all q. For C = (C̃pF)Nis, 12.18 yields
Extq((C̃pF)Nis,G) = 0.

Note that Extq(C,G) = HqRHom(C,G) for any C; see [Wei94, 10.7.4]. As in
the proof of 10.10, a resolution G→ I∗ yields a first quadrant Hom double complex
Hom((C̃∗F)Nis, I∗) and hence a first quadrant spectral sequence

E p,q
1 = Extq((C̃pF)Nis,G) ⇒ Extp+q((C̃∗F)Nis,G)

(see [Wei94, 5.6.1]). Since every E p,q
1 vanishes, this implies that

Extn((C̃∗F)Nis,G) = 0 for all n. In turn, this implies the conclusion of 12.19, viz.,
Extn((C∗F)Nis,G) ∼= Extn(F,G) for all n. �

EXERCISE 12.20. If U is open in X , Z(U) is a subsheaf of Z(X); write Z(X ,U)
for the quotient Nisnevich sheaf. If f : Y → X is an étale morphism of smooth
schemes over k, and Z ⊂ X is a closed subscheme isomorphic to f−1(Z), show that

Z(Y,Y − f−1(Z))
∼=� Z(X ,X −Z).

The cdh topology

In order to extend the main results of the following chapters to (possibly) sin-
gular schemes, we need to introduce another topology: the cdh topology on the
category Sch/k of schemes of finite type over k. A crucial part will be played by
the following notion.

DEFINITION 12.21. Let X be a scheme of finite type over a field k and let
i : Z → X be a closed immersion. Then an abstract blow-up of X with center Z is
a proper map p : X ′ → X which induces an isomorphism (X ′ −Z′)red

∼= (X −Z)red ,
where Z′ = X ′ ×X Z. We will often refer to the cartesian square

Z′ � X ′

Z
�

⊂
i � X .

p
�

We will say that p : X ′ → X is an abstract blow-up if there exists a Z ⊆ X which
satisfies the conditions above.

EXERCISE 12.22. Let X ′ → X be an abstract blow-up with center Z. Show that
both 0 → Z(Z′) → Z(X ′)⊕Z(Z) → Z(X) and 0 → Ztr(Z′) → Ztr(X ′)⊕Ztr(Z) →
Ztr(X) are exact sequences of Nisnevich sheaves on Sm/k.
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DEFINITION 12.23. The cdh topology on Sch/k is the minimal Grothendieck
topology generated by Nisnevich covers and covers X ′ � Z → X corresponding to
abstract blow-ups. A proper cdh cover is a proper map which is also a cdh cover.
A proper cdh cover of a reduced scheme is called a proper birational cover if it
is an isomorphism over a dense open subscheme.

If F is any presheaf on Sch/k we will write Fcdh for its sheafification with
respect to this topology.

The name “cdh” stands for “completely decomposed h-topology”; “completely
decomposed” is the original term for the Nisnevich topology (see [Nis89]), and the
h-topology was introduced in Voevodsky’s thesis.

EXAMPLE 12.24. It is easy to see from the definition that Xred → X is a proper
cdh cover, and that every cdh cover has the Nisnevich lifting property (see p. 89).
In particular, it follows as in 12.2 that every cover of Speck has a section, and that
any 0-dimensional scheme has cdh cohomological dimension zero. In fact, the cdh
cohomological dimension of any Noetherian scheme is at most dimX ; see [SV00,
5.13].

If X ′ → X is an abstract blow-up with center Z, and Z contains no generic point
of X , then X ′ � Z → X is a proper birational cdh cover.

EXAMPLE 12.25. If X is reduced, every proper cdh cover X̃ → X has a refine-
ment which is a proper birational cdh cover. To see this, note that the Nisnevich
lifting property applied to the generic point of X yields a closed subscheme X ′

of X̃ such that X ′ → X is a birational isomorphism, i.e., an isomorphism over
a dense open of the form X − Z. But then X ′ � Z → X is a cdh cover, and
X ′ � (X̃ ×X Z) → X is a proper birational cdh cover.

To better understand the structure of the cdh topology, we need to study some
properties of its coverings.

LEMMA 12.26. (See [SV00, 5.8].) A proper map is a proper cdh cover if and
only if it satisfies the Nisnevich lifting property.

PROOF. Let X̃ → X be a proper map satisfying the Nisnevich lifting property;
we must show that it is a cdh cover. By 12.24, this is true if dimX = 0, and we may
assume that X is reduced and irreducible. We will proceed by induction on dimX .

Consider the proper birational cdh cover X ′ � Z → X constructed in 12.25.
The pullback of X̃ → X along this cover consists of X̃ ×X X ′ → X ′ (which is a
cover because it has a section) and X̃ ×X Z → Z (which is a cdh cover by induction
on dimX because the Nisnevich lifting property is satisfied). Since X̃ → X is a cdh
cover locally in the cdh topology, it is a cdh cover. �

For example, if X is smooth then any blow-up X ′ → X along a smooth center
Z is a proper birational cdh cover. Indeed, the inverse image of Z is a projective
bundle over Z, and such a bundle always satisfies the Nisnevich lifting property.
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PROPOSITION 12.27. Any cdh cover of the form T
p� U

q� X, where X
is integral, p is a proper cdh cover, and q is a Nisnevich cover, has a refinement of
the form

V
f � S

T
� p � U

q � X

g
�

where f is a Nisnevich cover and g is a proper cdh cover.

PROOF. Let U =�i Ui be the decomposition of U into its irreducible compo-
nents and let Ti = T ×U Ui. Refining T →U as in 12.25, we may assume that each
Ti → Ui is a proper birational cdh cover. By platification (see [RG71] or 1A.1)
applied to T → X , there is a blow-up X ′ → X along a Z ⊆ X such that the proper
transform T ′

i of each Ti is flat over X ′. We set U ′
i = Ui ×X X ′. The situation is

described by the following diagram in which all squares are cartesian:

T ′
i

� Ti ×X X ′ � U ′
i

h � X ′

Ti

�
� Ui

�
� X .

�

Now T ′
i → X ′ is flat, and h is étale by base change, so g : T ′

i → U ′
i is flat. But

g is also proper and birational, and therefore g is an isomorphism since both T ′
i

and U ′
i are irreducible. Hence the pullback of T → X to X ′ admits the refinement

U ′ =�U ′
i
∼=� T ′

i → X ′.
By induction on dimX , the induced cover T ×X Z → U ×X Z → Z admits a

refinement V ′ → S′ → Z with V ′ → S′ a Nisnevich cover and S′ → Z a proper cdh
cover. But then the required refinement of T → X is the composition

V = V ′ �U ′ f� S = S′ � X ′ → Z � X ′ → X . �

PROPOSITION 12.28. Every cdh cover of X in Sch/k has a refinement of the

form U
q� X ′ p� X, where p is a proper cdh cover and q is a Nisnevich cover.

PROOF. Since Xred → X is a proper cdh cover, we may assume X itself is
reduced. It will suffice to prove the statement for the irreducible components, and
therefore we may assume that X itself is an integral scheme.

By definition, each cdh cover of X can be refined to a cover of the form Xn →
Xn−1 → Xn−2 → ·· · → X1 → X , where each map is either a Nisnevich cover or a
proper cdh cover. Using 12.27 we can move all Nisnevich covers to the left and all
proper cdh covers to the right, which is the statement. �

PROPOSITION 12.29. Let F be a Nisnevich sheaf on Sch/k. Then Fcdh = 0
if and only if for any scheme X and any a ∈ F(X), there is a proper cdh cover
p : X ′ → X such that p∗(a) = 0 ∈ F(X ′).
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PROOF. If Fcdh = 0 and a ∈ F(X), there is a cdh cover U → X such that a|U =

0. But by 12.28 we may assume that the cover is of the form U
q� X ′ p� X ,

where q is a Nisnevich cover and p is a proper cdh cover. We know that 0 =
(p◦q)∗(a) = q∗(p∗(a)). Since q is a Nisnevich cover and F is a Nisnevich sheaf,
q∗ is injective, and therefore p∗(a) = 0 in F(X ′).

Now let us assume that the condition holds and consider a ∈ Fcdh(X). Replac-
ing X by a cover, we may assume that a ∈ F(X). By assumption there is a proper
cdh cover p : X ′ → X such that p∗(a) = 0. But then a = 0 since Fcdh(X) injects into
Fcdh(X ′). �

Consider the composite morphism of sites r : (Sch/k)cdh → (Sch/k)Nis →
(Sm/k)Nis. If F is a Nisnevich sheaf on Sm/k, the inverse image sheaf r∗(F) is
a cdh sheaf on Sch/k. By abuse of notation, we will write Fcdh for r∗(F).

If we have resolution of singularities, then not only does every X in Sch/k
have an abstract blow-up X ′ → X with X ′ smooth, but every proper birational cdh
cover X ′ → X has a refinement X ′′ → X with X ′′ smooth, obtained as a composite
of blow-ups along smooth centers. Thus every cdh sheaf of Sch/k is determined
by its restriction to Sm/k. In fact, assuming resolution of singularities, the functor
F �→ Fcdh from ShNis(Sm/k) to Shcdh(Sch/k) is an exact functor by [SV00, 5.11].

LEMMA 12.30. Assume that k admits resolution of singularities. Let F be a
Nisnevich sheaf on Sm/k. Then Fcdh = 0 if and only if for any smooth scheme
X and any a ∈ F(X), there is a composition of blow-ups along smooth centers
p : Xr → Xr−1 → ·· · → X1 → X such that p∗(a) = 0 ∈ F(X ′).

PROOF. Assume Fcdh = 0 and let a ∈ F(X) for a smooth X . By 12.29 and
12.25, there is a proper birational cdh cover p : X ′ → X such that p∗(a) = 0. Re-
fining the cover, we may assume p is a composition of blow-ups along smooth
centers.

Conversely, assume that the condition holds. Let X ∈ Sch/k and let a ∈
Fcdh(X). Passing to a covering, we may assume that a∈F(X) and that X is smooth.
By assumption, there is a proper cdh cover p : Xr → Xr−1 → ·· · → X1 → X such
that p∗(a) = 0 ∈ F(X ′). �

EXERCISE 12.31. If C is a nodal curve, show that H1
cdh(C,Z) = Z.

EXERCISE 12.32. This exercise shows that H2
Nis(X ,Z) �= H2

cdh(X ,Z) for some
normal surfaces.

(1) If X is normal, use [SGA1, I.10.1] to show that Hn
Nis(X ,Z) = 0 for n > 0.

(2) Let X be a normal surface with a point singularity, whose exceptional
fiber is a node. Show that H2

cdh(X ,Z) �= 0.





LECTURE 13

Nisnevich sheaves with transfers

We now consider the category ShNis(Cork) of Nisnevich sheaves with transfers.
As with étale sheaves, we say that a presheaf with transfers F is a Nisnevich sheaf
with transfers if its underlying presheaf is a Nisnevich sheaf on Sm/k. Clearly,
every étale sheaf with transfers is a Nisnevich sheaf with transfers.

THEOREM 13.1. Let F be a presheaf with transfers, and write FNis for the
sheafification of the underlying presheaf. Then FNis has a unique structure of
presheaf with transfers such that F → FNis is a morphism of presheaves with trans-
fers.

Consequently, ShNis(Cork) is an abelian category, and the forgetful functor
ShNis(Cork) ⊂ � PST(k) has a left adjoint (F �→ FNis) which is exact and com-
mutes with the forgetful functor to (pre)sheaves on Sm/k.

Finally, ShNis(Cork) has enough injectives.

PROOF. The Nisnevich analogue of 6.16, is valid; just replace ‘étale cover’ by
‘Nisnevich cover’ in the proof. As explained after 6.12, the Čech complex Ztr(Ǔ)
is a Nisnevich resolution of Ztr(X). With these two observations, the proofs of
6.17, 6.18, and 6.19 go through for the Nisnevich topology. �

EXAMPLE 13.2. By theorem 4.1, Z(1) � O∗[−1] as complexes of Nisnevich
sheaves with transfers. By 12.9, O∗/l = O∗ ⊗Nis Z/l. Since Z/l(1) = Z(1)⊗L

Nis
Z/l, it follows that there is a distinguished triangle of Nisnevich sheaves with trans-
fers for each l:

µl → Z/l(1) → O∗/l[−1] → µl[1].

Since (O∗/l)ét = 0, this recovers 4.8: µl � Z/l(1)ét .

EXERCISE 13.3. If F is a Nisnevich sheaf with transfers, modify example 6.20
to show that the sheaf E0(F) defined in 12.10 is a Nisnevich sheaf with transfers,
and that the canonical flasque resolution F → E∗(F) is a complex of Nisnevich
sheaves with transfers.

LEMMA 13.4. Let F be a Nisnevich sheaf with transfers. Then:

(1) its cohomology presheaves Hn
Nis(−,F) are presheaves with transfers;

(2) for any smooth X, we have F(X) ∼= HomShNis(Cork)(Ztr(X),F);
(3) for any smooth X and any n ∈ Z,

Hn
Nis(X ,F) ∼= ExtnShNis(Cork)(Ztr(X),F).

99
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PROOF. (Cf. 6.3, 6.21, and 6.23.) Assertion (2) is immediate from 13.1 and
the Yoneda isomorphism F(X)∼= HomPST(Ztr(X),F). Now consider the canonical
flasque resolution F → E∗(F) in ShNis(Sm/k). By 13.3, this is a resolution of
sheaves with transfers. Since Hn

Nis(−,F) is the cohomology of E∗(F) as a presheaf,
and hence as a presheaf with transfers, we get part (1).

For part (3), it suffices by part (2) to show that if F is an injective sheaf
with transfers and n > 0, then Hn

Nis(−,F) = 0. Since F → E0(F) must split
in ShNis(Cork), Hn

Nis(X ,F) is a summand of Hn
Nis(X ,E0(F)) = 0, and must van-

ish. �
EXERCISE 13.5. (Cf. 6.25.) Let K be any complex of Nisnevich sheaves

of R-modules with transfers and let X be a smooth scheme. Use the fact that
cdNis(X) ≤ dim(X) (by 12.2) to generalize 13.4, by showing that hyperext and
hypercohomology agree in the sense that for n ∈ Z:

Extn(Rtr(X),K) ∼= Hn
Nis(X ,K).

Since Nisnevich hypercohomology commutes with infinite direct sums, this shows
that Extn(Rtr(X),⊕Kα) ∼= ⊕α Extn(Rtr(X),Kα).

EXERCISE 13.6. Let F be a homotopy invariant Nisnevich sheaf of R-
modules with transfers. Show that F(X) ∼= HomD−(C∗Ztr(X),F), where D− =
D−ShNis(Cork,R).

The following result allows us to bootstrap quasi-isomorphism results from the
field level to the sheaf level.

PROPOSITION 13.7. Let A → B be a morphism of complexes of presheaves
with transfers. Assume that their cohomology presheaves H∗A and H∗B are homo-
topy invariant, and that A(SpecE) → B(SpecE) is a quasi-isomorphism for every
field E over k. Then AZar → BZar is a quasi-isomorphism in the Zariski topology.

PROOF. Let C be the mapping cone. By the 5-lemma, each HnC is a homotopy
invariant presheaf with transfers, which vanishes on SpecE for every field E over
k. Corollary 11.2 states that (HnC)Zar = 0. This implies that CZar is acyclic as
a complex of Zariski sheaves, i.e., that AZar and BZar are quasi-isomorphic in the
Zariski topology. �

The main result of this lecture, 13.12, as well as the next few lectures, depends
upon the following result, whose proof will not be completed until 24.1. Theorem
13.8 allows us to bypass the notion of strictly A1-homotopy invariance (see 9.22)
used in lecture 9. The case n = 0 of 13.8, that FNis is homotopy invariant, will be
completed in 22.3.

THEOREM 13.8. Let k be a perfect field and F a homotopy invariant presheaf
with transfers. Then each presheaf Hn

Nis(−,FNis) is homotopy invariant.

The proofs of the following results are all based upon a combination of theorem
13.8, lemma 13.4, and proposition 13.7.
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PROPOSITION 13.9. Let k be a perfect field. If F is a homotopy invariant
Nisnevich sheaf with transfers, then for all n and all smooth X:

Hn
Zar(X ,F) ∼= Hn

Nis(X ,F).

We will prove in 22.15 that FZar is a presheaf with transfers. This would sim-
plify the proof of 13.9.

PROOF. For n = 0 we have H0
Nis(X ,F) = H0

Zar(X ,F) = F(X) for every sheaf.
By the Leray spectral sequence, it now suffices to prove that Hn

Nis(S,F) = 0 for
all n > 0 when S is a local scheme. By 13.4 and 13.8, each Hn

Nis(−,F) is a
homotopy invariant presheaf with transfers. By 11.2, it suffices to show that
Hn

Nis(SpecE,F) = 0 for every field E over k. But fields are Hensel local rings,
and as such have no higher cohomology, i.e., Hn

Nis(SpecE,−) = 0 for n > 0. �

PROPOSITION 13.10. Let C be a bounded above complex of Nisnevich sheaves
with transfers, whose cohomology sheaves are homotopy invariant. Then its
Zariski and Nisnevich hypercohomology agree:

Hn
Zar(X ,C) ∼= Hn

Nis(X ,C) for all smooth X and for all n.

PROOF. We will proceed by descending induction on n− p, where Ci = 0 for
i > p. If dimX = d, then Hn

Zar(X ,C) = Hn
Nis(X ,C) = 0 for all n > p + d, because

cdZar(X) and cdNis(X) are at most d. By 13.1, both the good Nisnevich truncation
τC and the pth-cohomology sheaf H p = (C/τC)Nis are Nisnevich sheaves with
transfers. Setting m = n− p, we have a diagram

Hm−1
Zar (X ,H p) � Hn

Zar(X ,τC) � Hn
Zar(X ,C) � Hm

Zar(X ,H p) � Hn+1
Zar (X ,τC)

Hm−1
Nis (X ,H p)

∼=
�

� Hn
Nis(X ,τC)

∼=
�

� Hn
Nis(X ,C)

�
� Hm

Nis(X ,H p)

∼=
�

� Hn+1
Nis (X ,τC).

∼=
�

The four outer verticals are isomorphisms, by induction and 13.9. The statement
now follows from the 5-lemma. �

EXAMPLE 13.11. The motivic complex R(i) is bounded above, and has ho-
motopy invariant cohomology by 2.19. If A is an R-module, the same is true for
A(i) = A⊗R R(i). By 13.10, the motivic cohomology of a smooth X could be com-
puted using Nisnevich hypercohomology:

Hn,i(X ,A) = Hn
Zar(X ,A(i)) = Hn

Nis(X ,A(i)).

This is the definition of motivic cohomology used in [VSF00]. Note that the mo-
tivic cohomology groups Hn,i(X ,A) are presheaves with transfers by 13.5.

By 12.12 and 13.5,

Hn,i(X ,A) ∼= HomD−
Nis

(R(X),A(i)[n]) ∼= ExtnShNis(Cork)(Rtr(X),A(i)).

So motivic cohomology is representable in D−
Nis and D−(ShNis(Cork)).
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THEOREM 13.12. Let k be a perfect field and F a presheaf with transfers such
that FNis = 0. Then (C∗F)Nis � 0 in the Nisnevich topology, and (C∗F)Zar � 0 in
the Zariski topology.

PROOF. Let F be a presheaf with transfers such that FNis = 0. We will first
prove that (C∗F)Nis � 0 or, equivalently, that the homology presheaves Hi = HiC∗F
satisfy (Hi)Nis = 0 for all i. For i < 0 this is trivial; CiF = 0 implies that HiC∗F = 0.
Since (H0)Nis is a quotient of FNis = 0, it is also true for i = 0.

We shall proceed by induction on i, so we assume that (Hj)Nis = 0 for all
j < i. That is, we assume that τ(C∗F)Nis � (C∗F)Nis, where τ(C∗F)Nis denotes the
subcomplex of (C∗F)Nis obtained by good truncation at level i:

τ(C∗F)Nis is · · · → (Ci+1F)Nis → (CiF)Nis → d(CiF)Nis → 0.

There is a canonical morphism τ(C∗F)Nis → (Hi)Nis[i] and hence a morphism
f : (C∗F)Nis → (Hi)Nis[i] in the derived category D−

Nis. Since f induces an iso-
morphism on the ith homology sheaves, it suffices to prove that f = 0.

The presheaf with transfers Hi is homotopy invariant by 2.19, so by 13.1 and
13.8 the sheaf G = (Hi)Nis satisfies the hypothesis of 12.19. Since FNis = 0, 12.19
yields

HomD−
Nis

((C∗F)Nis,(Hi)Nis[i]) ∼= HomD−
Nis

(FNis,(Hi)Nis[i]) = 0.

Hence f = 0 in D−
Nis, and this implies that (Hi)Nis = 0.

We can now prove that C∗FZar � 0. Each cohomology presheaf Hi = HiC∗F is
a homotopy invariant presheaf with transfers by 2.19. Since (C∗F)Nis � 0, we have
C∗(F)(SpecE) � 0 for every finitely generated field extension E of k (and hence
for every field over k). Indeed, E is Oh

X ,x for the generic point of some smooth X .
Now apply 13.7 to C∗F → 0. �

Here is a stalkwise restatement of theorem 13.12.

COROLLARY 13.13. Let k be a perfect field and F a presheaf with transfers so
that F(SpecOh

X ,x) = 0 for all smooth X and all x ∈ X. Then (C∗F)(SpecOX ,x) � 0
for all X and all x ∈ X.

COROLLARY 13.14. Let f : C1 → C2 be a map of bounded above cochain
complexes of presheaves with transfers. If f induces a quasi-isomorphism over
all Hensel local rings SpecOh

X ,x, then Tot(C∗C1) → Tot(C∗C2) induces a quasi-
isomorphism over all local rings.

PROOF. Let K = cone( f ) denote the mapping cone of f . By assumption, each
H pK is a presheaf with transfers which vanishes on all Hensel local schemes, i.e.,
KNis � 0. By 13.12, C∗H pK � 0 in the Zariski topology.

Since K is a bounded above cochain complex, the double complex C∗(K) is
bounded. Hence the usual spectral sequence of a double complex (see [Wei94,
5.6.2]) converges to H∗ TotC∗(K). Since CqK(X) = K(X ×∆q) we have H pCqK =
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CqH pK for all p and q, and we have seen that each HqC∗H pK vanishes on ev-
ery local scheme X . The resulting collapse in the spectral sequence shows that
H∗ TotC∗(K) vanishes on every local scheme, which yields the result. �

If U = {U1, . . . ,Un} is a Zariski covering of X , we saw in 6.12 that the Čech
complex

Ztr(Ǔ ) : 0 → Ztr(U1 ∩ . . .∩Un) → ·· · → ⊕iZtr(Ui) → 0

is a resolution of Ztr(X) in the étale topology (and the Nisnevich topology). Sur-
prisingly, this gets even better when we apply C∗.

PROPOSITION 13.15. If U is a Zariski covering of X then the Čech resolution
TotC∗Ztr(Ǔ ) →C∗Ztr(X) is a quasi-isomorphism in the Zariski topology.

PROOF. Apply 13.14 to 6.14. �
COROLLARY 13.16. If E is a vector bundle over X, C∗Ztr(E) → C∗Ztr(X) is

a quasi-isomorphism.

PROOF. Choose a Zariski cover U of X on which E is a trivial bundle. By
2.24 and 13.15, the left vertical and the horizontal maps are quasi-isomorphisms in
the diagram:

C∗Ztr(Ǔ ×X E)
�� C∗Ztr(E)

C∗Ztr(Ǔ )

�
� �� C∗Ztr(X).

�

Hence the right vertical map is a quasi-isomorphism. �
EXAMPLE 13.17. Applying 13.15 to the usual cover of P1 (by P1 −{0} and

P1 −{∞}) allows us to deduce that C∗
(
Ztr(P1)/Z

)
�C∗Ztr(Gm)[1] = Z(1)[2] for

the Zariski topology, because C∗Ztr(A1)/Z� 0 by 2.24. This was already observed
in example 6.15 for the étale topology. This example will be generalized in theorem
15.2 below.

PROPOSITION 13.18. Let k be a perfect field and F a homotopy invariant
Nisnevich sheaf with transfers. Then the Zariski sheaf HZar associated to H(U) =
Hq(U ×X ,F) vanishes for every q > dim(X).

PROOF. By 13.4 and 13.8, H(U) is a homotopy invariant presheaf with trans-
fers. If E is a field over k then the Nisnevich cohomological dimension of XE is at
most dim(XE) = dim(X), so H(SpecE) = Hq(XE ,F) = 0. By 11.2, HZar = 0. �

We now consider the behavior of cohomology with respect to blow-ups along
smooth centers. We assume that k is perfect in order to invoke 13.8.

PROPOSITION 13.19. Let p : X ′ → X be the blow-up of a smooth X with a
smooth center Z. Let C (respectively, Q) denote the cokernel of Z(X ′) → Z(X)
(respectively, Z(Z)⊕Z(X ′) → Z(X)). Then for any homotopy invariant Nisnevich
sheaf with transfers F, Extn(C,F) = Extn(Q,F) = 0 for all n.
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If L is a complex of Nisnevich sheaves with transfers whose cohomology
sheaves are homotopy invariant, Extn(C,L) = Extn(Q,L) = 0 for all n.

PROOF. Set U = X −Z; by assumption Z(U) is a subsheaf of both Z(X ′) and
Z(X). By the 5-lemma, C is the cokernel of Z(X ′)/Z(U) → Z(X)/Z(U).

Since Z is smooth, and exercise 12.20 allows us to pass to an étale neighbor-
hood of Z without changing C or Q, we may assume that X = T ×Ad and that
Z is identified with T × 0. But then the projection X ′ → T ×Pd−1 defining the
blow-up is a vector bundle with fiber A1, with section Z′ = Z ×X X ′ ∼= T ×Pd−1.
Since F is a homotopy invariant presheaf with transfers, theorem 13.8 implies that
Extn(Z(X ′),F) ∼= Hn(X ′,F) = Hn(T ×Pd−1,F) and Hn(T ×Ad ,F) ∼= Hn(Z,F).

The result for F is now a straightforward calculation. Since Z → X factors
through X ′ in this special case, we have C = Q. If K denotes the kernel of Z(X) →
C, then Ext∗(Z(Z′),F)∼= Ext∗(Z(X ′),F) implies that Ext∗(K,F)∼= Ext∗(Z(Z),F).
This in turn implies that Ext∗(Z(X),F) → Ext∗(K,F) is an isomorphism, whence
Ext∗(C,F) = 0.

The result for L follows from the hyperext spectral sequence E p,q
2 =

Extq(−,H pL) ⇒ Extp+q(−,L). �
COROLLARY 13.20. Let F be a homotopy invariant Nisnevich sheaf with

transfers, and let p : X ′ → X be the blow-up of a smooth X along a smooth center
Z. Then there is a long exact sequence in Nisnevich cohomology (and, by 13.9,
Zariski cohomology)

· · · → Hi−1(Z′,F) → Hi(X ,F) → Hi(X ′,F)⊕Hi(Z,F) → Hi(Z′,F) → ·· · .
There is an analogous long exact sequence of hypercohomology groups H∗(−,L)
(either Nisnevich or Zariski by 13.10) if L is a complex of Nisnevich sheaves with
transfers whose cohomology sheaves are homotopy invariant.

PROOF. Since Hi
Nis(X ,F) ∼= Exti(Z(X),F), and Ext∗(Q,F) = 0 by 13.19, this

follows from the Ext sequences associated to exercise 12.22. �
COROLLARY 13.21. Let Xr → Xr−1 → ·· · → X1 → X be a sequence of blow-

ups along smooth centers and let C = Z(Xr,X) be the sheaf cokernel of Z(Xr) →
Z(X). Then Ext∗(C,F) = 0 if F is a homotopy invariant Nisnevich sheaf with
transfers.

PROOF. We proceed by induction on r, the case r = 1 being 13.19. If X1 → X
has center Z, and we set Z1 = Z×X X1, Zr = Z×X Xr, then Zr → Z1 is a composition
of r−1 blow-ups along smooth centers. Consider the diagram

Z(Xr) � Z(X1) � Z(Xr,X1) → 0

Z(Xr)

=
�

� Z(X)
�

� Z(Xr,X)
�

→ 0.

It follows from 12.22 and a diagram chase that there is an exact sequence

0 → Z(Zr,Z1) → Z(Xr,X1) →C → Z(X1,X) → 0.
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By induction, Ext∗(Z(Zr,Z1),F) and Ext∗(Z(Xr,X1),F) vanish. Since
Ext∗(Z(X1,X),F) also vanishes, it follows from the Ext sequences that
Ext∗(C,F) = 0. �

Cdh sheaves with transfers

The main result of this section will be theorem 13.25.

LEMMA 13.22. Let C be the sheaf cokernel of Z(X ′) → Z(X), where X ′ → X
is a cdh cover. Then Ccdh = 0.

PROOF. To see this, pick a generator f ∈ Hom(U,X) of C(U) and consider
the pullback cdh cover U ′ = U ×X X ′ → U of X ′ → X along f . The image of
f in Hom(U ′,X) comes from f ′ ∈ Hom(U ′,X ′) and so vanishes in C(U ′). Since
U ′ →U is a cdh cover, f vanishes in Ccdh(U). �

PROPOSITION 13.23. Suppose that k admits resolution of singularities. If F
is a Nisnevich sheaf on Sm/k such that Fcdh = 0, and H is a homotopy invariant
Nisnevich sheaf with transfers, then ExtnNis(F,H) = 0 for all n.

PROOF. We proceed by induction, the case n < 0 being a definition. Consider
the canonical surjection of sheaves⊕

a∈F(X)

Z(X)
π� F.

Since Fcdh = 0, 12.30 implies that π factors through
⊕

α Cα
p� F , where each Cα

is the sheaf cokernel of a sequence of blow-ups along smooth centers. Write K for
the kernel of the surjection p. The sheaf Kcdh vanishes because it is a subsheaf of
⊕(Cα)cdh, which is zero by 13.22. By 13.21, each Ext∗(Cα ,H) = 0, and therefore
Extn(F,H) ∼= Extn−1(K,H), which is zero by induction on n. �

COROLLARY 13.24. Let H be a homotopy invariant Nisnevich sheaf with
transfers. Then H(X) injects into H(X ′) for any cdh cover X ′ → X.

In particular, H(X) → Hcdh(X) is an injection for all smooth X.

PROOF. Let C be the sheaf cokernel of Z(X ′) → Z(X). Since Hom(−,H)
is left exact, 0 → Hom(C,H) → Hom(Z(X),H) → Hom(Z(X ′),H) is exact. But
Hom(C,H) = 0 by 13.22 and 13.23, and Hom(Z(X),H) = H(X) by Yoneda. �

THEOREM 13.25. Assume that resolution of singularities holds over a perfect
field k. Let F be a Nisnevich sheaf with transfers such that Fcdh = 0. Then the
complex C∗(F) is acyclic.

PROOF. If C∗(F) is not acyclic, there is a smallest n ≥ 0 such that the sheaf
H = Hn(C∗(F)) is non-zero. Using the good truncation of C∗(F), we define a non-
zero map C∗(F) → H[n] in D−

Nis. By 2.19 and 13.8, the sheaf with transfers H is
strictly homotopy invariant. By 12.19, HomD−

Nis
(C∗F,H[n]) ∼= HomD−

Nis
(F,H[n]) =

ExtnNis(F,H). But this Ext group is zero by 13.23. �
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THEOREM 13.26. Assume that resolution of singularities holds over k. Let
X ′ → X be an abstract blow-up with center Z, and set Z′ = Z ×X X ′. Then there is
a distinguished triangle in D−(ShNis(Cork)):

C∗Ztr(Z′) →C∗Ztr(Z)⊕C∗Ztr(X ′) →C∗Ztr(X) →C∗Ztr(Z′)[1].

PROOF. Let Φ be the sequence Ztr(Z′) → Ztr(Z)⊕Ztr(X ′) → Ztr(X). Let Q
denote the cokernel of Ztr(X ′)⊕Ztr(Z) → Ztr(X); by exercise 12.22, Φ ∼= Q. We
have to show that C∗(Q) is acyclic; by 13.25, it suffices to show that Qcdh = 0.

Pick a finite set of elementary correspondences Wi ⊂U ×X representing gen-
erators ai of Ztr(X)(U) and hence Q(U). We may assume that no Wi lies in U ×Z.
Let W ′

i be the proper transform of Wi in U ×X ′. By platification [RG71], there is a
blow-up U ′ →U such that the proper transforms W ′′

i of W ′
i in U ′ ×X ′ are flat over

U ′. Since each W ′′
i → U ′ is generically finite, and flat, it is finite. Using resolu-

tion of singularities, we can find U ′′ →U ′ with U ′′ smooth such that U ′′ →U is a
(proper birational) cdh cover; we may replace U ′ by U ′′ so that the W ′′

i represent
elements bi ∈ Ztr(X ′)(U ′′). But the map Ztr(X)(U) → Ztr(X)(U ′′) sends each ai

to the image of bi, and hence the injection Qcdh(U) → Qcdh(U ′′) sends each ai to
zero. By 12.30, this proves that Qcdh = 0. �

PROPOSITION 13.27. Assume that resolution of singularities holds over k, and
let F be a homotopy invariant Nisnevich sheaf with transfers. Then for all smooth
X:

• Fcdh(X) ∼= F(X);
• Hn

cdh(X ,Fcdh) ∼= Hn
Nis(X ,F) for all n.

PROOF. Let us first show that Fcdh(X) = F(X). By 13.24, F(X) → Fcdh(X) is
an injection for all smooth X . Letting G be the sheaf cokernel, we have an exact
sequence of Nisnevich sheaves:

0 → F → Fcdh → G → 0.

By 13.23, Ext1(G,F) = 0, and therefore the sequence splits. Hence F is a direct
summand of Fcdh, and hence the restriction of a cdh sheaf to Sm/k. So G = 0.

Let F → I∗ be a cdh injective resolution of F . The restriction I∗|Nis of I∗ to
the Nisnevich topology is a complex of injective Nisnevich sheaves. It suffices to
show that this is also a resolution for the Nisnevich topology. Let Bi,Zi and Hi =
Zi/Bi be the ith boundaries, cycles and cohomology sheaves of the complex I∗|Nis,
respectively. Since H0 = F by left exactness, we only need to show that Hi = 0 for
i > 0. If not, there is a minimal i > 0 such that Hi �= 0. By hypothesis (Hi)cdh = 0,
so by 13.23 and dimension shifting [Wei94, Exercise 2.4.3], 0 = Exti+1(Hi,F) ∼=
Ext1(Hi,Bi). This implies that the sequence 0 → Bi → Zi → Hi → 0 splits, and
therefore that Hi is a summand of Zi. Since Zi is a cdh sheaf, so is Hi. But then
Hi = (Hi)cdh = 0. �
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LECTURE 14

The category of motives

In this lecture, we define the triangulated category of (effective) motives over
k, and the motive of a scheme in this category. The construction of DMeff,−

Nis (k,R)
is parallel to the construction of DMeff,−

ét (k,R) in 9.2, but more central. We list the
main properties of this category in 14.5 below. If k admits resolution of singulari-
ties, this category allows us to extend motivic cohomology to all schemes of finite
type, as a cdh hypercohomology group. If Q ⊆ R, we will show that DMeff,−

Nis (k,R)
and DMeff,−

ét (k,R) are equivalent.

Write D− for D−ShNis(Cork,R), and let EA denote the smallest thick sub-
category of D− containing every Rtr(X ×A1) → Rtr(X) and closed under direct
sums. (See 9.1 and 9.2.) The quotient D−/EA is the localization D−[W−1

A ], where
WA = WEA is the class of maps in D− whose cone is in EA. A map in WA is called
an A1-weak equivalence.

As pointed out in 9.3, it follows from 2.24 and 14.4 below that EA is the thick
subcategory of all complexes E in D− such that C∗(E) is acyclic.

DEFINITION 14.1. The triangulated category of motives over k is defined to
be the localization DMeff,−

Nis (k,R) = D−[W−1
A ] of D− = D−ShNis(Cork,R). (Cf.

9.2.) If X is a smooth scheme over k, we write M(X) for the class of Ztr(X) in
DMeff,−

Nis (k,Z) and call it the motive of X .
We define DMeff

gm(k,R) to be the thick subcategory of DMeff,−
Nis (k,R) generated

by the motives M(X), where X is smooth over k. Objects in DMeff
gm(k,R) will

be called effective geometric motives. If k admits resolution of singularities, it
follows from (14.5.3) and (14.5.5) that DMeff

gm contains M(Y ) for every Y in Sch/k,
and is generated by M(X), where X is smooth and projective.

In 8.17, we showed that the derived category D−(Shét(Cork,R)) is a tensor
triangulated category. The same argument works in the Nisnevich topology for
D−ShNis(Cork,R). Here are the details.

DEFINITION 14.2. If C and D are bounded above complexes of presheaves
with transfers, we write C ⊗tr

L,Nis D for (C ⊗tr
L D)Nis. Because 6.12 holds for the

Nisnevich topology, the Nisnevich analogues of 8.14, 8.15, 8.16, 8.17, and 8.18
hold. In particular, the derived category D− of bounded above complexes of Nis-
nevich sheaves with transfers is a tensor triangulated category under ⊗tr

L,Nis. By
8.10, M(X)⊗tr

L,Nis M(Y ) ∼= M(X ×Y ).

109
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Given 14.2, the proofs of 9.5 and 9.6 go through to show that the tensor ⊗tr
L,Nis

on D− also endows the localization DMeff,−
Nis (k,R) of D−ShNis(Cork,R) with the

structure of a tensor triangulated category.
The category DM−(k,R) is obtained from DMeff,−

Nis (k,R) by inverting the Tate
twist operation M �→ M(1) = M ⊗tr

L,Nis R(1). Thus every object in DM−(k,R) is

isomorphic to M(−n) for some n ≥ 0 and some M in DMeff,−
Nis (k,R). For any co-

efficients R, it will follow from 8A.11 and 15.8 below that DM−(k,R) is always a
tensor triangulated category. The localization DMeff,−

Nis (k,R) → DM−(k,R) is fully
faithful, by Voevodsky’s Cancellation Theorem 16.25 below.

The category DMgm(k,R) of geometric motives is obtained from DMeff
gm(k,R)

by inverting the Tate twist operation M �→ M(1) = M⊗tr
L,Nis R(1). From the previ-

ous paragraph, it is clear that DMgm(k,R) is a full tensor triangulated subcategory
of DM−(k,R) and that the localization DMeff

gm(k,R)→DMgm(k,R) is fully faithful.

REMARK 14.3. Because sheafification is exact, it induces a triangulated func-
tor from D−

Nis = D−(ShNis(Cork,R)) to D−
ét = D−(Shét(Cork,R)). By lemma 9.15

and definition 14.2, we have (K ⊗tr
L,Nis L)ét = K ⊗tr

L,ét L. Comparing definitions,
we see that D−

Nis → D−
ét sends Nisnevich A1-weak equivalences to étale A1-weak

equivalences, so it induces a tensor triangulated functor σ from DMeff,−
Nis (k,R) to

DMeff,−
ét (k,R). We will show in 14.30 below that σ is an equivalence when R = Q.

Our definitions of DMeff,−
Nis (k,R) and M(X) are equivalent to the definitions in

[TriCa, p. 205]. This follows by comparing the definition in loc. cit. to theorem
14.11 below, using the following lemma.

LEMMA 14.4. For every bounded above complex K of sheaves of R-modules
with transfers, the morphism K → TotC∗(K) is an A1-weak equivalence. Hence
K ∼= TotC∗(K) in DMeff,−

Nis (k,R).
In particular, there is a natural isomorphism M(X) ∼= C∗Ztr(X).

PROOF. The proof of lemmas 9.12 and 9.15 go through in this setting. �
PROPERTIES 14.5. We now summarize the main properties of the category

DMeff,−
Nis (k,R) for the convenience of the reader.

• By 14.4, we have M(X) = Ztr(X) ∼= C∗Ztr(X). By 8.10, we see that
M(X)⊗M(Y ) ∼= M(X ×Y ), and 2.24 yields M(X) ∼= M(X ×A1).

• For every smooth X and every Y , it follows from 14.16 that
Hn(X ,C∗Rtr(Y )) ∼= HomDMeff,−

Nis
(M(X),M(Y )[n]). In particular,

Hn,i(X ,R) ∼= HomDMeff,−
Nis

(M(X),R(i)[n]).

For non-smooth X , Hn,i(X ,R) is defined via this formula; see 14.17.
• (Mayer-Vietoris) For each open cover {U,V} of a smooth scheme X ,

proposition 13.15 yields the Mayer-Vietoris triangle in DMeff,−
Nis (k,R):

(14.5.1) M(U ∩V ) → M(V )⊕M(U) → M(X) → M(U ∩V )[1].



NISNEVICH A1-LOCAL COMPLEXES 111

• (Vector bundle) If E → X is a vector bundle, by 13.16 we have an iso-

morphism M(E)
∼=� M(X).

• (Projective bundle) We will prove in 15.12 that if P(E ) → X is a projec-
tive bundle of rank n+1, then the canonical map induces an isomorphism:

(14.5.2)
n⊕

i=0

M(X)(i)[2i]
∼=� M(P(E )).

• (Blow-up triangle) Assume that resolution of singularities holds over k.
Let X ′ → X be an abstract blow-up with center Z, and set Z′ = Z ×X X ′.
By 13.26, there is a distinguished triangle:

(14.5.3) M(Z′) → M(X ′)⊕M(Z) → M(X) → M(Z′)[1].

If moreover X and Z are smooth, and Z has codimension c, we show in
15.13 that (14.5.2) and (14.5.3) easily yield an isomorphism:

(14.5.4) M(X ′) ∼= M(X)⊕
(
⊕c−1

i=1 M(Z)(i)[2i]
)
.

• (Gysin triangle) Let X be a smooth scheme over k and Z a smooth closed
subscheme of X of codimension c. We will show in 15.15 that there is a
distinguished triangle:

(14.5.5) M(X −Z) → M(X) → M(Z)(c)[2c] → M(X −Z)[1].

• (Cancellation) Assume that k admits resolution of singularities. Let M
and N be in DMeff,−

Nis (k,R). Then we will see in 16.25 that there is an
isomorphism Hom(M,N) → Hom(M(1),N(1)).

• (Chow motives) We will show in 20.1 that Grothendieck’s category of
effective Chow motives embeds contravariantly into DMeff

gm(k,Z), and

hence into DMeff,−
Nis (k,Z), in the sense that if X and Y are two smooth

projective schemes, then:

(14.5.6) Hom(M(X),M(Y )) ∼= CHdimX(X ×Y ) = HomChow(Y,X).

We will define the notion of a motive with compact support in lecture 16. We
will investigate its properties there and in lecture 20.

Nisnevich A1-local complexes

In this section we will show that DMeff,−
Nis (k,R) can be identified with the full

subcategory L of A1-local complexes in D− = D−(ShNis(Cork,R)).

DEFINITION 14.6. As is 9.17, we say that an object L of D− is called A1-
local (for the Nisnevich topology) if HomD−(−,L) sends A1-weak equivalences to
isomorphisms. We write L for the full subcategory of A1-local objects in D−. The
proof of 9.19 goes through in the Nisnevich setting to show that if L is A1-local
then for every K:

(14.6.1) HomDMeff,−
Nis

(K,L) ∼= HomD−(K,L).
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REMARK 14.7. We will see in 14.9 below that C∗ is a functor from D− to L .
Moreover, HomL (C∗(K),L) ∼= HomD−(K,L) for every L in L and K in D− by
14.4 and definition 14.6. Hence C∗ is the left adjoint to the inclusion L ⊂ D−.

Let F be a Nisnevich sheaf with transfers. Then F is A1-local if and only if F
is homotopy invariant, because the proof of 9.24 goes through using 13.4 and 13.8.
This is the easy case of the following proposition.

PROPOSITION 14.8. Let k be a perfect field and K a bounded above cochain
complex of Nisnevich sheaves of R-modules with transfers. Then K is A1-local if
and only if the sheaves aNis(HnK) are all homotopy invariant.

Hence L is the category D−
hi(ShNis(Cork,R)) of complexes with homotopy in-

variant cohomology sheaves.

PROOF. Suppose first that the cohomology sheaves of K are homotopy invari-
ant. By 13.8 applied to F = aNis(HqK), the presheaves Hn

Nis(−,F) are homotopy
invariant. As in the proof of 9.24, this implies that each aNis(HqK) is A1-local.
Because cdNis(X) < ∞, the hyperext spectral sequence (see [Wei94, 5.7.9])

E pq
2 (X) = Extp(Rtr(X),aNisH

qK) =⇒ HomD−(Rtr(X),K[p+q])

is bounded and converges. The map f induces a morphism from it to the cor-
responding spectral sequence for X ×A1. By the Comparison Theorem ([Wei94,
5.2.12]), f induces an isomorphism from HomD−(Rtr(X)[n],K) to HomD−(Rtr(X ×
A1)[n],K) for each n. By 9.20, K is A1-local.

Now suppose that K is A1-local. The cohomology presheaves of K′ =
TotC∗(K) are homotopy invariant by 2.19. Theorem 13.8 applied to the cohomol-
ogy presheaves HqK′ shows that the sheaves aNis(HqK′) are homotopy invariant.
The first part of this proof shows that K′ is A1-local. By lemma 14.4, the canon-
ical map K → K′ is an A1-weak equivalence. By 9.21, which goes through for
the Nisnevich topology, K → K′ is an isomorphism in D−. Hence the sheaves
aNis(HnK) ∼= aNis(HnK′) are homotopy invariant. �

COROLLARY 14.9. Let k be a perfect field and K a bounded above cochain
complex of Nisnevich sheaves of R-modules with transfers. If the presheaves Hn(K)
are all homotopy invariant, then K is A1-local.

In particular, C∗(K) is A1-local, and if K is A1-local then K ∼= C∗(K) inD−.

PROOF. Combine 13.8 and 14.8. The hypothesis applies to C∗(K) by 2.19, and
the final assertion follows immediately from 14.4, as in the étale case 9.32. �

EXAMPLE 14.10. Here is an example to show that the converse does not hold
in 14.9. Consider the complex K of example 6.15:

0 → Ztr(Gm) → 2Ztr(A1,1) → Ztr(P1,1) → 0.

Evaluating at Spec(k) and at A1, it is easy to see that the cohomology presheaf
H2K is not homotopy invariant (consider an embedding of A1 in P1 whose image
contains both 0 and 1). On the other hand K is A1-local, because its cohomology
sheaves aNisH∗(K) vanish by 6.14.
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If E and F are in L , then we define E ⊗L F = TotC∗(E ⊗tr
L,Nis F).

THEOREM 14.11. The category (LNis,⊗L ) is a tensor triangulated category,
and the canonical functor

LNis → D−[W−1
A ] = DMeff,−

Nis (k,R)

is an equivalence of tensor triangulated categories.

PROOF. The category L = LNis is a thick subcategory of D−. By 14.6.1
and 14.8, the functor L → D−[W−1

A ] is fully faithful. By 14.4, every object K
of D−[W−1

A ] is isomorphic to TotC∗(K), which is in L by 14.9. Hence L is
equivalent to D−[W−1

A ].
It follows that L is a tensor triangulated category, because D−[W−1

A ] is. If E
and F are A1-local, we have seen that the tensor product E ⊗tr

L,Nis F is naturally

isomorphic to E ⊗L F in D−[W−1
A ]. That is, ⊗L is isomorphic to the induced

tensor operation on L . �

In [TriCa, p. 210], the tensor structure on LNis was defined using ⊗L .

REMARK 14.12. If X is smooth and F is a Nisnevich sheaf with transfers,
we define RHom(RtrX ,F) to be the complex RHom(−×X ,F) of sheaves with
transfers, as in 8.21. If k is perfect, this complex is bounded above by 13.18.
The RHom(RtrX ,F) construction extends in an evident way to the more general
situation when F is replaced by a bounded above complex L, and RtrX is replaced
by a complex representing an effective geometric motive M. Moreover, if L is an
A1-local complex, then RHom(M,L) is also A1-local, by 14.9.

If K is another bounded above complex, then a short calculation shows that
in either the derived category D−(Sh(Cork,R)) or in DMeff,−

Nis (k,R) we have the
adjunction (where ⊗ is either ⊗tr

L,Nis or ⊗L ):

Hom(K ⊗Rtr(X),L) ∼= Hom(K,RHom(RtrX ,L)).

EXERCISE 14.13. (a) Show that RHom(RtrX ,L[n])) ∼= RHom(RtrX ,L))[n].
(b) Use 14.16 and 15.2 to show that RHom(X ,R)∼= R and RHom(X(r),R) = 0

for all smooth X and r > 0.

Next, recall from 9.8 that two parallel morphisms f and g of sheaves are said
to be A1-homotopic if there is a map F ⊗tr

L Ztr(A1) → G whose restrictions along
0 and 1 coincide with f and g, respectively. The proof of 9.10 shows that A1-
homotopic morphisms between Nisnevich sheaves become equal in DMeff,−

Nis (k,R).

PROPOSITION 14.14. Let C and D be bounded above complexes of Nisnevich
sheaves with transfers, whose cohomology sheaves are homotopy invariant. If C
and D are A1-local, then A1-homotopic maps f ,g : C → D induce the same maps
on hypercohomology:

f = g : H∗
Zar(X ,C) → H∗

Zar(X ,D).
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PROOF. To prove the proposition, we write DM for DMeff,−
Nis (k). Combining

13.10 with 13.5, we see that

Hn
Zar(X ,C) ∼= HomD−(Ztr(X),C[n]).

If C is A1-local, this equals HomDM(Ztr(X),C[n]) by 14.6.1. Since f and g agree
in DM, they induce the same map from Hn(X ,C) ∼= HomDM(Ztr(X),C[n]) to
Hn(X ,D) ∼= HomDM(Ztr(X),D[n]), as asserted. �

We will need the following elementary result for R = Q in 14.30 below. It is
proven by replacing Z(X) by Rtr(X) in the proof of 12.13.

LEMMA 14.15. The smallest class in D− which contains all the Rtr(X) and is
closed under quasi-isomorphisms, direct sums, shifts, and cones is all of D−.

One of the features of motivic cohomology is that it is representable by the
A1-local complexes R(i)[n].

PROPOSITION 14.16. Let L be A1-local. Then for any X ∈ Sm/k

Hn
Zar(X ,L) ∼= HomDMeff,−

Nis
(Rtr(X),L[n]).

In particular, the motivic cohomology functors X �→ Hn,i(X ,R) are representable
on Sm/k by R(i)[n] in DMeff,−

Nis (k,R):

Hn,i(X ,R) ∼= HomDMeff,−
Nis

(Rtr(X),R(i)[n]).

PROOF. By 14.8 and 13.10, the left hand side is Hn
Nis(X ,L). By 14.6.1, the

right side equals HomD−(Rtr(X),L[n]). These are isomorphic by 13.5. The final
representability formula follows from this and 13.11, because R(i)[n] is A1-local
by 3.1 and 14.9. �

DEFINITION 14.17. Let X be any scheme of finite type over k and i ≥ 0. We
define the motivic cohomology of X with coefficients in R to be:

Hn,i(X ,R) = HomDMeff,−
Nis

(Rtr(X),R(i)[n]),

where Rtr(X) was defined in 2.11. This agrees with our original definition 3.4 for
smooth X by 14.16.

Dually, we define the motivic homology Hn,i(X ,R) to be

Hn,i(X ,R) = HomDMeff,−
Nis

(R(i)[n],Rtr(X)).

Suslin’s algebraic singular homology, defined in 10.8, is the special case i = 0
of motivic homology.

PROPOSITION 14.18. If X is any scheme of finite type over k, then

Hsing
n (X ,R) ∼= Hn,0(X ,R).
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PROOF. Because H0
Nis(Speck,−) is an exact functor, we have H∗

Nis(Speck,K) =
H∗(K(Speck)) for every complex K. Setting R = Rtr(Speck), we compute:

Hsing
n (X ,R) = Hn (C∗Rtr(X)(Speck)) by definition 10.8,

= H−n
Nis(Speck,C∗Rtr(X)) by remark above,

= HomD−(R[n],C∗Rtr(X)) by 13.5,

= HomDMeff,−
Nis (k,R)(R[n],C∗Rtr(X)) by 14.9 and (14.6.1),

= Hn,0(X ,R) by definition. �

If we assume that k admits resolution of singularities, we may use the cdh
topology to extend some of the previous results from smooth schemes to all
schemes of finite type. For example, applying Hom(R(i)[n],−) to the triangle
(14.5.3) yields:

PROPOSITION 14.19. Assume that resolution of singularities holds over k. Let
X ′ → X be an abstract blow-up with center Z, and set Z′ = Z ×X X ′. Then there is
a long exact sequence in motivic homology:

Hn,i(Z′,R) → Hn,i(Z,R)⊕Hn,i(X ′,R) → Hn,i(X ,R) → Hn−1,i(Z′,R).

Now if L is A1-local, we can identify HomD−(K,L) with HomDMeff,−
Nis

(K,L) by

(14.6.1). When K = Ztr(X), we can identify these Hom groups with cdh hyper-
cohomology. Note that cdh hypercohomology makes sense by 12.24, because the
cdh cohomological dimension of any Noetherian scheme is finite.

THEOREM 14.20. Assume that resolution of singularities holds over k. Let L
be an A1-local complex. Then for any X in Sch/k and all n ≥ 0 we have:

HomD−(Ztr(X),L[n]) ∼= Hn
cdh(X ,Lcdh).

In particular, for any scheme X, and all positive n and i:

Hn,i(X ,R) ∼= Hn
cdh(X ,R(i)cdh).

PROOF. For any X , the inclusion of Nisnevich sheaves ι : Z(X) → Ztr(X) in-
duces a sequence of maps:

HomD−(Ztr(X),L[n]) = ExtnD−(Ztr(X),L) by definition,
u→ ExtnNis(Ztr(X),L) by forgetting transfers,

ι∗→ ExtnNis(Z(X),L) by ι ,
r→ Extncdh((Z(X))cdh,Lcdh) by change of sites,

= Hn
cdh(X ,Lcdh) by definition.

If X is smooth, the composite ι∗ ◦u is an isomorphism by 13.5 and 12.12. By
mimicking the proof of 13.10 (using 13.27 in place of 13.9), we see that the map r
is an isomorphism too. This finishes the proof when X is smooth.
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When X is any scheme, we proceed by induction on dimX . We may assume
that X is reduced. By resolution of singularities, there is a smooth X ′ and a proper
birational morphism p : X ′ →X . Let Z be a proper subscheme (of lower dimension)
such that p is an isomorphism over X −Z. Note that the cdh sheafification of the
sequence 12.22 is exact for the cdh cover X ′ � Z → X . By 13.22, we have a long
exact sequence of cdh hypercohomology groups. There is also a corresponding
long exact sequence of hyperext groups obtained by applying Hom(−,L) to the
triangle (14.5.3). Now consider the following morphism of long exact sequences:

Extn−1(Ztr(Z′),L) � Extn(Ztr(X),L) � Extn(Ztr(X ′),L)⊕Extn(Ztr(Z),L)

Hn−1
cdh (Z′,Lcdh)

�
� Hn

cdh(X ,Lcdh)
�

� Hn
cdh(X

′,Lcdh)⊕Hn
cdh(Z,Lcdh).

�

The outside verticals are isomorphisms by induction and the smooth case. We
conclude the proof of the general result using the 5-lemma.

Now the complex R(i) is A1-local by 3.1 and 14.9, so by 14.17 and (14.6.1)
Hn,i(X ,R) ∼= HomD−(Rtr(X),R(i)[n]). This yields the final assertion. �

Motives with Q-coefficients

We now consider the case when the coefficient ring R contains Q. Our first
goal is to identify étale and Nisnevich motivic cohomology (14.24). We will
then describe DMeff,−

ét (k,R) (in 14.28), and finally show that DMeff,−
Nis (k,R) ∼=

DMeff,−
ét (k,R) (in 14.30).

LEMMA 14.21. Let F be a Zariski sheaf of Q-modules with transfers. Then F
is also an étale sheaf with transfers.

PROOF. It suffices to show that the presheaf kernel and cokernel of F → Fét

vanish. By 6.17, these are presheaves with transfers. Thus we may suppose that
Fét = 0. If F �= 0 then there is a point x ∈ X and a nonzero element c ∈ F(S),
S = SpecOX ,x. Since Fét = 0, there is a finite étale map S′ → S with c|S′ = 0. As in
1.11, the composition of the transfers and inclusion

F(S) → F(S′) → F(S)

is multiplication by d, the degree of S′ → S. Hence this composition is an iso-
morphism. Since it sends c to zero, we have c = 0. This contradiction shows that
F = 0, as desired. �

COROLLARY 14.22. If F is a presheaf of Q-modules with transfers, then
FNis = Fét .

PROOF. By 13.1, FNis is a sheaf with transfers, so 14.21 applies. �

PROPOSITION 14.23. If F is an étale sheaf of Q-modules, then

Hn
ét(−,F) = Hn

Nis(−,F).
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PROOF. We need to prove that Hn
ét(S,F) = 0 for n > 0 when S is Hensel local.

Given this, the result will follow from the Leray spectral sequence. Since F is
uniquely divisible, so is its cohomology. But if s is the closed point of S then
Hn

ét(S,F) equals Hn
ét(s,F), which is a torsion group. Hence Hn

ét(S,F) = 0. �

Recall from 10.1 that the étale (or Lichtenbaum) motivic cohomology
H p,q

L (X ,Q) is defined to be the étale hypercohomology of the complex Q(q).

THEOREM 14.24. Let k be a perfect field. If K is a bounded above complex of
presheaves of Q-modules with transfers, then KNis = Két and

H∗
ét(X ,Két) = H∗

Nis(X ,KNis)

for every X in Sm/k. In particular, H p,q
L (X ,Q) = H p,q(X ,Q).

PROOF. Consider F = HqC. By 14.22, KNis = Két and FNis = Fét . By 14.23,
we have isomorphisms H p

ét(X ,Fét) → H p
Nis(X ,FNis), and these groups vanish for

p > dim(X) by 14.23. Comparing the hypercohomology spectral sequences for
the Nisnevich and the étale topology yields the result.

In particular, the result applies to the complex C = Q(q). �

For clarity, let us say that a complex K is étale A1-local if it is A1-local for
the étale topology (as in 9.17), and Nisnevich A1-local if it is A1-local for the
Nisnevich topology.

These notions coincide for any étale sheaf of R-modules with transfers F ,
where Q ⊆ R. To see this, note that by 14.8, F is Nisnevich A1-local if and
only if it is homotopy invariant: F(X) ∼= F(X ×A1,F) for all smooth X . On the
other hand, we see from 9.24 that F is étale A1-local if and only if it is strictly A1-
homotopy invariant in the sense of 9.22: Hn

ét(X ,F)∼= Hn
ét(X ×A1,F) for all smooth

X and all n. Hence if F is étale A1-local then it is Nisnevich A1-local. Conversely,
if F is Nisnevich A1-local then Hn

Nis(X ,F) ∼= Hn
Nis(X ×A1,F) for all smooth X

by 13.8. By 14.23, F is strictly A1-homotopy invariant, i.e., étale A1-local. This
proves the following lemma:

LEMMA 14.25. Let k be a perfect field, and Q ⊆ R. The following are equiva-
lent for every étale sheaf of R-modules with transfers F: F is homotopy invariant;
F is Nisnevich A1-local; and F is étale A1-local.

PROPOSITION 14.26. Let k be a perfect field and suppose that Q ⊆ R. If K
is a bounded above cochain complex of étale sheaves of R-modules with transfers,
the following are equivalent: K is étale A1-local; K is Nisnevich A1-local; and the
sheaves aét(HnK) are homotopy invariant.

In particular, each R( j) is an étale A1-local complex.

PROOF. By 14.22, aNis(HnK) = aét(HnK) so, by 14.8, K is Nisnevich A1-local
if and only if the sheaves aét(HnK) are homotopy invariant.

Suppose that the sheaves aétHn(K) are homotopy invariant. By 14.25, they are
étale A1-local. Since Q ⊆ R, we have cdR(k) = 0, so K is étale A1-local by 9.30.
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Conversely, suppose that K is étale A1-local and set K′ = TotC∗(K). By 2.19,
each Hn(K′) is A1-homotopy invariant. By theorem 13.8 and 14.21, each étale
sheaf aét(HnK′) is homotopy invariant. The first part of this proof shows that K′ is
étale A1-local. By 9.15, K → K′ is an (étale) A1-weak equivalence, and an isomor-
phism in DMeff,−

ét (k,R). By 9.21, K → K′ is an isomorphism in D−(Shét(Cork,R)).
Hence each sheaf aét(HnK) is isomorphic to aét(HnK′), and is therefore also ho-
motopy invariant. �

COROLLARY 14.27. If k is perfect and Q ⊆ R, the étale motivic cohomology
functors X �→ Hn,i

L (X ,R) are representable by R(i)[n] in DM−
ét = DMeff,−

ét (k,R):

Hn,i
L (X ,R) ∼= HomDM−

ét
(Rtr(X),R(i)[n]).

PROOF. Write D−
ét for D−(Shet(Cork,R)). Since R(i) is étale A1-local by

14.26, we know from 9.19 that

HomDM−
ét
(Rtr(X),R(i)[n]) = HomD−

ét
(Rtr(X),R(i)[n]) = Extn(Rtr(X),R(i)).

By 6.25, this Ext group is Hn,i
L (X ,R) = Hn

ét(X ,R(i)). �
Let Lét denote the full subcategory of D−

ét = D−(Shét(Cork,R)) consisting of
complexes with homotopy invariant cohomology sheaves. By 14.26, Lét is also
the subcategory of étale A1-local complexes.

THEOREM 14.28. The natural functor Lét → DMeff,−
ét (k,R) is an equivalence

of triangulated categories if Q ⊆ R.

PROOF. The functor is full and faithful by 9.19 and 14.26. Since every K in
D−

ét becomes isomorphic to TotC∗(K) in DMeff,−
ét by 9.15, and TotC∗(K) is in Lét

by 2.19 and 14.26, the functor is an equivalence. �
REMARK 14.29. Theorem 14.28 implies that Lét is a tensor triangulated cat-

egory. As in the proof of 9.35 and 14.11, 14.4 and 14.9 show that the tensor oper-
ation of Lét is isomorphic to the operation ⊗L defined in 9.34.

THEOREM 14.30. If Q ⊆ R, then σ : DMeff,−
Nis (k,R) → DMeff,−

ét (k,R) is an
equivalence of tensor triangulated categories.

PROOF. Recall from 14.3 that there are tensor triangulated functors D− → D−
ét

and DMeff,−
Nis → DMeff,−

ét . Since they are onto on objects, it suffices to show
that the functor σ is full and faithful, i.e., that we have HomDMeff,−

Nis
(K,L) ∼=

HomDMeff,−
ét

(Két ,Lét). By theorem 14.11, we may assume that L is in LNis. The

class of objects K so that HomDMeff,−
Nis

(K,L[n]) ∼= HomDMeff,−
ét

(Két ,Lét [n]) for all n

is closed under quasi-isomorphisms, direct sums, shifts, and cones. By 14.15, it
suffices to show that each Rtr(X) is in this class. But then by 14.6.1, 13.5, 9.19,
and 6.25, we have HomDMeff,−

Nis
(Rtr(X),L[n]) ∼= HomD−(Rtr(X),L[n]) ∼= Hn

Nis(X ,L)
and HomDMeff,−

ét
(Rtr(X),Lét [n]) ∼= HomD−

ét
(Rtr(X),Lét [n]) ∼= Hn

ét(X ,Lét). By theo-

rem 14.24, these groups are isomorphic as required. �



LECTURE 15

The complex Z(n) and Pn

The goal of this lecture is to interpret the motivic complex Z(n) in terms of
Ztr(Pn) and use this to show that the product on motivic cohomology is graded-
commutative. We also apply this to give a projective bundle theorem and a Gysin
map associated to a smooth blow-up. We begin by observing that M(Pn − 0) ∼=
M(Pn−1).

LEMMA 15.1. There is a chain homotopy equivalence:

C∗Ztr(Pn −0) �C∗Ztr(Pn−1).

PROOF. Consider the projection (Pn − 0) → Pn−1 which sends (x0 : · · · : xn)
to (x1 : · · · : xn), where 0 is (1 : 0 : · · · : 0). This map has affine fibers. The self
homotopy λ (x0 : · · · : xn)→ (λx0 : x1 : · · · : xn) is well defined on Pn−0×A1, even
for λ = 0, because one of x1, . . . ,xn is always non zero. Hence the projection and
the section (x1 : · · · : xn) �→ (0 : x1 : · · · : xn) are inverse A1-homotopy equivalences.
The lemma now follows from 2.26. �

THEOREM 15.2. If k is a perfect field, there is a quasi-isomorphism of Zariski
sheaves for each n:

C∗
(
Ztr(Pn)/Ztr(Pn−1)

)
�C∗Ztr(G∧n

m )[n] = Z(n)[2n].

In particular, C∗
(
Ztr(Pn)/Ztr(Pn−1)

)
(X) � Z(n)[2n](X) for any smooth local X.

Our proof will use theorem 13.12, whose proof depended upon theorem 13.8,
a result whose proof we have postponed until lecture 24. The requirement that k be
perfect is only needed for 13.8 (and hence 13.12).

PROOF. Let U be the usual cover of Pn by (n + 1) copies of An and note
that n of these form a cover V of Pn − 0. The intersection of i + 1 of these An is
An−i × (A1 − 0)i. By 6.14, we have quasi-isomorphisms Ztr(Ǔ ) → Ztr(Pn) and
Ztr(V̌ )→Ztr(Pn−0) of complexes of Nisnevich sheaves with transfers. Hence the
quotient complex Q∗ = Ztr(Ǔ )/Ztr(V̌ ) is a resolution of Ztr(Pn)/Ztr(Pn − 0) as
a Nisnevich sheaf. By 13.14 and 15.1, or by 13.15, TotC∗Q∗ is quasi-isomorphic
to C∗ (Ztr(Pn)/Ztr(Pn −0)) and hence to C∗(Ztr(Pn)/Ztr(Pn−1)) for the Zariski
topology.

119
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On the other hand, we know from 2.13 that for T = A1 −0 the sequence

0 → Ztr(G∧n
m ) → Ztr(T n) →⊕iZtr(T n−1) →⊕i, jZtr(T n−2) →

·· · → ⊕i, jZtr(T 2) →⊕iZtr(T ) → Z → 0

is split exact. Rewriting this as 0 → Ztr(G∧n
m ) → Rn → Rn−1 → ·· · → R0 → 0,

with Rn = Ztr(T n), Rn−1 = ⊕iZtr(T n−1), and R0 = Z, we may regard it as a chain
homotopy equivalence Ztr(G∧n

m )[n]→ R∗. With this indexing there is a natural map
Q∗ → R∗ whose typical term is a direct sum of the projections

Ztr(An−i ×T i) → Ztr(T i).

These are A1-homotopy equivalences (see 2.25). Applying C∗ turns them into
quasi-isomorphisms by 2.26. Hence we have quasi-isomorphisms of total com-
plexes of presheaves with transfers

TotC∗Q∗
�� TotC∗R∗ ��

C∗Ztr(G∧n
m )[n].

Combining with TotC∗Q∗ �C∗
(
Ztr(Pn)/Ztr(Pn−1)

)
yields the result in the Zariski

topology. �

If n = 1, it is easy to see that the isomorphisms of 13.17 and 15.2 agree. Figure
15.1 illustrates the proof of theorem 15.2 when n = 2. We have written ‘X’ for
C∗Ztr(X) in order to save space, and ‘A1−h.e.’ for A1-homotopy equivalence.

0 � 0 � A1 × (A1 −0) � 2A2 � P2 −0

0
�

� (A1 −0)2
�

� 3
(
A1 × (A1 −0)

)�
� 3A2

�
� P2

�

0
�

� (A1 −0)2

=
�

� 2
(
A1 × (A1 −0)

)�
� A2

�
� P2/(P2 −0)

�

G∧2
m

�
� (A1 −0)2

=
�

� 2(A1 −0)

A1−h.e.
�

� pt

A1−h.e.
�

� 0
�

FIGURE 15.1. The case n = 2 of theorem 15.2

COROLLARY 15.3. For each n there is a quasi-isomorphism for the Zariski
topology

C∗ (Ztr(An −0)/Z) � Z(n)[2n−1].

PROOF. Applying 13.15 and 15.1 to the cover of Pn by An and Pn −0, we see
that the sequence

0 →C∗Ztr(An −0) →C∗Ztr(An)⊕C∗Ztr(Pn−1) →C∗Ztr(Pn) → 0
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becomes exact for the Zariski topology. The result now follows from theorem 15.2,
since C∗Ztr(An) �C∗Ztr(Speck) � Z by 2.24 and 2.14. �

EXERCISE 15.4. Show that the map C∗Ztr(Pi) → Z(i)[2i] of theorem 15.2
factors through the natural inclusion C∗Ztr(Pi) → C∗Ztr(Pn) for all n > i. Hint:
Fix U0 in U and construct Ztr(Ǔ ) → Z(1)[2] vanishing on Ztr(U0). Then form

Ztr(Ǔ )
∆� Ztr(Ǔ )⊗·· ·⊗Ztr(Ǔ ) → Z(1)[2]⊗i → Z(i)[2i].

COROLLARY 15.5. There is a quasi-isomorphism

M(Pn) = C∗Ztr(Pn)
�� Z⊕Z(1)[2]⊕·· ·⊕Z(n)[2n].

PROOF. We proceed by induction, the case n = 1 being 13.17. By exercise
15.4, the map Ztr(Pn−1) → Ztr(Pn) is split injective in DM, because the quasi-
isomorphism Ztr(Pn−1) → ⊕Z(i)[i] factors through it. Hence the distinguished
triangle of theorem 15.2 splits:

C∗Ztr(Pn−1) � C∗Ztr(Pn) � Z(n)[n] � C∗Ztr(Pn−1)[1]. �

Our re-interpretation of the motivic complexes allows us to show that the prod-
uct in motivic cohomology is skew-commutative. This will be a consequence of
the following construction, and some linear algebra.

EXAMPLE 15.6. Consider the reflection automorphism τ of Pn, n ≥ 1, sending
(x0 : x1 : · · · : xn) to (−x0 : x1 : · · · : xn). We claim that the induced automorphism
of C∗Ztr(Pn) is A1-homotopic to the identity map, so that it is the identity map in
DMeff,−

Nis (see 14.1 and 9.10).
To see this, consider the elementary correspondence from Pn × A1

(parametrized by x0, . . . ,xn and t) to Pn (parametrized by y0, . . . ,yn) given by the
subvariety Z of Pn ×A1 ×Pn defined by the homogeneous equation(s)

yi(x0yi + txiy0) = (t2 −1)xiy
2
0, i = 1, . . . ,n

together with xiy j = x jyi for 1 ≤ i, j ≤ n if n ≥ 2. (Exercise: check that this is
an elementary correspondence!) The restrictions along t = ±1 yield two finite
correspondences from Pn to itself, whose difference is idPn − τ .

Restricted to Pn−1×A1, this correspondence is the projection onto Pn−1. Thus
it induces an A1-homotopy between τ and the identity of Ztr(Pn)/Ztr(Pn−1). Ap-
plying C∗, we see from theorem 15.2 that it induces an A1-homotopy between the
reflection automorphism τ of Z(n)[2n] and the identity, so that τ is the identity map
in DMeff,−

Nis .

The symmetric group Σn acts canonically on An by permuting coordinates. By
inspection, this induces a Σn-action on the sheaf with transfers Ztr(G∧n

m ) and hence
on the motivic complexes Z(n).

PROPOSITION 15.7. The action of the symmetric group Σn on C∗Ztr(An − 0)
is A1-homotopic to the trivial action.
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PROOF. Because the action is induced from an embedding Σn ↪→ GLn(k), and
every transposition acts as the reflection τ times an element of SLn(k), we see from
example 15.6 that it suffices to show that the action of SLn(k) on C∗Ztr(An −0) is
chain homotopic to the trivial action.

Since every matrix in SLn(k) is a product of elementary matrices, it suffices to
consider one elementary matrix ei j(a), a ∈ k. But multiplication by this matrix is
A1-homotopic to the identity of An−0, by the homotopy (x, t) �→ ei j(at)x (see 9.9).
In particular it is an A1-homotopy equivalence (see 2.25). By 2.26, the resulting
endomorphism of C∗Ztr(An −0) is chain homotopic to the identity. �

COROLLARY 15.8. The action of the symmetric group Σn on Z(n) is A1-
homotopic to the trivial action. Hence it is trivial in DMeff,−

Nis , and on the motivic
cohomology groups Hp(X ,Z(n)).

Tensoring with a coefficient ring R does not affect the action, so it follows that
Σn also acts trivially on R(n)[2n], and on Hp(X ,R(n)).

PROOF. The action of Σn on An extends to an action on Pn fixing Pn−1. In fact,
all the constructions in the proof of theorem 15.2 and corollary 15.3 are equivariant.
By 15.3, it suffices to show that the action of Σn on C∗Ztr(An−0) is A1-homotopic
to the trivial action. This follows from 15.7 and 14.14. �

Recall from 3.11 that there is a pairing of presheaves Z(i)⊗Z( j) → Z(i+ j).
By inspection of 3.10, this pairing is compatible with the action of the subgroup
Σi ×Σ j of Σi+ j, as well as with the permutation τ interchanging the first i and last
j coordinates of Ztr(G

∧i+ j
m ).

THEOREM 15.9. The pairing defined in 3.12 is skew-commutative:

Hp
Zar(X ,Z(i))⊗Hq

Zar(X ,Z( j)) → Hp+q
Zar (X ,Z(i+ j)).

PROOF. As in 8A.2, the permutation τ fits into the commutative diagram

Hp(X ,Z(i))⊗Hq(X ,Z( j)) � Hp+q(X ,Z(i)⊗Z( j)) � Hp+q(X ,Z(i+ j))

Hq(X ,Z( j))⊗Hp(X ,Z(i))

(
�
−1)pq

� Hp+q(X ,Z( j)⊗Z(i))

τ
�

� Hp+q(X ,Z( j + i))

τ
�

and the right vertical map is the identity by corollary 15.8. �

We conclude this lecture with a generalization of the decomposition 15.5 of
M(Pn) to a projective bundle theorem.

CONSTRUCTION 15.10. Let P = P(E ) → X be a projective bundle associated
to a vector bundle E of rank n+1. From 4.2, 13.11, and 13.5 we have an isomor-
phism

Pic(P) ∼= H2
Nis(P,Z(1)) ∼= HomD−(Ztr(P),Z(1)[2]).
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Therefore the canonical line bundle yields a canonical map τ : Ztr(P) →
Z(1)[2] in D−. Recall from 10.4 that there are multiplication maps for all i ≥ 1,
from Z(1)⊗

tri = Z(1)⊗tr · · ·⊗tr Z(1) to Z(i). For i > 1, we let τ i denote the com-
posite

Ztr(P)
∆� Ztr(P×·· ·×P)

∼=� Ztr(P)⊗
tri τ⊗i

� Z(1)[2]⊗
tri � Z(i)[2i].

Finally, we extend the structure map σ0 : Ztr(P)→Ztr(X) to a canonical family
of maps in D−

σi : Ztr(P)
∆� Ztr(P)⊗tr Ztr(P)

σ0⊗τ i
� Ztr(X)⊗Z(i)[2i].

EXERCISE 15.11. Show that the canonical map in 15.10 induces the isomor-
phism Ztr(Pn

k) ∼= ⊕n
i=0Z(i)[2i] of 15.5. Hint: Use exercise 15.4.

THEOREM 15.12 (Projective Bundle Theorem). Let p : P(E ) → X be a pro-
jective bundle associated to a vector bundle E of rank n + 1. Then the canonical
map

⊕n
i=0Ztr(X)(i)[2i] → Ztr(P(E ))

is an isomorphism in DM, and p is the projection onto the factor Ztr(X).

PROOF. Using induction on the number of open subsets in a trivialization of
E , together with the Mayer-Vietoris triangles (14.5.1), we are reduced to the case
when P(E ) = X ×Pn. Since Ztr(X ×Pn) ∼= Ztr(X)⊗tr Ztr(Pn), we may even as-
sume X = Spec(k). This case is given by 15.5 and exercise 15.11. �

COROLLARY 15.13. Let X be a smooth scheme and Z a smooth subscheme of
pure codimension c. Let p : X ′ → X be the blow-up along Z. Then

C∗Ztr(X ′) ∼= C∗Ztr(X)⊕
(
⊕c−1

i=1 C∗Ztr(Z)(i)[2i]
)
.

Moreover, there is a natural “Gysin” map γ : C∗Ztr(X) →C∗Ztr(Z)(c)[2c], which
is zero on C∗Ztr(X −Z).

PROOF. Since Z is smooth, Z′ is the projective bundle associated to the normal
bundle of Z in X . We claim that the morphism C∗Ztr(X ′) → C∗Ztr(X) is a split
surjection. By 13.26 and 15.12, this will prove the first assertion.

Let X ′′ be the blow-up of X ×A1 along Z ×0, and let Z′′ = (Z ×0)×X×A1 X ′′.
Consider the following diagram, whose rows are distinguished triangles by 13.26:

C∗Ztr(Z′)
a� C∗Ztr(Z)⊕C∗Ztr(X ′)

b � C∗Ztr(X) � C∗Ztr(Z′)[1]

C∗Ztr(Z′′)

f
� c� C∗Ztr(Z×0)⊕C∗Ztr(X ′′)

g
� d� C∗Ztr(X ×A1)

� h = 1X ×0
�

� C∗Ztr(Z′′)[1].
�

By 2.24, the map h is a quasi-isomorphism. But h is also A1-homotopic to 1X ×1,
so h lifts to a map C∗Ztr(X) →C∗Ztr(X ′′). This splits d, and hence c.

Let N be the normal bundle of Z in X . Then the morphism Z′ → Z′′ is
the canonical embedding of P(N ) into P(N ⊕O). By 15.12, f is a splitting
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monomorphism. Composing g with the splittings of c and f , we see that a splits
naturally. Since the first row is a distinguished triangle, b also splits naturally,
which implies the claim.

Note that the cokernel of f is C∗Ztr(Z)(c)[2c]. Composing the splitting of b, g,
and the splitting of c with the projection onto this cokernel yields the desired Gysin
map γ . A diagram chase shows that γ vanishes on C∗Ztr(X −Z). �

EXERCISE 15.14. The Gysin map for X = An or Pn and Z = 0 induces a map

C∗(Ztr(An)/Ztr(An −0))
�� C∗(Ztr(Pn)/Ztr(Pn −0))

γ̄� Z(n)[2n].

(The first map is a quasi-isomorphism by 12.20.) Show that γ̄ agrees with the
quasi-isomorphism of 15.2.

THEOREM 15.15. Let X be a smooth scheme over a perfect field and Z a
smooth closed subscheme of X of codimension c. Then there is a “Gysin” triangle:

C∗Ztr(X −Z) →C∗Ztr(X)
γ� C∗Ztr(Z)(c)[2c] →C∗Ztr(X −Z)[1].

PROOF. We have to show that the Gysin map γ̄ : C∗(Ztr(X)/Ztr(X − Z)) →
C∗Ztr(Z)(c)[2c] of 15.13 is a quasi-isomorphism. By 12.20 we may assume that
X = Y ×Ac and Z = Y ×0. But then γ̄ is the isomorphism of 15.14, tensored with
C∗Ztr(Y ). �



LECTURE 16

Equidimensional cycles

In the first part of this lecture we introduce the notion of an equidimensional
cycle, and use it to construct the Suslin-Friedlander chain complex ZSF(i). We
then show (in 16.7) that ZSF(i) is quasi-isomorphic to Z(i). In lecture 19 (19.4)
we shall compare ZSF(i) to the complex defining higher Chow groups. In the
second part of this lecture, we use equidimensional cycles to define motives with
compact support and investigate their basic properties. Finally we use Friedlander-
Voevodsky Duality (see 16.24) to prove the Cancellation Theorem 16.25.

Let Z be a scheme of finite type over S such that every irreducible component of
Z dominates a component of S. We say that Z is equidimensional over S of relative
dimension m if for every point s of S, either Zs is empty or each of its components
have dimension m. If S′ → S is any map, the pullback S′ ×S Z is equidimensional
over S′ of relative dimension m.

DEFINITION 16.1. Let T be any scheme of finite type over k and m ≥ 0 an
integer. The presheaf zequi(T,r) on Sm/k is defined as follows. For each smooth S,
zequi(T,r)(S) is the free abelian group generated by the closed and irreducible sub-
varieties Z of S×T which are dominant and equidimensional of relative dimension
r over a component of S. If S′ → S is any map, the pullback of relative cycles (see
1A.6 and 1A.8) induces the required natural map zequi(T,r)(S) → zequi(T,r)(S′).

It is not hard to see that zequi(T,r) is a Zariski sheaf, and even an étale sheaf,
for each T and r ≥ 0. One can also check that each zequi(T,r) is contravariant
for flat maps in T , and covariant for proper maps in T , both with the appropri-
ate change in the dimension index r, (see [RelCh, 3.6.2 and 3.6.4]); see [Blo86,
1.3]. In particular, if T ′ ↪→ T is a closed immersion, there are canonical inclusions
zequi(T ′,r) ↪→ zequi(T,r) for all r.

EXAMPLE 16.2. The case r = 0 is of particular interest, since if U is irre-
ducible the group zequi(T,0)(U) is free abelian on the irreducible Z ⊂U ×T which
are quasi-finite and dominant over U . Hence Ztr(T )(U) ⊆ zequi(T,0)(U), because
Ztr(T )(U) is the free abelian group of cycles in U × T which are finite and sur-
jective over U . In fact, Ztr(T ) is a subsheaf of zequi(T,0) because the structure
morphisms associated to V → U are compatible: Ztr(T )(U) → Ztr(T )(V ) is also
the pullback of relative cycles (see 1A.8 and 1A.11).

If T is projective, or proper, then Ztr(T ) = zequi(T,0). Indeed, each closed
subvariety Z ⊂U ×T is proper over U , so Z is quasi-finite over U if and only if Z
is finite over U (see [Har77, Ex. III.11.2]).

125
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We now define transfer maps for zequi(T,r). Given an elementary correspon-
dence V from X to Y and a cycle Z in zequi(T,r)(Y ), the pullback ZV is a well-
defined cycle of V × T by 1A.6 and 1A.8. We define φV (Z ) ∈ zequi(T,r)(X) to
be the push-forward of ZV along the finite map V × T → X × T . This gives a
homomorphism φV : zequi(T,r)(Y ) → zequi(T,r)(X).

If r = 0, the restriction of φV to Ztr(T )(Y ) is the transfer map constructed in
1.1 and 1A.11, as we see from 1A.11 and 1A.13.

We leave the verification of the following to the reader; cf. [BivCy, 5.7].

EXERCISE 16.3. For all T and r, show that φ makes each zequi(T,r) into a
presheaf with transfers. Hint: Use the identity 2.2(4) in [Ful75]. If S → T is flat
of relative dimension d, show that the pullback zequi(T,r) → zequi(S,d + r) is a
morphism of presheaves with transfers.

EXAMPLE 16.4. For each X , there is a natural map zequi(Ai,0)(X)→CHi(Ai×
X) ∼= CHi(X), sending a subvariety Z of Ai ×X , quasi-finite over X , to its cycle.
Comparing the transfer map for zequi(Ai,0) to the transfer map for CHi(X) de-
fined in 2.5, we see that zequi(Ai,0) → CHi(−) is a morphism of presheaves with
transfers.

We define the Suslin-Friedlander motivic complexes ZSF(i) by:

ZSF(i) = C∗zequi(Ai,0)[−2i].

We regard ZSF(i) as a bounded above cochain complex, whose top term is
zequi(Ai,0) in cohomological degree 2i. As in 3.1, C∗(F) stands for the chain com-
plex of presheaves associated to the simplicial presheaf U �→ F(U ×∆•).

EXAMPLE 16.5. It follows from 16.2 and 16.3 that there is a morphism of
presheaves with transfers from Ztr(Pi) = zequi(Pi,0) to zequi(Ai,0), with kernel
Ztr(Pi−1). Applying C∗ gives an exact sequence of complexes of presheaves with
transfers 0 →C∗Ztr(Pi−1) →C∗Ztr(Pi) → ZSF(i)[2i].

EXERCISE 16.6. Let E be the function field of a smooth variety over k. Show
that the stalk at SpecE of the sheaf zequi(Ai

k,0) on Sm/k is equal to the global
sections zequi(Ai

E ,0)(SpecE) of the sheaf zequi(Ai
E ,0) on Sm/E. Similarly, show

that the stalk of Cmzequi(Ai
k,0) at SpecE equals Cmzequi(Ai

E ,0)(SpecE).
Conclude that the stalk of ZSF(i) at SpecE is independent of the choice of k,

since it equals ZSF(i)(SpecE) evaluated in Sm/E.

Here are the two main results in this lecture. Figure 16.1 gives the scheme of
the proof of 16.7. It shows how this result ultimately depends on theorem 13.12,
whose proof will be completed in lectures 21-24 below.

THEOREM 16.7. Assume that k is perfect. Then there is a quasi-isomorphism
in the Zariski topology:

Z(i) � ZSF(i).
In particular, Hn,i(X ,Z) ∼= Hn(X ,ZSF(i)) for all n and i.
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PROOF. As Pi is proper, zequi(Pi,0) = Ztr(Pi) by 16.2. Hence 16.7 follows
from combining 15.2 and 16.8. �

13.12
13.14

16.12

16.10

15.1 16.8

15.2
16.7

FIGURE 16.1. Scheme of the proof of 16.7

THEOREM 16.8. There is a quasi-isomorphism in the Zariski topology:

C∗
[
zequi(Pi,0)/zequi(Pi−1,0)

] �� C∗zequi(Ai,0).

We now prepare for the proof of 16.8. We remark that an easier proof is avail-
able if k admits resolution of singularities, because then C∗zequi(−,0) satisfies lo-
calization by [BivCy, 4.10.2]. This may be compared to the localization property
for C∗Ztr in 13.15.

Write Fi(U) for the (free abelian) subgroup of zequi(Ai,0)(U) generated by
the cycles in U ×Ai which do not touch U × 0. The transfers zequi(Ai,0)(U) →
zequi(Ai,0)(V ) clearly send Fi(U) to Fi(V ). Hence Fi is a sub-presheaf with trans-
fers of zequi(Ai,0).

LEMMA 16.9. There is a commutative diagram with exact rows in PST(k), in
which all three vertical maps are injections:

0 � Ztr(Pi −0)/Ztr(Pi−1) � Ztr(Pi)/Ztr(Pi−1) � coker 1 � 0

0 � Fi

�

∩

� zequi(Ai,0)

ϕ
�

∩

� coker 2

�

∩

� 0.

PROOF. By example 16.2, there is a natural map from Ztr(Pi) = zequi(Pi,0) to
zequi(Ai,0) with kernel Ztr(Pi−1). Thus ϕ is an injection; by exercise 16.3, ϕ is a
morphism of presheaves with transfers. Now the inclusion Ztr(Pi −0) ⊂ Ztr(Pi) is
a morphism in PST by the Yoneda lemma; see 2.8. Since Ztr(Pi −0)(U) consists
of cycles Z ⊂ U × (Pi −0) finite over U , their restriction belongs to the subgroup
Fi(U), i.e., ϕ sends Ztr(Pi −0) to Fi. Hence the diagram commutes.

By inspection, coker1(U) is free abelian on the elementary correspondences
Z ⊂U×Pi which touch U×0 and coker2(U) is free abelian on the equidimensional
W ⊂ U ×Ai which touch U × 0. Since Z �→ ϕ(Z) is a monomorphism on these
generators, it follows that coker1(U) → coker2(U) is an injection for all U . �

LEMMA 16.10. C∗(Fi) is chain contractible as a complex of presheaves.
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PROOF. Recall that Fi(X) is a subgroup of the group of cycles on X ×Ai. Let
hX : Fi(X)→ Fi(X ×A1) be the pullback of cycles along µ : X ×Ai×A1 → X ×Ai

defined by (x,r, t) → (x,r · t). This is a good pullback because the map µ is flat
over X × (Ai −{0}). By construction, the following diagram commutes.

X ×Ai t = 1� X ×Ai ×A1 �t = 0
X ×Ai

X ×Ai

µ
� id ×0�id �

It follows that Fi(t = 1)hX is the identity and Fi(t = 0)hX = 0. Thus the require-
ments of lemma 2.22 are satisfied for Fi. �

LEMMA 16.11. For every Hensel local scheme S, the map coker1(S) →
coker2(S) in the diagram in 16.9 is an isomorphism.

PROOF. Since coker1(S) → coker2(S) is injective by 16.9, it suffices to prove
that it is surjective. Let Z be an equidimensional correspondence from S to Ai.
As Z is quasi-finite over a Hensel scheme, the projection decomposes Z into the
disjoint union of Z0 (which doesn’t contain any point over the closed point of the
Hensel scheme) and Z1 (which is finite over the base). We claim that the Z0 part
comes from Fi. Take Z0 and consider its irreducible components. The intersection
Z0 ∩{0} must be empty, otherwise it would project to the closed point of the base.
Hence Z0 is zero in the cokernel. But now Z1 comes from Ztr(Pi)/Ztr(Pi−1). �

LEMMA 16.12. Assume that k is perfect. Then the map C∗(coker1) →
C∗(coker2) is a quasi-isomorphism of complexes of Zariski sheaves.

PROOF. Let ϕ ′ be the map between the cokernels in 16.9. By 16.11, ϕ ′

is an isomorphism on all Hensel local schemes. By 13.14, ϕ ′ induces quasi-
isomorphisms C∗ coker1(X) �C∗ coker2(X) for all local X . �

PROOF OF 16.8. Applying C∗ to the diagram in 16.9 yields a commutative
diagram of chain complexes with exact rows. The left two complexes are acyclic by
15.1 and 16.10. The right two complexes are quasi-isomorphic by 16.12. Theorem
16.8 now follows from the 5-lemma. �

Motives with compact support

By 16.1 and 16.3, zequi(X ,0) is a Nisnevich sheaf with transfers for every
scheme X of finite type over k. As such, we can regard it as an element of
D−ShNis(Cork).

DEFINITION 16.13. For any scheme X of finite type over k, let Mc(X) denote
zequi(X ,0), regarded as an object in DMeff,−

Nis (k). By 14.4, Mc(X)∼= C∗zequi(X ,0) in
DMeff,−

Nis (k).
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As pointed out in 16.1, Mc(X) is contravariant in X for étale maps and co-
variant in X for proper maps. As observed in 16.2, there is a canonical map
M(X) → Mc(X), induced by Ztr(X) ⊆ zequi(X ,0). Moreover, M(X) = Mc(X) if
X is proper over k.

EXAMPLE 16.14. We have an isomorphism Mc(Ai) ∼= Z(i)[2i] in DMeff,−
Nis (k).

To see this, recall from 16.7 that the Suslin-Friedlander motivic complex ZSF(i) =
C∗zequi(Ai,0)[−2i] is quasi-isomorphic to Z(i).

THEOREM 16.15. Assume that k admits resolution of singularities. If

Z
i � X is a closed subscheme with complement U

j � X, there is a dis-
tinguished triangle:

Mc(Z)
i∗� Mc(X)

j∗� Mc(U) → Mc(Z)[1].

PROOF. It is easy to see from the definitions that there is an exact sequence of
sheaves with transfers:

0 → zequi(Z,0)
i∗� zequi(X ,0)

j∗� zequi(U,0) → Q → 0.

By 13.25 it suffices to show that Qcdh = 0. By 12.30, it suffices to fix S in Sm/k
and show that for any q ∈ Q(S) there is a composition of blow-ups p : S′ → S such
that p∗(q) = 0. A lift of q to zequi(U,0)(S) is supported on a finite set of irreducible
subschemes Wα |U ⊂U ×S which are quasi-finite and dominant over a component
of S. We may assume that the closures Wα of Wα |U in X × S are not quasi-finite
over S. By platification (see [RG71] or 1A.1), there is a blow-up p : S′ → S such
that the proper transforms W ′

α of Wα are flat and dominant over S′. By resolution
of singularities, we may assume that S′ is smooth and that p is a composition of
blow-ups along smooth centers. But then p∗(Wα) = j∗(W ′

α) in zequi(U,0)(S′) and
each p∗(Wα |U) vanishes in Q(S′). �

COROLLARY 16.16. For every X and Y , Mc(X ×Y ) ∼= Mc(X)⊗tr
L,Nis Mc(Y ).

In particular, Mc(X ×Ai) ∼= Mc(X)(i)[2i].

PROOF. If X and Y are smooth and proper, this is just the identity M(X ×Y )∼=
M(X)⊗tr

L,Nis M(Y ). The case when X and Y are proper follows formally from this
using the axioms in 8A.1 for the tensor triangulated structure and the blow-up
triangle in 13.26. Using the axioms and the closed subscheme triangle in 16.15,
we obtain the general case. The last assertion comes from 16.14. �

COROLLARY 16.17. For every scheme X in Sch/k, Mc(X) is in DMeff
gm.

PROOF. If X is proper, so that Mc(X) = M(X), this follows from (14.5.3), as
pointed out in 14.1. The general case follows from this, using theorem 16.15. �

EXERCISE 16.18. Let U,V be an open cover of X . Show that (assuming reso-
lution of singularities) there is a distinguished triangle in DMeff,−

Nis :

Mc(X) → Mc(U)⊕Mc(V ) → Mc(U ∩V ) → Mc(X)[1].
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EXERCISE 16.19. Assume that k admits resolution of singularities. If

Z
i� X is a closed subscheme with complement U

j� X , modify the proof of
16.15 to show that there is a distinguished triangle:

C∗zequi(Z,r)
i∗� C∗zequi(X ,r)

j∗� C∗zequi(U,r) →C∗zequi(Z,r)[1].

DEFINITION 16.20. Let X be any scheme of finite type over k and i ≥ 0. We
define the motivic cohomology with compact supports of X with coefficients in
R to be:

Hn,i
c (X ,R) = HomDMeff,−

Nis
(Mc(X),R(i)[n]).

Dually, we define the (Borel-Moore) motivic homology with compact supports
HBM

n,i (X ,R) to be

HBM
n,i (X ,R) = HomDMeff,−

Nis
(R(i)[n],Mc(X)).

Applying Hom to the triangle in 16.15 yields the expected long exact localiza-
tion sequences for motivic cohomology and homology with compact supports:

Hn,i
c (U,Z) → Hn,i

c (X ,Z) → Hn,i
c (Z,Z) → Hn+1,i

c (U,Z),

HBM
n,i (Z,Z) → HBM

n,i (X ,Z) → HBM
n,i (U,Z) → HBM

n−1,i(Z,Z).

We will identify the motivic homology groups HBM
n,i (X ,R) with higher Chow

groups in lecture 20.

REMARK 16.21. Friedlander and Voevodsky introduced a bivariant cycle co-
homology group Ar,i(Y,X) in [BivCy, 4.3], as the cdh hypercohomology on Y of
C∗zequi(X ,r). Using 14.20, their definition is equivalent to:

Ar,i(Y,X) = HomDMeff,−
Nis

(M(Y )[i],C∗zequi(X ,r)).

In [BivCy, 8.3], they proved the following result:

THEOREM 16.22. Let X be in Sch/k, where k admits resolution of singulari-
ties. Then for any r ≥ 0 and any M in DMeff,−

Nis , there are natural isomorphisms:

HomDMeff,−
Nis

(M(1)[2],C∗zequi(X ,r))
∼=� HomDMeff,−

Nis
(M,C∗zequi(X ,r +1));

HomDMeff,−
Nis

(M(r)[2r],Mc(X))
∼=� HomDMeff,−

Nis
(M,C∗zequi(X ,r)).

More precisely, they proved in [BivCy, 8.3] that there is a natural isomorphism
Ar,i(Y (1)[2],X) ∼= Ar+1,i(Y,X) for every X ,Y in Sch/k. Since the Y [i] generate
DMeff,−

Nis , this is equivalent to the first isomorphism. Since Mc(X) is C∗zequi(X ,0),
the second isomorphism follows from the first by induction on r.

COROLLARY 16.23. Let X → Y be a flat map of relative dimension r. Then
we have a morphism in DMeff,−

Nis :

Mc(Y )(r)[2r] → Mc(X).
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PROOF. By 16.3, the pullback induces a morphism C∗zequi(Y,0) →
C∗zequi(X ,r). Now take M = C∗zequi(Y,0) in 16.22. �

The Duality Theorem below is also due to Friedlander and Voevodsky ([BivCy,
8.2]). We also cite it without proof.

THEOREM 16.24. (Duality) Assume that k admits resolution of singularities. If
T is a smooth scheme of dimension d over k then there are canonical isomorphisms

Hom(M(X ×T )[n],Mc(Y )) ∼= Hom(M(X)(d)[2d +n],Mc(T ×Y )).

THEOREM 16.25. (Cancellation) Assume that k admits resolution of singulari-
ties. Let M and N be in DMeff,−

Nis . Then tensoring with Z(1) induces an isomorphism
Hom(M,N) → Hom(M(1),N(1)).

PROOF. Suppose first that M = M(X)[n] and N = M(Y ) for smooth proper
schemes X and Y . Under this assumption, Mc(Y ) = M(Y ) and Mc(A1 ×Y ) =
Mc(A1)⊗Mc(Y ) = M(Y )(1)[2]. Applying 16.24 with T = A1, homotopy invari-
ance yields isomorphisms:

Hom(M,N) = Hom(M(X)[n],M(Y )) ∼= Hom(M(X ×A1)[n],Mc(Y )) ∼=
Hom(M(X)(1)[2+n],Mc(A1 ×Y )) ∼= Hom(M(1)[2],N(1)[2]).

Removing the shift yields Hom(M,N) ∼= Hom(M(1),N(1)). To see that this iso-
morphism is induced by tensoring with Z(1), it suffices to trace through the explicit
isomorphisms we used. We leave this to the reader.

Since these motives generate DMeff
gm, the theorem is true when M and N are

in DMeff
gm. By 13.5, Hom(M,⊕αNα) ∼= ⊕α Hom(M,Nα) for M in DMeff

gm. Since

DMeff,−
Nis is generated by DMeff

gm and direct sums, the theorem holds for all N in

DMeff,−
Nis when M is in DMeff

gm. Finally, Hom(⊕Mα ,N) ∼= ⊕Hom(Mα ,N) so we
may remove the restriction on M. �

REMARK 16.26. The Cancellation Theorem 16.25 is also valid when k is per-
fect. This was proven in 2002 by Voevodsky in [Voe02].

The next three lectures will be devoted to a proof that Bloch’s higher Chow
groups agree with motivic cohomology on smooth schemes. We will generalize
this to all schemes of finite type at the end of lecture 19, replacing motivic coho-
mology with Borel-Moore motivic homology.
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Higher Chow Groups





LECTURE 17

Higher Chow groups

During the first part of this series of lectures we defined motivic cohomol-
ogy and we studied its basic properties. We also established relations with some
classical objects of algebraic geometry, such as Milnor K-Theory, 5.1, and étale
cohomology, 10.2.

The goal of the next few lectures is to find a relation between motivic co-
homology and the classical Chow groups CHi, generalizing the isomorphism
H2,1(X ,Z) ∼= Pic(X) = CH1(X) of 4.2. That is, we will prove that:

H2i,i(X ,Z) ∼= CHi(X)

for any smooth variety X . There are at least three ways to prove this. The origi-
nal approach, which needs resolution of singularities, was developed in the book
“Cycles, Transfers and Motivic Homology Theories” [VSF00]. A second recent
approach is to use the Cancellation Theorem 16.25 of [Voe02] and the Gersten
resolution 24.11 for motivic cohomology sheaves.

A third approach, which is the one we shall develop here, uses Bloch’s higher
Chow groups CHi(X ,m) to establish the more general isomorphism Hn,i(X ,Z) ∼=
CHi(X ,2i− n). This approach uses the equidimensional cycle groups of the pre-
vious lecture, but does not use resolution of singularities.

The main goal of this lecture is to prove that the higher Chow groups are
presheaves with transfers. (See theorem 17.21.) In particular, they are functo-
rial for maps between smooth schemes. (We will give a second proof of this in
19.15.)

We begin with Bloch’s definition of higher Chow groups (see [Blo86]).

DEFINITION 17.1. Let X be an equidimensional scheme. We write zi(X ,m)
for the free abelian group generated by all codimension i subvarieties on X ×∆m

which intersect all faces X ×∆ j properly for all j < m (in the sense of 17A.1).
Each face X ×∆ j is defined by a regular sequence, and intersection of cycles

defines a map zi(X ,m)→ zi(X , j) (see 17A.1, or [Ful84, Example 7.1.2]). We write
zi(X ,•) for the resulting simplicial abelian group m �→ zi(X ,m). We write zi(X ,∗)
for the chain complex associated to zi(X ,•).

The higher Chow groups of X are defined to be the groups:

CHi(X ,m) = πm(zi(X ,•)) = Hm(zi(X ,∗)).

If X is any scheme, it is easy to check that CHi(X ,0) is the classical Chow
group CHi(X) (see 17.3). Indeed, zi(X ,0) is the group of all codimension i cycles
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on X while zi(X ,1) is generated by those codimension i subvarieties Z on X ×
A1 which intersect both X ×{0} and X ×{1} properly. Moreover the maps ∂ j :
zi(X ,1) �� zi(X ,0) send Z to Z ∩ (X ×{ j}).

EXAMPLE 17.2. If i ≤ d = dimX , then zequi(X ,d − i)(∆m) ⊆ zi(X ,m) for ev-
ery m, because cycles in X ×∆m which are equidimensional over ∆m must meet
every face properly. By 1A.14, the inclusion is compatible with the face maps,
which are defined in 16.1 and 17.1, so this yields an inclusion of simplicial groups,
zequi(X ,d − i)(∆•) ⊆ zi(X ,•).

EXERCISE 17.3. (a) If d = dimX , show that every irreducible cycle in zd(X ,1)
is either disjoint from X ×{0,1} or else is quasi-finite over A1. Use this to describe
zd(X ,1) → zd(X ,0) explicitly and show that CHd(X ,0) ∼= CHd(X). (The group
CHd(X) is defined in [Ful84, 1.6].)

(b) Show that C∗Ztr(X)(Speck) is a subcomplex of zd(X ,∗). On homology,
this yields maps Hsing

m (X/k)→CHd(X ,m). For m = 0, show that this is the surjec-
tion Hsing

0 (X/k) →CH0(X) = CHd(X) of 2.21, which is an isomorphism when X
is projective. By 7.3, it is not an isomorphism when X is A1 or A1 −0.

The push-forward of cycles makes the higher Chow groups covariant for finite
morphisms (see 17A.10). It also makes them covariant for proper morphisms (with
the appropriate change in codimension index i; see [Blo86, 1.3]).

At the chain level, it is easy to prove that the complexes zi(−,∗), and hence
Bloch’s higher Chow groups, are functorial for flat morphisms. However, the com-
plexes zi(−,∗) are not functorial for all maps. We will see in theorem 17.21 below
that the higher Chow groups are functorial for maps between smooth schemes.

PROPERTIES 17.4. We will need the following non-trivial properties of higher
Chow groups.

(1) Homotopy Invariance: The projection p : X ×A1 → X induces an isomor-
phism

CHi(X ,m)
∼=� CHi(X ×A1,m)

for any scheme X over k. The proof is given in [Blo86, 2.1].
(2) Localization Theorem: For any U ⊂ X open, the cokernel of zi(X ,•) →

zi(U,•) is acyclic. This is proven by Bloch in [Blo94]. (Cf. [Blo86, 3.3].)
If the complement Z = X −U has pure codimension c, it is easy to

see that we have an exact sequence of simplicial abelian groups (and also
of complexes of abelian groups):

0 → zi−c(Z,•) → zi(X ,•) → zi(U,•) → coker → 0.

Thus the localization theorem yields long exact sequences of higher
Chow groups. The fact that we need to use Bloch’s Localization The-
orem is unfortunate, because its proof is very hard and complex.

Transfer maps associated to correspondences are not defined on all of zi(Y,∗).
We need to restrict to a subcomplex on which W ∗ may be defined.
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DEFINITION 17.5. Let W be a finite correspondence from X to Y . Write
zi(Y,m)W for the subgroup of zi(Y,m) generated by the irreducible subvarieties
T ⊂Y ×∆m such that the pullback X ×T intersects W ×∆ j properly in X ×Y ×∆m

for every face ∆ j ↪→ ∆m. By construction, zi(Y,∗)W is a subcomplex of zi(Y,∗).

The proof of the following proposition, which is a refinement of the results in
[Lev98], is due to Marc Levine.

PROPOSITION 17.6. Let W be a finite correspondence from X to Y , with Y
affine. Then the inclusion zi(Y,∗)W ⊂ zi(Y,∗) is a quasi-isomorphism.

PROOF. (Levine) Let w : W → Y be a morphism of schemes with Y smooth,
and W locally equidimensional but not necessarily smooth. Write zi(Y,m)w for the
subgroup of zi(Y,m) generated by the irreducible subvarieties T ⊂Y ×∆m for which
every component of w−1(T ) has codimension at least i in W ×∆m and intersects
every face properly. By construction, zi(Y,∗)w is a subcomplex of zi(Y,∗).

For example, if W is the support of a finite correspondence W , let w : W → Y
be the natural map. Then W is locally equidimensional, and the group zi(Y,m)w is
the same as the group zi(Y,m)W of 17.5.

Levine proves that zi(Y,m)w ↪→ zi(Y,m) is a quasi-isomorphism on p. 102 of
[Lev98] (in I.II.3.5.14), except that W is required to also be smooth in order to cite
lemma I.II.3.5.2 of op. cit.. In loc. cit., a finite set {Cj} of locally closed irreducible
subsets of Y and a sequence of integers m j ≤ i is constructed, with the properties
that T is in zi(Y,m)w if and only if T is in zi(Y,m) and that the intersections of T
with Cj ×∆p have codimension at least m j for all j and for every face ∆p of ∆m. A
reading of the proof of lemma I.II.3.5.2 shows that in fact W need only be locally
equidimensional. �

DEFINITION 17.7. Let W be a finite correspondence between two smooth
schemes X and Y . For each cycle Y in zi(Y,m)W , we define the cycle W ∗(Y )
on X ×∆m to be:

W ∗(Y ) = π∗((W ×∆m) · (X ×Y )).

Here π : X ×Y ×∆m → X ×∆m is the canonical projection.

For each W , it is clear that W ∗ defines a homomorphism from the group
zi(Y,m)W to the group of all cycles on X ×∆n.

EXAMPLE 17.8. Let f : X → Y be a morphism of smooth varieties, and let Γ f

be its graph. For Y in zi(Y,0)Γ f , Γ∗
f (Y ) is just the classical pullback of cycles

f ∗(Y ) defined in [Ser65, V-28] (see 17A.3).

REMARK 17.9. The map W ∗ of 17.7 is compatible with the map W ∗ defined
in 17A.8 in the following sense. Given W in Cor(X ,Y ), W ×diag(∆m) is a finite
correspondence from X×∆m to Y ×∆m. If Y is a cycle in zi(Y,m)W , we may regard
it as a cycle in Y ×∆m. The projection formula 17A.11 says that the following
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diagram commutes:

zi(Y,m)W
⊂ � zi(Y ×∆m)W

zi(X ,m)

W ∗
�

⊂ � zi(X ×∆m).

(W ×diag(∆m))∗
�

LEMMA 17.10. The maps W ∗ define a chain map zi(Y,∗)W → zi(X ,∗).

PROOF. Let ∂ j : ∆m ⊂ � ∆m+1 be a face, and consider the following diagram,
whose vertical compositions are W ∗:

z(Y ×∆m+1)
∂ ∗

j � z(Y ×∆m)

z(X ×Y ×∆m+1)

f ∗
� ∂ ∗

j� z(X ×Y ×∆m)

f ∗
�

z(X ×Y ×∆m+1)

W ×∆m+1 ·−
� ∂ ∗

j� z(X ×Y ×∆m)

W ×∆m ·−
�

z(X ×∆m+1)

π∗ � ∂ ∗
j � z(X ×∆m).

π∗
�

The horizontal maps ∂ ∗
j are only defined for cycles meeting the face properly (see

17A.4) and the intersection products in the middle are only defined on cycles in
good position for W . The top square commutes because of the functoriality of
Bloch’s complex for flat maps, and the bottom square commutes by 17A.10.

Suppose that Z is a cycle in X×Y ×∆m+1 which intersects the face X×Y ×∆m

as well as W ×∆m+1 and W ×∆m properly. By 17A.2:

W ×∆m · ((X ×Y ×∆m) ·Z ) = X ×Y ×∆m · ((W ×∆m+1) ·Z ).

That is, the middle square commutes for Z . Finally, if Y ∈ zi(Y,m+1)w, the cycle
(W ×∆m+1) · f ∗Y is finite over X ×∆m+1, so π∗ may be applied to it. A diagram
chase now shows that W ∗ is a morphism of chain complexes. �

COROLLARY 17.11. If Y is affine, any finite correspondence W from X to Y
induces maps W ∗ : CHi(Y,m) →CHi(X ,m) for all m.

PROOF. On homology, 17.6 and W ∗ give: CHi(Y,m) ∼= Hm(zi(Y,∗)W ) →
Hm(zi(X ,∗)) = CHi(X ,m). �

EXAMPLE 17.12. If f : X → Y is a morphism of smooth varieties, and Y is
affine, we will write f ∗ for the map Γ∗

f from zi(Y,m)Γ f to zi(X ,m), and also for the
induced map from CHi(Y,m) to CHi(X ,m). It agrees with Levine’s map f ∗ (see
pp. 67 and 102 of [Lev98]). This is not surprising, since we are using proposition
17.6, which is taken from p. 102 of [Lev98]. The map f ∗ may also be obtained
from [Blo86, 4.1] using [Blo94].
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If f is flat, then f ∗ is just the flat pullback of cycles. That is, if Y = [V ] then
f ∗(Y ) is the cycle associated to the scheme f−1(V ). This fact is a special case of
17A.4.

We can now show that the higher Chow groups are functors on the subcategory
of affine schemes in Cork.

LEMMA 17.13. Let X, Y and Z be smooth affine schemes. Given finite corre-
spondences W1 in Cor(X ,Y ) and W2 in Cor(Y,Z), then

(W2 ◦W1)∗ = W ∗
1 W ∗

2 : CHi(Z,m) →CHi(X ,m).

In particular, if f1 : X → Y and f2 : Y → Z are morphisms, then ( f2 ◦ f1)∗ =
f ∗1 f ∗2 .

PROOF. By 17.6 and 17.12, it suffices to show that (W2 ◦W1)∗ = W ∗
1 W ∗

2 as
maps from zi(Z,m)W → zi(X ,m), where W ∈ Cor(Y � X ,Z) is the coproduct of
W2 and W2◦W1. An element of zi(Z,m)W is a cycle in zi(Z,m) which is in good po-
sition with respect to both W2 and W2 ◦W1. Hence the result follows from theorem
17A.14, given the reinterpretation in 17.9. �

We now extend the definition of the transfer map W ∗ from affine varieties to
all smooth varieties using Jouanolou’s device [Jou73, 1.5] and [Wei89, 4.4]: over
every smooth variety X there is a vector bundle torsor X ′ → X with X ′ affine.

LEMMA 17.14. Let X be a variety and p : X ′ → X a vector bundle torsor. Then
p∗ : CH∗(X ,∗) →CH∗(X ′,∗) is an isomorphism.

PROOF. By definition, there is a dense open U in X so that p−1(U) ∼= U ×An.
There is a commutative diagram

0 � z∗(X ′ − p−1(U)) � z∗(X ′,∗) � z∗(p−1(U))

0 � z∗(X −U)

�

� z∗(X ,∗)

�

� z∗(U).

�

By homotopy invariance of the higher Chow groups (see 17.4), the right vertical
arrow is a quasi-isomorphism. By Noetherian induction, the result is true for X−U ,
i.e., the left vertical arrow is a quasi-isomorphism. By the Localization Theorem
and the 5-lemma, p∗ : CH∗(X ,∗) →CH∗(X ′,∗) is an isomorphism. �

LEMMA 17.15. Let p : Y ′ → Y be a vector bundle torsor and let X be affine.

• Every morphism f : X → Y has a lift f ′ : X → Y ′ such that p f ′ = f .
• Every finite correspondence has a lift, i.e., p∗ : Cor(X ,Y ′) → Cor(X ,Y )

is surjective.

PROOF. Clearly, X ×Y Y ′ → X is a vector bundle torsor. But X is affine and
therefore every vector bundle torsor over X is a vector bundle (see [Wei89, 4.2]).
Define f ′ : X → Y ′ to be the composition of the zero-section of X ×Y Y ′ followed
by the projection. Clearly, p f ′ = f .
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Now suppose that W ⊂ X ×Y is an elementary correspondence. Since W is
finite over X , it is affine. By the first part of this proof, the projection p : W → Y
lifts to a map p′ : W → Y ′. Together with the projection W → X , p′ induces a lift
i : W → X ×Y ′ of W ⊂ X ×Y . Then i(W ) is an elementary correspondence from X
to Y ′ whose image under p∗ is W . �

LEMMA 17.16. Let X and Y be two smooth varieties over k and let p : X ′ → X
and q : Y ′ →Y be vector bundle torsors with X ′ and Y ′ affine. Then for every finite
correspondence W from X to Y , there exists a correspondence W ′ from X ′ to Y ′ so
that q◦W ′ = W ◦ p in Cork(X ′,Y ).

X ′ W ′
� Y ′

X

p
� W � Y

q
�

PROOF. Since Cor(X ′,Y ′) → Cor(X ′,Y ) is onto by 17.15, W ◦ p has a lift
W ′. �

DEFINITION 17.17. Let X and Y be two smooth varieties over k and let W be
a finite correspondence from X to Y . We define W ∗ : CHi(Y,m) → CHi(X ,m) as
follows.

By Jouanolou’s device [Jou73, 1.5], there exist vector bundle torsors p : X ′ →
X and q : Y ′ →Y where X ′ and Y ′ are affine. Both X ′ and Y ′ are smooth, because X
and Y are. By lemma 17.14, p∗ and q∗ are isomorphisms. By 17.16 there is a finite
correspondence W ′ from X ′ to Y ′ so that q◦W ′ = W ◦ p in Cork(X ′,Y ). Since Y ′

is affine, the map W ′∗ : CH∗(Y ′,m) → CH∗(X ′,m) was defined in 17.11. We set
W ∗ = (p∗)−1W ′∗q∗ : CH∗(Y,m) →CH∗(X ,m).

CH∗(X ′,∗) �W
′∗

CH∗(Y ′,∗)

CH∗(X ,∗)

p∗ ∼=
�

�W
∗

CH∗(Y,∗)

q∗ ∼=
�

If f : X → Y is a morphism, we define f ∗ : CHi(Y,m) →CHi(X ,m) to be Γ∗
f ,

that is, f ∗ = (p∗)−1( f ′)∗q∗, where f ′ : X ′ → Y ′ lies over f .

LEMMA 17.18. If X and Y are affine, the map defined in 17.17 agrees with the
map W ∗ defined in 17.11.

PROOF. By 17.13, the map defined in 17.17 equals:

(p∗)−1W ′∗q∗ = (p∗)−1(q◦W ′)∗ = (p∗)−1(W ◦ p)∗ = (p∗)−1 p∗W ∗ = W ∗. �

LEMMA 17.19. The definition of W ∗ in 17.17 is independent of the choices.

PROOF. Suppose given affine torsors X ′′ → X and Y ′′ → Y and a lift W ′′ ∈
Cor(X ′′,Y ′′) of W . We have to show that W ′ and W ′′ induce the same map.
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We begin by making two reductions. First, we may assume that X ′ = X ′′ and
Y ′ = Y ′′, by passing to X ′ ×X X ′′ and Y ′ ×Y Y ′′ and choosing lifts of W ′ and W ′′.
(This reduction uses 17.18.)

We may also assume that X is affine and that X ′ = X , by replacing X by X ′.
Thus we need to show that for any two lifts W0 and W1 of W , W0

∗q∗ = W1
∗q∗.

By lemma 17.20, there is a finite correspondence W̃ so that the following dia-
gram commutes:

X ×A1 W̃ � Y ′

�
�

�
�

�
�

�
�

�

W0

�

�
�

�
�

�
�

�
�

�

W1

�

X

s0

�

s1

�

W � Y.

q

�

Since s0 and s1 are both inverses to the projection p : X × A1 → X , we have
s∗0 p∗ = s∗1 p∗ by 17.13. Since higher Chow groups are homotopy invariant, p∗ is

an isomorphism and we get s∗0 = s∗1. Since X and Y ′ are affine, and Wi = W̃ ◦ si, we
may apply 17.13 again to get

W ∗
0 = s∗0W̃

∗ = s∗1W̃
∗ = W ∗

1 . �

Recall from 2.25 that two correspondences W0 and W1 from X to Y are said
to be A1-homotopic, written W0 � W1, if they are the restrictions of an element of
Cor(X ×A1,Y ) along X ×0 and X ×1.

LEMMA 17.20. Let W be a finite correspondence between a smooth affine
scheme X and a smooth Y . If q : Y ′ →Y is a vector bundle torsor, then any two lifts
W0 and W1 are A1-homotopic.

PROOF. Let V be the image of the union of the supports of W0 and W1 in
X ×Y , and let V ′ denote the fiber product of V and Y ′ over Y ; p : V ′ →V is a vector
bundle torsor. Since X is affine and the induced map V → X is finite, V is affine
too. Hence p : V ′ →V is a vector bundle. Fix a section s : V →V ′.

V ′ � X ×Y ′ � Y ′

V

s
�

p
�
⊂ � X ×Y

�
� Y

q
�

Clearly, p is an A1-homotopy equivalence (in the sense of 2.25) with inverse s, that
is, sp is A1-homotopic to the identity.

Both W0 and W1 induce correspondences W̃0 and W̃1 from X to V ′. Now the
composition g◦ (W̃i ×A1) ∈Cor(X ×A1,V ′) is an A1-homotopy from spW̃i to W̃i,
for i = 0,1. Since pW̃0 = pW̃1, we have

W̃0 � s pW̃0 = s pW̃1 � W̃1.
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Since Wi is the composition of W̃i with the map V ′ → Y , W0 is A1-homotopic to
W1. �

At last, we have the tools to show that the higher Chow groups are presheaves
with transfers, i.e., functors on the category Cork of smooth separated schemes
over k.

THEOREM 17.21. The maps W ∗ defined in 17.17 give the higher Chow groups
CHi(−,m) the structure of presheaves with transfers.

That is, for any two finite correspondences W1 and W2 from X to Y and from Y
to Z, respectively, and for all α ∈CHi(Z,m):

W1
∗(W2

∗(α)) = (W2 ◦W1)∗(α).

In particular, if f1 : X → Y and f2 : Y → Z are morphisms, then ( f2 ◦ f1)∗ = f ∗1 f ∗2 .

PROOF. By 17.16, there is a commutative diagram in Cork of the form

X ′ W ′
1 � Y ′ W ′

2 � Z′

X

p
� W1 � Y

q
� W2 � Z

r
�

where the vertical maps are affine vector bundle torsors. By 17.13, we have
W ′

1
∗W ′

2
∗ = (W ′

2 ◦W ′
1 )∗. Since the definitions of W ∗

i and (W2 ◦W1)∗ are inde-
pendent of the choices by 17.19, the statement now follows from an unwinding of
17.17:

W ∗
1 W ∗

2 = (p∗)−1W ′
1
∗q∗(q∗)−1W ′

2
∗r∗ = (p∗)−1(W ′

2 ◦W ′
1 )∗r∗ = (W2 ◦W1)∗. �



APPENDIX 17A

Cycle maps

If W is a finite correspondence from X to Y , we can define a map W ∗ from
“good” cycles on Y to cycles on X . The formula is to pull the cycle back to X ×Y ,
intersect it with W , and push forward to X . In this appendix, we will make this
precise, in 17A.8. First we must explain what makes a cycle “good”.

DEFINITION 17A.1. Two subvarieties Z1 and Z2 of X are said to intersect
properly if every component of Z1 ∩Z2 has codimension codimZ1 + codimZ2 in
X . This is vacuously true if Z1 ∩Z2 = /0.

If the ambient variety X is regular, the intersection cycle Z1 ·Z2 is defined to
be the sum ∑n j[Wj], where the indexing is over the irreducible components Wj

of Z1 ∩Z2, and the n j are their (local) intersection multiplicities. Following Serre
[Ser65], the multiplicity n j is defined as follows. If A is the local ring of X at the
generic point of Wj, and Il are the ideals of A defining Zl , then

n j = ∑
i

(−1)ilengthTor A
i (A/I1,A/I2).

If X is not regular, the multiplicity will make sense only when at most finitely many
Tor-terms are non-zero.

We say that two equidimensional cycles V = ∑miVi and W = ∑n jWj intersect
properly if each Vi and Wj intersect properly. In this case, the intersection cycle
V ·W is defined to be ∑m jn j(Vi ·Wj).

EXERCISE 17A.2. Let V1,V2 and V3 be three cycles on a smooth scheme X .
Show that (V1 ·V2) ·V3 = V1 · (V2 ·V3) whenever both sides are defined. (This is
proven in [Ser65, V-24].)

DEFINITION 17A.3. Suppose that f : X → Y is a morphism with X and Y
regular, and that Y is a codimension i cycle on Y . We say that f ∗(Y ) is defined if
each component of f−1(Supp(Y )) has codimension ≥ i in X . As in [Ser65, V-28],
we define the cycle f ∗(Y ) to be Γ f · (X ×Y ) (see 17A.1), identifying the graph
Γ f with X .

As noted in [Ser65, V-29], the intersection cycle makes sense even if X is not
regular, since the multiplicities may be computed over Y by flat base change for
Tor (see [Wei94, 3.2.9]).

EXAMPLE 17A.4. If f is flat and Y = [V ], then f ∗(Y ) is the cycle associated
to the scheme f−1(V ). If X is a subvariety of Y , then the cycle f ∗(Y ) on X is
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the same as the cycle X ·Y considered as a cycle on X . If X ⊂ � Y is a regu-
lar embedding, the coefficients of f ∗(Y ) agree with the intersection multiplicities
defined in [Ful84, 7.1.2].

REMARK 17A.5. Here is a variant of definition 17A.3 we will need in the next
lecture. Suppose that S and T are smooth, that X is a scheme of finite type, and that
f : X ×S → X ×T is a morphism over X . If V is a codimension i cycle in X ×T ,
we say that f ∗(V ) is defined if every component of f−1(V ) has codimension i in
X ×S. (It is not hard to see that they have codimension ≤ i.)

As in 17A.3, f ∗(V ) is defined to be the intersection product Γ f · (S×V ) of
17A.1, where Γ f is the image of the graph embedding of X ×S into X ×S×T . The
Tor formula of 17A.1 makes sense because the inclusion Γ f ⊂ X ×S×T is locally
defined by a regular sequence, and hence has finite Tor dimension.

DEFINITION 17A.6. Let f : Y ′ →Y be a morphism of smooth varieties and W
a cycle on Y ′. We say that a cycle Y on Y is in good position for W (relative to
f ) if the cycle f ∗(Y ) is defined, and intersects W properly on Y ′. If Y is in good
position for W , the intersection product W · f ∗Y is defined (see 17A.1). If the
map f is flat, the cycle f ∗(Y ) is always defined.

Let W be an irreducible subvariety of Y ′ and let w be the composition W →
Y ′ → Y . By 17A.1 and 17A.3, a codimension i cycle Y is in good position for W
if and only if codimW w−1(Supp(Y )) ≥ i, that is, if w∗(Y ) is defined.

As a special case, we will say that a cycle Y is in good position for a finite
correspondence W from X to Y if Y is in good position for the cycle underlying
W , relative to the projection X ×Y → Y .

REMARK 17A.7. Let f : X → Y be a morphism of smooth varieties and let
Z be a cycle on X , supported on a closed subscheme Z so that the composition
Z → X → Y is a proper map. It is clear that f∗(Z ) is well-defined even though f
is not proper.

DEFINITION 17A.8. Let W be a finite correspondence between two smooth
schemes X and Y . For every cycle Y on Y in good position for W , we define

W ∗(Y ) = π∗(W · f ∗Y ),

where f : X ×Y → Y and π : X ×Y → X are the canonical projections. The inter-
section and the push-forward are well-defined by 17A.6 and 17A.7. The map W ∗

induces the transfer map for Chow groups, see 17.11 and 17.17.
For any smooth T , W ×T is a finite correspondence from X ×T to Y ×T over

T . By abuse of notation, we shall also write W ∗ for (W ×T )∗.

EXAMPLE 17A.9. We can now reinterpret the composition of correspon-
dences. If W1 and W2 are finite correspondences from X to Y and from Y to Z,
respectively, we have:

W2 ◦W1 = (W1 ×Z)∗(W2) = (X ×W2)∗(W1).
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Here are two formulas which are useful in the study of W ∗.

LEMMA 17A.10. Consider the following diagram of varieties

X ′ g′ � X

Y ′

f ′
�

g
� Y

f
�

where the square is fiber and both X and Y are smooth. Let X be a cycle on X
whose support is finite over Y and for which (g′)∗X is defined. Then g∗ f∗X is
defined and g∗ f∗X = f ′∗(g

′)∗X .

PROOF. If V is a component of X , then the map f : V → f (V ) is fi-
nite. Hence f ′ : (g′)−1(V ) → g−1( f (V )) is finite too, so that codim(g′)−1(V ) =
codimg−1( f (V )). By hypothesis, codim(g′)−1(V ) ≥ i, which proves that g∗ f∗X
is defined. The equality now follows from [Ful75, 2.2(4)]. �

LEMMA 17A.11 (Projection Formula). Let f : X →Y be a morphism of smooth
schemes. Suppose given a cycle X on X, whose support is finite over Y , and a cycle
Y on Y which is in good position for X (see 17A.6). Then f∗X and Y intersect
properly, and the projection formula holds:

f∗(X · f ∗Y ) = f∗X ·Y .

PROOF. Since the restriction of f to the support of X is finite, it is clear that
f∗(X ) and Y intersect properly too. The result is now a consequence of the basic
identity 2.2(2) of [Ful75], or [Ser65, V-30]. �

EXERCISE 17A.12. Let i be the inclusion of a closed subvariety W in a smooth
scheme X and let f : X →Y be a map of smooth schemes. Prove that if Y is a cycle
on Y so that both f ∗Y and ( f i)∗(Y ) are defined, then i∗( f i)∗(Y ) =W · f ∗Y . Hint:
Use [Ser65, V-30] or [Ful75, 2.2(2)].

Recall from 1A.10 that if V → Y is a morphism with Y regular, then the pull-
back ZV of a relative cycle Z in T ×Y is a well defined cycle on T ×V with
integer coefficients.

LEMMA 17A.13. Let T and Y be regular and let Z be a cycle in T ×Y which
is dominant equidimensional over Y . If f : V →Y is a morphism, then the pullback
ZV agrees with the pullback cycle ( f ×T )∗(Z ).

PROOF. Note that Z is a relative cycle by 1A.6, so that ZV is defined. Its
coefficients are characterized by the equalities (ZV )v = Z f (v) for every v ∈V . By
[RelCh, 3.5.8 and 3.5.9], the coefficients of ZV are the same as the multiplicities
in 17A.1, i.e., the coefficients of ( f ×T )∗(Z ) given by 17A.3. �
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THEOREM 17A.14. Let W1 and W2 be two finite correspondences from X to
Y and from Y to Z, respectively. Suppose that Z is a cycle on Z which is in good
position with respect to both W2 and W2 ◦W1. Then

(W2 ◦W1)∗(Z ) = W ∗
1 (W ∗

2 (Z )).

The term W ∗
1 (W ∗

2 (Z )) makes sense by the following lemma.

LEMMA 17A.15. Let Z be in good position for W2 and W2◦W1. Then W ∗
2 (Z )

is in good position with respect to W1.

PROOF. We may assume that the correspondences are elementary, i.e., W1 and
W2 are subvarieties W1 and W2 of X ×Y , and Y ×Z, respectively. In this spirit, we
will write W2 ◦W1 for the subvariety of X ×Z which is the support of the composi-
tion of correspondences, W2 ◦W1. Consider the following diagram.

W2 ◦W1

W1 ×Y W2

u

�

e � W2
d

� Z

c

�

W1

q

� b � Y

p

�

By hypothesis, codimd−1(Z ) ≥ codimZ and codimc−1(Z ) ≥ codimZ .
We claim that codimb−1 pd−1Z ≥ codimZ . Since the central square is carte-

sian, b−1 p = qe−1. Since q is finite, this yields

codimb−1 pd−1Z = codimqe−1d−1Z = codime−1d−1Z .

But e−1d−1 = u−1c−1, and u is finite, so:

codime−1d−1Z = codimu−1c−1Z = codimc−1Z .

But codimc−1Z ≥ codimZ by hypothesis, as claimed. �

PROOF OF 17A.14. The right side is defined by 17A.15. We will follow the
notation established in figure 17A.1, where we have omitted the factor ∆n in every
entry to simplify notation. Note that the central square is cartesian.

By definition 17.7, we have

W ∗
1 (W ∗

2 (Z )) = r∗(W1 ·b∗(p∗(W2 ·d∗Z ))).

Since the central square is cartesian, we have b∗p∗ = q∗e∗ by 17A.10. Since the
pullback e∗ is a ring homomorphism, we have

b∗(p∗(W2 ·d∗Z )) = q∗(e∗(W2 ·d∗Z )) = q∗ (e∗(W2) · e∗d∗Z ) .
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X ×Z

X ×Y ×Z
e�

u

�

Y ×Z
d

� Z

c

�

X ×Y

q

� b � Y

p

�

X

r

�

v

�

FIGURE 17A.1. Composition of correspondences

Consider the two cycles X = e∗(W2) · (de)∗(Z ) and Y = W1 and the function
q. The intersection X ·q∗Y = e∗(W2) · (de)∗(Z ) ·q∗(W1) is proper because Z is
in good position with respect to W2 ◦W1. Therefore the conditions for 17A.11 are
satisfied, and the projection formula yields Y ·q∗X = q∗(q∗Y ·X ), i.e.,

W ∗
1 (W ∗

2 (Z )) = r∗q∗ (q∗(W1) · (e∗(W2) · e∗d∗Z )) .

Since the push-forward and pullback are functorial, we have r∗q∗ = v∗u∗ and
e∗d∗ = u∗c∗. Our cycle then becomes

v∗u∗ (q∗(W1) · e∗(W2) ·u∗c∗Z ) .

We may use the projection formula (17A.11) once again, this time for u∗, with
X = q∗(W1) · e∗(W2) and Y = c∗Z (the conditions are satisfied by the same ar-
gument we used above). This yields u∗(X ·u∗Y ) = (u∗X ) ·Y , i.e.,

W ∗
1 (W ∗

2 (Z )) = v∗ (u∗(q∗(W1) · e∗(W2)) · c∗Z ) .

Since the composition of W1 and W2 as correspondences is exactly u∗(q∗(W1) ·
e∗(W2)), the last equation becomes

W ∗
1 (W ∗

2 (Z )) = v∗((W2 ◦W1) · c∗Z ) = (W2 ◦W1)∗(Z ).

This concludes the proof of 17A.14. �





LECTURE 18

Higher Chow groups and equidimensional cycles

The next step in the proof of theorem 19.1 (that motivic cohomology and higher
Chow groups agree) is the reduction to equidimensional cycles. The main refer-
ences for this lecture are [HighCh] and [FS02].

DEFINITION 18.1. For an equidimensional X , and i ≤ dimX , we write
zi

equi(X ,m) for zequi(X ,dimX − i)(∆m), the free abelian group generated by all codi-
mension i subvarieties on X ×∆m which are dominant and equidimensional over
∆m (of relative dimension dimX − i). We write zi

equi(X ,•) and zi
equi(X ,∗) for the

simplicial abelian group m �→ zi
equi(X ,m) and its associated chain complex, respec-

tively.
By 17.2, zi

equi(X ,m) is a subgroup of zi(X ,m) and zi
equi(X ,•) is a simplicial

subgroup of zi(X ,•).

EXAMPLE 18.2. The inclusion zi
equi(X ,∗) ⊂ zi(X ,∗) will not be a quasi-

isomorphism in general. Indeed, if i > d then zi
equi(X ,m) = 0 while zi(X ,m)

is not generally zero. For example, consider X = Speck. If i > 0 we have
zi

equi(Speck,∗) = 0. In contrast, zi(Speck, i) is the group of points on ∆i which do
not lie on any proper face. We will see in 19.7 that Hizi(Speck,∗) = Hi,i(Speck) =
KM

i (k).

THEOREM 18.3. (Suslin [HighCh, 2.1]) Let X be an equidimensional affine
scheme of finite type over k, then the inclusion map:

zi
equi(X ,∗) ⊂ � zi(X ,∗)

is a quasi-isomorphism for i ≤ dimX.

COROLLARY 18.4. Let X be an affine variety, then for all i ≥ 0

CHi(X ,m) = Hm(zi
equi(X ×Ai,∗)).

In particular, CHi(Speck,m) = Hm(zi
equi(A

i,∗)).

PROOF. This is an immediate corollary of 18.3, definition 17.1 and the homo-
topy invariance of the higher Chow groups; see 17.4. �

COROLLARY 18.5. Let X be an equidimensional quasi-projective scheme over
a field k which admits resolution of singularities. For all i ≤ dimX, the natural
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inclusion zi
equi(X ,∗) ⊂ � zi(X ,∗) is a quasi-isomorphism, i.e., it induces isomor-

phisms

Hmzi
equi(X ,∗)

∼=� Hmzi(X ,∗) = CHi(X ,m).

PROOF. If U is affine, zi
equi(U,∗) ⊂ � zi(U,∗) is a quasi-isomorphism by

18.3. We proceed by induction on dimX . Let U be a dense open affine subscheme
of X with complement Z of codimension 1. The commutative diagram

zi−1
equi(Z,∗) � zi

equi(X ,∗) � zi
equi(U,∗)

zi−1(Z,∗)

�
�

� zi(X ,∗)
�

� zi(U,∗)

�
�

becomes a morphism of triangles by 16.19 and the Localization Theorem for higher
Chow groups (see 17.4). The result follows from the 5-lemma. �

We need 18.9, 18.12, and 18.14 to prove theorem 18.3. All of their proofs rely
on a technical theorem 18A.1, which will be proven in the appendix.

We begin by introducing some auxiliary notions. Let X be a scheme over S.

DEFINITION 18.6. An N−skeletal map ϕ over X , relative to X → S, is a col-
lection {ϕn : X ×∆n → X ×∆n}N

n=0 of S-morphisms, such that ϕ0 is the identity
1X and for every face map ∂ j : ∆n−1 → ∆n with n ≤ N the following diagram com-
mutes.

X ×∆n−1 ϕn−1� X ×∆n−1

X ×∆n

1X ×∂ j
� ϕn � X ×∆n

1X ×∂ j
�

Note that ϕN determines ϕn for all n < N. When S = X , we shall just call ϕ an
n-skeletal map over X .

The condition that an (N − 1)-skeletal map over X can be extended to an N-
skeletal map is a form of the homotopy extension property, and follows from the
Chinese Remainder Theorem when X is affine.

For example, a 1-skeletal map over X = SpecR (relative to S = X) is deter-
mined by a polynomial f ∈ R[t] such that f (0) = 0 and f (1) = 1; ϕ1 is Spec of the
R-algebra map R[t] → R[t] sending t to f .

DEFINITION 18.7. Given an N-skeletal map ϕ over X and n ≤ N, we de-
fine ϕzi(X ,n) to be the subgroup of zi(X ,n) generated by all V in X ×∆n such
that ϕ∗

n (V ) is defined (in the sense of 17A.5) and is in zi(X ,n). If n > N we set
ϕzi(X ,n) = 0. In other words, ϕzi(X ,n) is the group of cycles in X ×An which
intersect all the faces properly and whose pullbacks along ϕn intersect all the faces
properly.

By definition 18.6 we know that the face map ∂ j : zi(X ,n) → zi(X ,n − 1)
sends ϕzi(X ,n) to ϕzi(X ,n−1). Thus ϕzi(X ,∗) is a chain subcomplex of zi(X ,∗).
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Moreover it follows from 18.6 that the ϕ∗
n assemble to define a chain map ϕ∗ :

ϕzi(X ,∗) → zi(X ,∗).
Similarly, we can define ϕzi

equi(X ,n) to be the subgroup of zi
equi(X ,n) generated

by all V such that ϕ∗
n (V ) is defined and is in zi

equi(X ,n). The same argument shows
that ϕzi

equi(X ,∗) is a subcomplex of zi
equi(X ,n) and that the ϕn form a chain map

ϕ∗ : ϕzi
equi(X ,∗) → zi

equi(X ,∗).

0 � ϕzi(X ,1) � ϕzi(X ,0) � 0

zi(X ,2)
�

� zi(X ,1)

i
�

∩

ϕ∗
1

�
� zi(X ,0)

=
�

� 0.

FIGURE 18.1. A 1-skeletal map ϕ and its chain map ϕ∗.

EXAMPLE 18.8. If N = 1, and α ∈ k −{0,1}, the subvariety V = X ×{α}
of X ×A1 is in z1(X ,1) but not z1

equi(X ,1). If X = SpecR, fix r ∈ R and let ϕ1 :
X ×A1 → X ×A1 be the 1-skeletal map defined by the R-algebra map R[t] → R[t]
sending t to f (t) = t + r(t2 − t). The condition that ϕ∗

1 (V ) is in z1
equi(X ,1), i.e.,

dominant and equidimensional over ∆1, is equivalent to the condition that the map
r : X →A1 is equidimensional, i.e., that r−β is nonzero in the domain R for all β ∈
k. Indeed, the fiber of ϕ−1

1 (V ) over t �= 0,1 is supported on R/(r− (α − t/t2 − t)),
and is empty if t = 0,1. Such r always exists when dimX ≥ 1.

LEMMA 18.9. (See [HighCh, 2.8]) Let C∗ be a finitely generated subcomplex
in zi(X ,∗) with i ≤ dimX. Choose N so that Cn = 0 for n > N. Then there is
an N-skeletal map ϕ over X such that C∗ ⊆ ϕzi(X ,∗), and the chain map ϕ∗ :
ϕzi(X ,∗) → zi(X ,∗) satisfies

ϕ∗C∗ ⊆ zi
equi(X ,∗).

PROOF. Suppose that Cn is generated by {V k
n } ⊆ zi(X ,n). Set d = dimX −

i and note that d ≥ 0 since i ≤ dimX . Then Vn = ∪V k
n is closed in X × ∆n of

dimension n+d.
We proceed by induction on N. Since N is finite, we may assume that the

∂ j(V k
n ) are supported in Vn−1. Inductively, we may suppose that we have con-

structed an (N − 1)-skeletal map {ϕn} such that the fibers of the projections
ϕ−1

n (Vn) → ∆n have dimension ≤ d. Let ∂∆N be the union of the faces ∆N . The
compatibility granted by definition 18.6 implies that these maps fit together to form
a map from X × ∂∆N to itself such that the fibers of ϕ−1(X × ∂∆N)∩VN → ∂∆N

have dimension ≤ d. By Generic Equidimensionality 18A.1, this map extends
to an N-skeletal map ϕN : X × ∆N → X × ∆N over X such that the fibers of
ϕ−1

N (VN) → AN have dimension ≤ d. Because each component W of ϕ−1(V k
n )

satisfies the inequality dimW ≤ n+d = dimV k
n , each cycle ϕ∗

n (V k
n ) is defined and
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lies in zi
equi(X ,n). Since Cn is generated by the V k

n , it lies in ϕzi(X ,n) and satisfies
ϕ∗(Cn) ⊂ zi

equi(X ,n). �

DEFINITION 18.10. Let ϕ0 and ϕ1 be N-skeletal maps over X . An N−skeletal
homotopy Φ between ϕ0 and ϕ1 is an N-skeletal map {Φn : X × ∆n × A1 →
X × ∆n ×A1}N

n=0 over X ×A1 relative to the projection X ×A1 → X , which is
compatible with the ϕ j in the sense that the following diagram commutes for every
n.

X ×∆n i0� X ×∆n ×A1 �i1
X ×∆n

X ×∆n

ϕ0
n

� i0� X ×∆n ×A1

Φn
�

�i1
X ×∆n

ϕ1
n

�

Recall from 2.17 that the simplicial decomposition of ∆n ×A1 is given by iso-
morphisms θ j : ∆n+1 → ∆n ×A1, j = 0, . . . ,n. Each θ j identifies the subgroup
zi(X ,n+1) of cycles in X ×∆n+1 with a subgroup of cycles in X ×∆n ×A1.

The subgroup Φzi(X ,n) of zi(X ,n) is defined to be the subgroup generated by
all V in X ×∆n such that: (a) (ϕ0)∗(V ) and (ϕ1)∗(V ) are defined and in zi(X ,n);
(b) each Φ∗

n(V ×A1) is defined (see 17A.5); and (c) each isomorphism θ j identifies
Φ∗

n(V ×A1) with an element of zi(X ,n + 1). As in definition 18.7, Φzi(X ,∗) is a
subcomplex of zi(X ,∗). In fact, Φzi lies in (ϕ0zi)∩ (ϕ1zi).

We define the subgroup Φzi
equi(X ,n) of zi

equi(X ,n) similarly, replacing zi with
zi

equi in the definition of Φzi(X ,n).

LEMMA 18.11. If Φ is an N-skeletal homotopy between ϕ0 and ϕ1, then the
maps (ϕ0)∗ and (ϕ1)∗ are chain homotopic, both from Φzi(X ,∗) to zi(X ,∗) and
from Φzi

equi(X ,∗) to zi
equi(X ,∗).

0 � Φzi(X ,2)
∂� Φzi(X ,1)

∂� Φzi(X ,0)

zi(X ,3)
�� ∂ �

h

�
zi(X ,2)

ϕ1
2

�

∩

ϕ0
2

� ∂ �

h

�
zi(X ,1)

ϕ1
1

�

∩

ϕ0
1

� ∂ �

0

�
zi(X ,0)

ϕ1
0

�

∩

ϕ0
0 = 1X

�

FIGURE 18.2. The chain homotopy between id and ϕ∗ when N = 2.

PROOF. For 0 ≤ j ≤ n, let h j denote the composite

X ×∆n+1 1X ×θ j� X ×∆n ×A1 Φn� X ×∆n ×A1 pr� X ×∆n,

where pr is the projection. That is, for V in Φzi(X ,n) we define

h∗j [V ] = (Φn ◦ (1X ×θ j))∗[V ×A1] ∈ zi(X ,n+1).
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The h∗j form a simplicial homotopy (see [Wei94, 8.3.11]) from ∂0h∗0 = (ϕ1)∗ to
∂n+1h∗n = (ϕ0)∗. Hence their alternating sum h = ∑(−1) jh∗j satisfies h∂ + ∂h =
(ϕ1)∗ − (ϕ0)∗. (This is illustrated in figure 18.2 when N = 2.) �

PROPOSITION 18.12. Let ϕ be an N-skeletal map, and {V k
n } a finite set of

varieties in ϕzi(X ,n), n ≤ N. Then there exists an N-skeletal homotopy Φ between
ϕ and the identity map, such that each V k

n lies in Φzi(X ,n).
If the {V k

n } lie in ϕzi
equi(X ,n), then the Φ∗

n(V k
n ×A1) lie in zi

equi(X ×A1,n).

For the construction of Φ, we may assume without loss of generality that the
set of V k

n is closed under taking components of restrictions to faces.

PROOF. Set d = dim(X)− i, and let ∂ (∆n×A1) denote the union of (∂∆n)×A1

and ∆n×{0,1}. As in the proof of 18.9, we shall construct an N-skeletal homotopy
Φ by induction on N satisfying the “fiber condition” that (for each k and n ≤ N)
the fibers of the projections Φ−1

n (V k
n ×A1)→ ∆n×A1 have dimension ≤ d over all

points not in ∂ (∆n ×A1).
Inductively, we are given Φn (n < N) forming an (N −1)-skeletal map which

satisfies the fiber condition. The compatibility with the faces of ∆N and with i0, i1
granted by definition 18.10 implies that the Φn and ϕN fit together to form a map
∂ΦN from X × ∂ (∆N ×A1) to itself. By Generic Equidimensionality 18A.1, with
An = ∆N ×A1, this map extends to a map ΦN from X ×∆N ×A1 to itself which
extends ∂ΦN (i.e., ΦN is an N-skeletal homotopy from the identity to ϕ over X),
such that the fibers of Φ−1

N (V k
N ×A1)→∆N ×A1 have dimension ≤ d over all points

of ∆N ×A1 not on ∂ (∆N ×A1).
To complete the proof of 18.12, we need to show that each Φ∗

N(V k
N) is defined

and that each isomorphism θ j identifies them with elements in zi(X ,N +1) (resp.,
in zi

equi(X ,N +1) when V k
N ∈ ϕzi

equi(X ,n)). Set W =
⋃

k Φ−1
n (V k

N ×A1).
Because the V k

N belong to ϕzi(X ,N) (resp., to zi
equi(X ,N)), the part of W lying

over ∆N ×{0,1} has dimension d + N (resp., is equidimensional). The inductive
hypothesis implies that the part of W lying over ∂ (∆N ×A1) has dimension ≤
d + N (resp., is equidimensional). Let F ⊆ ∆N ×A1 correspond to a face of ∆N+1

under one of the isomorphisms θ j. The fiber condition on Φn implies that the
part of W lying over F but not over ∂ (∆n ×A1) is equidimensional, and so has
dimension ≤ d + dim(F). Hence W has codimension at least i in X ×F (resp., is
equidimensional). �

In order to prove that zi
equi(X ,∗) → zi(X ,∗) is a quasi-isomorphism in theorem

18.3, we introduce the “topological” notion of weak homotopy.

DEFINITION 18.13. Two maps f ,g : K → L of complexes of abelian groups
are called weakly homotopic if for every finitely generated subcomplex C of K,
the restrictions f |C and g|C are chain homotopic.

It is easy to check that weakly homotopic maps induce the same maps on ho-
mology. If K and L are bounded complexes of free abelian groups, this notion is
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equivalent to the usual notion of chain homotopy between maps. To see that this
notion is weaker than chain homotopy, consider a pure subgroup A of B which is
not a summand, such as ⊕∞

1 Z ⊂ ∏∞
1 Z. Then the canonical map from (A → B) to

(A → 0) is weakly homotopic to zero but not chain contractible.

LEMMA 18.14. (See [HighCh, 2.3 and 2.6]) Let ϕ be an N-skeletal map over
X. Then the inclusion map ι and the map ϕ∗ are weakly homotopic on ϕzi:

ϕzi(X ,∗) ⊂ ι�
ϕ∗
� zi(X ,∗),

and also on ϕzi
equi:

ϕzi
equi(X ,∗) ⊂ ι�

ϕ∗
� zi

equi(X ,∗).

PROOF. Consider a subcomplex C∗ ⊂ � ϕzi(X ,∗) generated by some closed
irreducible subvarieties V k

n so that ∂ j(V k
n ) is a linear combination of generators.

By 18.12, there is an N-skeletal homotopy Φ such that C∗ ⊂ Φzi(X ,∗), and if C∗
lies in ϕzi

equi(X ,∗) then C∗ ⊂ Φzi
equi(X ,∗). By 18.11, Φ induces a chain homotopy

between ϕ∗ and ι .
Note that the following diagram commutes:

ϕzi
equi(X ,−) ⊂� ϕzi(X ,−)

zi
equi(X ,−)

ι
�

∩

ϕ∗
�

⊂ � zi(X ,−).

ι
�

∩

ϕ∗
�

Moreover if a∈ ϕzi(X ,n)∩zi
equi(X ,n), and ϕ∗a ∈ zi

equi(X ,n), then a∈ ϕzi
equi(X ,n).

�
PROOF OF THEOREM 18.3. We have to prove that the induced map on homol-

ogy classes is an isomorphism:

(18.14.1) Hn(zi
equi(X ,∗)) → Hn(zi(X ,∗)).

First we prove surjectivity. Let a ∈ zi(X ,n) be such that d(a) = 0. Lemma
18.9 provides an integer N and an N-skeletal map {ϕn} such that a ∈ ϕzi(X ,n) and
ϕ∗(a) ∈ zi

equi(X ,n). By 18.14, a−ϕ∗a is a boundary in zi(X ,n), i.e., a and ϕ∗(a)
represent the same class in homology. Hence the map 18.14.1 is surjective.

For injectivity we need to consider a ∈ zi
equi(X ,n) so that d(a) = 0 and b ∈

zi(X ,n + 1) with d(b) = a. Apply lemma 18.9 to b and a. We find an (n + 1)-
skeletal map ϕ such that a,b ∈ ϕzi(X ,∗) and ϕ∗a,ϕ∗b ∈ zi

equi(X ,∗). But now we
have:

ϕ∗a = ϕ∗(db) = d(ϕ∗b) = 0.

From lemma 18.14, a and ϕ∗a = 0 represent the same class in the homology of
zi

equi(X ,∗). Therefore a is a boundary in zi
equi(X ,∗). Hence the map (18.14.1) is

also injective. �



APPENDIX 18A

Generic equidimensionality

This appendix is devoted to a proof of the following Generic Equidimension-
ality Theorem, due to Suslin. (See [HighCh] 1.1.)

THEOREM 18A.1. Let S be an affine scheme of finite type over a field. Let V be
a closed subscheme of S×An, Z an effective divisor of An and ϕ : S×Z → S×An

any morphism over S. For every t ≥ 0 so that dimV ≤ n + t, there exists a map
Φ : S×An → S×An over S so that:

(1) Φ|S×Z = ϕ;
(2) the fibers of the projection Φ−1(V ) → An have dimension ≤ t over the

points of An −Z.

The S-morphism ϕ : S×Z → S×An is determined by its component ϕ ′ : S×
Z → An. If S ⊂ Am, we can extend ϕ ′ to a morphism ψ ′ : Am ×Z → An. If we
knew the theorem for Am, there would exist an extension Ψ′ : Am×An → An of ψ ′

such that, setting Ψ(X ,Y ) = (X ,Ψ′(X ,Y )), the fibers of Ψ−1(V ) → An over points
of An −Z have dimension ≤ t, and the restriction Φ of Ψ to S×An would satisfy
the conclusion of the theorem. Thus we may suppose that S = Am.

Write Am = Speck[x1, . . . ,xm] and An = Speck[y1, . . . ,yn]. If the divisor Z is
defined by a polynomial h ∈ k[Y ] then the component ϕ ′ : Am × Z → An of ϕ
extends to f = ( f1, . . . , fn) : Am×An → An for polynomials fi ∈ k[X ,Y ] defined up
to a multiple of h. For each n-tuple F = (F1, . . . ,Fn) of homogeneous forms in k[X ]
of degree N, consider the maps

ΦF : Am ×An → An

ΦF(X ,Y ) = ( f1(X ,Y )+h(Y )F1(X), . . . , fn(X ,Y )+h(Y )Fn(X)).

By construction, the restriction of ΦF to Z × S is ϕ ′, i.e., property (1) holds. It
suffices to show that if N >> 0 and the Fi are in general position then Φ(X ,Y ) =
(X ,ΦF(X ,Y )) has the desired property (2).

If I = (g1, . . . ,gs) is the ideal of k[X ,Y ] defining V , then the ideal J of k[X ,Y ]
defining Φ−1(V ) is generated by the polynomials

g j(X ,ΦF) = g j(x1, . . . ,xm,Φ1,Φ2, . . . ,Φn), Φi = fi(X ,Y )+h(Y )Fi(X).

If b is a k-point of An, the ideal Jb of k[X ] defining the fiber over b is generated by
the g j(X ,ΦF(X ,b)). We need to show that if b �∈ Z, then Jb has height ≥ m− t.
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EXAMPLE 18A.2. Suppose that m = 1 and t = 0. We may assume that dimV =
n, and that V is defined by g(x,Y ) = 0. Then Φ−1(V ) is defined by g(x,ΦF),
Fi(x) = aixN , and the fiber over b ∈ An −Z is defined by

g(x, f1(x,b)+h(b)a1xN , . . .) = 0.

Since b �∈ Z, h(b) �= 0. Hence the left side of this equation is a nonzero polynomial
in k[x] for almost all choices of a1, . . . ,an when N >> 0. Hence the fiber over b is
finite.

The same argument works more generally when t = m− 1; we may assume
that V is defined by g = 0, and the fiber over b is defined by g(X ,ΦF(X ,b)) = 0.
In order to see that the left side is nonzero for almost all choices of F1, . . . ,Fn one
just needs to analyze the leading form of g(X ,ΦF) with respect to X .

For any ring R we grade the polynomial ring R[X ] = R[x1, . . . ,xm] with all xi in
degree 1. Any polynomial of degree d is the sum f = Fd + · · ·+ F0 where Fi is a
homogeneous form of degree i; Fd is called the leading form of f with respect to X .
If I is an ideal in R[X ] the leading forms of elements of I generate a homogeneous
ideal I′ of R[X ].

LEMMA 18A.3. Let R be a catenary Noetherian ring, I ⊂ R[X ] an ideal, and
I′ the ideal of leading forms in I with respect to X. Then ht(I′) = ht(I).

PROOF. Let Ih ⊂ S = R[x0, . . . ,xm] be the homogeneous ideal defining the clo-
sure V̄ of V (I) in Pm

R . Then ht(I) = htS(Ih) = htS(Ih,x0)−1. But I′ = (Ih,x0)S/x0S,
so ht(I′) = htS(Ih,x0)−1. �

Now the ring k[X ,Y ] is bigraded, with each xi of bidegree (0,1) and each yi of
bidegree (1,0). Thus each polynomial can be written as a sum g = ∑Gi j, where
the Gi j have bidegree (i, j). Ordering the bidegrees lexicographically allows us to
talk about the bidegree of g, namely the largest (p,q) with Gpq �= 0; this Gpq is the
bi-homogeneous leading form of g.

Without loss of generality, we assume that the generators g1, . . . ,gs of I have
the following property: the bi-homogeneous leading forms G j(X ,Y ) of g j generate
the ideal of the leading forms of I.

LEMMA 18A.4. If F1, . . . ,Fn are homogeneous forms in k[X ] of degree N >
max{degX( fi),degX(g j)} then the ideal J′ of leading forms in J with respect to X
contains forms hrG j(X ,F1, . . . ,Fn), for r >> 0.

PROOF. (See [HighCh] 1.6.1.) Recall that J is generated by the g j(X ,ΦF).
For any choice of the N-forms Fi it is easy to see that degX g j(X ,ΦF) =
degX G j(X ,ΦF) = N degY G j + degX G j, and that the leading form in g j(X ,ΦF)
with respect to X is hdegY G j G j(X ,F1, . . . ,Fn). �

PROPOSITION 18A.5. Let T ⊂ Am ×An be a closed subscheme of dimension
≤ n + t, t ≥ 0. If k is infinite, then for any N ≥ 0 we can find forms F1, . . . ,Fn in
k[X ] of degree N so that W = {w ∈ Am : (w,F1(w), . . . ,Fn(w)) ∈ T} has dimension
at most t.
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PROOF. The vector space of n-tuples F = (F1, . . . ,Fn) of homogeneous forms
of degree N in k[X ] is finite-dimensional, say of dimension D. We identify it with
the set of k-rational points of the affine space AD. Consider the evaluation map

η : Am ×AD → Am+n, η(w,F) = (w,F(w)).

If w �= 0, the fibers of η : w×AD → w×An are isomorphic to AD−n, because
the linear homomorphism η(w,−) : AD →An is surjective. By inspection, η−1(0×
An) = 0×AD. It follows that η−1(T ) has dimension at most D+ t.

Now consider the projection π : η−1(T ) → AD. The theorem on dimension of
the fibers [Har77] III.9.6 implies that there is a nonempty U ⊂ AD whose fibers
have dimension ≤ t. Choosing a rational point in U , the corresponding homoge-
neous forms (F1, . . . ,Fn) satisfy dim{w ∈ Am : (w,F(w)) ∈ T} ≤ t. �

REMARK 18A.6. The case N = 0 is easy to visualize, since D = n. There is an
open subset U of An so that for each b ∈U the fiber T ∩ (Am ×b) of the projection
T → An over b has dimension at most t.

If T is defined by bi-homogeneous polynomials, then W is defined by homoge-
neous polynomials. Suslin states 18A.5 for the corresponding projective varieties
in [HighCh, 1.7].

We are now ready to complete the proof of theorem 18A.1. By 18A.3, Jb ⊂
k[X ] has the same height as the ideal J′b of its leading forms. Suppose that N >
max{degX( fi),degX(g j)}. Since h(b) �= 0, J′b contains all the G j(X ,F) by 18A.4.
Let T ⊂Am+n be the variety defined by the ideal of bi-homogeneous forms of I, i.e.,
the G j(X ,Y ). Hence the variety W = {w ∈ Am : (w,F(w)) ∈ T} is defined by the
G j(X ,F). By two applications of 18A.3, dimT = dimV ≤ n + t. Thus dimW ≤ t
by 18A.5. But the height of J′b is at least the height of the ideal generated by the
G j(X ,F), i.e., the codimension of W , which is at least m− t.





LECTURE 19

Motivic cohomology and higher Chow groups

With the preparation of the last three lectures, we are ready to prove the funda-
mental comparison theorem:

THEOREM 19.1. Let X be a smooth separated scheme over a perfect field k,
then for all n and i ≥ 0 there is a natural isomorphism:

Hn,i(X ,Z)
∼=� CHi(X ,2i−n).

At the end of this lecture, we will generalize this to all schemes of finite type,
replacing motivic cohomology by Borel-Moore motivic homology. Assuming res-
olution of singularities we will prove in 19.18 that CHd−i(X ,n) ∼= HBM

2i+n,i(X ,Z).
Because CHi(X ,0) is the classical Chow group CHi(X) we obtain:

COROLLARY 19.2. H2i,i(X ,Z) ∼= CHi(X).

It is clear from definition 17.1 that CHi(X ,m) = 0 for m < 0. We immediately
deduce the:

VANISHING THEOREM 19.3. For every smooth variety X and any abelian
group A, we have Hn,i(X ,A) = 0 for n > 2i.

The proof of 19.1 will proceed in two stages. First we will show (in theorem
19.8) that Z(i)[2i] is quasi-isomorphic to U �→ zi(U ×Ai,∗) as a complex of Zariski
sheaves. Then we will show (in 19.12) that the hypercohomology of zi(−×Ai,∗)
is CHi(−,∗).

We saw in 16.7 that Z(i) is quasi-isomorphic to the Suslin-Friedlander mo-
tivic complex ZSF(i). Recall from page 126 that the shift ZSF(i)[2i] is the chain
complex C∗zequi(Ai,0) associated to the simplicial abelian presheaf with transfers
C•zequi(Ai,0), which sends X to m �→ zequi(Ai,0)(X ×∆m). The following result
generalizes example 17.2.

LEMMA 19.4. Let T be smooth of dimension d. If 0 ≤ i ≤ d then for all X
there is an embedding of simplicial abelian groups:

C•zequi(T,d− i)(X) ⊂ � zi(X ×T,•).
In particular (for T = Ai), ZSF(i)[2i](X) is a subcomplex of zi(X ×Ai,∗).

PROOF. The cycles in Cmzequi(T,d − i)(X) are equidimensional over X ×∆m

at all points, while the ones in zi(X × T,m) need only be equidimensional at the
generic points of the faces of X ×T ×∆m. Hence the first group is contained in the
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second group of cycles. Moreover, the face maps of the two simplicial groups are
compatible by 1A.14. �

EXAMPLE 19.5. The complex ZSF(i)[2i](Y ) is a subcomplex of zi(Y ×Ai,∗)W

(see 17.6) for every finite correspondence W from X to Y . Indeed, zequi(Ai,0)(Y ×
∆m) lies in zi(Y ×Ai,m)W ×Ai because every generating cycle is quasi-finite over
Y ×∆m.

In contrast, it is easy to see that zequi(Y ×Ai,dimY )(∆m) need not lie in zi(Y ×
Ai,m)W ×Ai , by letting X be a point of Y .

For any schemes X and T , consider the simplicial presheaf on X :

U �→ zi(U ×T,•).

This can be regarded as a simplicial sheaf on the flat site over X and hence on both
the (small) étale site and the Zariski site of X as well. We will write zi(−×T,∗)
for the associated complex of sheaves. The homology of zi(−×T,∗) has the more
general structure of a presheaf with transfers by 17.21.

PROPOSITION 19.6. The homology of the embedding in 19.4 is a morphism of
presheaves with transfers:

(19.6.1) HmC∗zequi(Ai,0)(−) → Hmzi(−×Ai,∗) = CHi(−×Ai,m).

PROOF. The source and target are presheaves with transfers by 16.3 and 17.21,
respectively. It suffices to show that their transfer maps are compatible.

Let W be an elementary correspondence from X to Y . We need to verify that
φW and W ∗ are compatible with the map (19.6.1). If W is the graph of a flat map
from X to Y , then φW and W ∗ are compatible because both are just the flat pullback
of cycles. Since W ∗ is defined in 17.17 by passing to an affine vector bundle torsor
Y ′ →Y , a simple diagram chase (which we leave to the reader) shows that it suffices
to prove the statement when Y is affine.

Let Y be affine. Since Hnzi(Y ×Ai,m)W = Hnzi(Y ×Ai,m) by 17.6, the result
will follow once we show that the following diagram commutes.

zequi(Ai,0)(Y ×∆m)
φW� zequi(Ai,0)(X ×∆m)

zi(Y ×Ai,m)W

19.5
�

∩

W ∗
� zi(X ×Ai,m)

19.4
�

∩

Let i, f and π , respectively, denote the products with Ai ×∆m of the inclusion
W ⊂ � X×Y , and the canonical projections X×Y →Y and X×Y →X . The trans-
fer map W ∗ was defined as W ∗(Z ) = π∗((W ×Ai×∆m) · f ∗Z ) in 17.7. According
to 16.3, the transfer map on zequi(Ai,0)(Y ×∆m) is φW (Z ) = (iπ)∗(ZW×∆m), where
the pullback ZW×∆m was defined on page 10. By 17A.13, ZW×∆m = ( f i)∗(Z ), so
we have:

φW (Z ) = (iπ)∗( f i)∗(Z ) = π∗i∗( f i)∗(Z ).
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By 17A.12, i∗( f i)∗(Z ) = (W ×Ai × ∆m) · f ∗Z and therefore for every Z in
zequi(Ai,0)(Y ×∆m) we have:

φW (Z ) = π∗((W ×Ai ×∆m) · f ∗Z ) = W ∗(Z ). �

EXAMPLE 19.7. If E is a field over k, then the map of 19.6 evaluated at SpecE
is an isomorphism:

HmC∗zequi(Ai,0)(SpecE)
∼=� Hmzi(SpecE ×Ai,∗).

This follows from Suslin’s theorem 18.3 with X = Ai
E , since we may identify

zequi(Ai
k,0)(∆m

E ) and zequi(Ai
E ,0)(∆m) by 16.6.

This implies that theorem 19.1 is true when evaluated on fields. To see this, set
S = SpecE and recall that Hm(S,C∗) = HmC∗(S) for any complex of sheaves C∗.
By 16.7, the above map fits into the sequence of isomorphisms:

Hn,i(S,Z) ∼= HnZ(i)(S) ∼= HnZSF(i)(S)

= H2i−nC∗zequi(Ai,0)(S)
∼=� H2i−nzi(Ai

E ,∗)
= CHi(Ai

E ,2i−n) ∼= CHi(S,2i−n).

THEOREM 19.8. The map ZSF(i)[2i] = C∗zequi(Ai,0) → zi(−× Ai,∗) is a
quasi-isomorphism of complexes of Zariski sheaves.

PROOF. The induced homomorphisms on homology presheaves,

(19.8.1) HmC∗zequi(Ai,0) → Hmzi(−×Ai,∗),
are morphisms of presheaves with transfers by 19.6. The left side is homotopy
invariant by 2.19 and the right side is homotopy invariant because the higher Chow
groups are homotopy invariant (see 17.4). By 19.7, this is an isomorphism for all
fields. By 11.2, the sheafification of the map (19.8.1) is an isomorphism. Hence
C∗zequi(Ai,0)→ zi(−×Ai,∗) is a quasi-isomorphism for the Zariski topology. �

COROLLARY 19.9. For any smooth scheme X, the inclusion of 19.4 induces
an isomorphism:

Hn,i(X ,Z)
∼=� Hn−2i(X ,zi(−×Ai,∗)).

PROOF. By 16.7 and 19.8, we have the sequence of isomorphisms:

Hn,i(X ,Z) = Hn(X ,Z(i)) ∼= Hn(X ,ZSF(i))

= Hn−2i(X ,ZSF(i)[2i])
∼=� Hn−2i(X ,zi(−×Ai,∗)). �

Corollary 19.9 is the first half of the proof of 19.1. The rest of this lecture is
dedicated to proving the second half, that H−m(X ,zi(−×Ai,∗)) ∼= CHi(X ,m). To
do this, we shall use Bloch’s Localization Theorem (see 17.4) to reinterpret the
higher Chow groups as the hypercohomology groups of a complex of sheaves.

A chain complex of presheaves C is said to satisfy Zariski descent on X if
H∗(C(U)) → H∗(U,CZar) is an isomorphism for every open U in X .
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DEFINITION 19.10. Let C be a complex of presheaves on XZar (the small
Zariski site of X). We say that C has the (Zariski) Mayer-Vietoris property if
for every U ⊂ X , and any open covering U = V1 ∪V2, the diagram

C(U) � C(V1)

C(V2)
�

� C(V1 ∩V2)
�

is homotopy cartesian (i.e., the total complex is an acyclic presheaf). This implies
that there is a long exact sequence

· · · → Hi(C(U)) → Hi(C(V1))⊕Hi(C(V2)) → Hi(C(V1 ∩V2)) → ·· · .

For example, any chain complex of flasque sheaves has the Mayer-Vietoris
property. This is an easy consequence of the fact that C(U) → C(V ) is onto for
each V ⊂U .

The following result is proven in [BG73].

THEOREM 19.11 (Brown-Gersten). Let C be a complex of presheaves on X
with the Mayer-Vietoris property. Then C satisfies Zariski descent. That is, the
maps H∗(C(U)) → H∗(U,CZar) are all isomorphisms.

Our main application of the Brown-Gersten theorem is to prove that Bloch’s
complexes satisfy Zariski descent.

PROPOSITION 19.12. Let X be any scheme of finite type over a field. For any
scheme T , each zi(−×T ) satisfies Zariski descent on X. That is, for all m and i,
we have:

CHi(X ×T,m) ∼= H−m(X ,zi(−×T )).

In particular (for T = Ai),

CHi(X ,m)
∼=� CHi(X ×Ai,m)

∼=� H−m(X ,zi(−×Ai)).

PROOF. (Bloch [Blo86, 3.4]) By 19.11, we have to show that C(U) = zi(U ×
T ) has the Mayer-Vietoris property. For each cover {V1,V2} of each U we set
V12 = V1 ∩V2 and consider the diagram:

0 � C(U −V1) � C(U) � C(V1) � coker 1 � 0

0 � C(V2 −V12)

=
�

� C(V2)
�

� C(V12)
�

� coker 2

�
� 0.

By Bloch’s Localization Theorem, the cokernels are both acyclic. A diagram chase
shows that the middle square is homotopy cartesian, i.e., the Mayer-Vietoris con-
dition is satisfied. �

We are now ready to prove the main result of this section, theorem 19.1.
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PROOF OF 19.1. Using 19.9 and 19.12, we define the map to be the composi-
tions of isomorphisms:

Hn,i(X ,Z) ∼= Hn(X ,Z(i))
∼=� Hn−2i(X ,zi(−×Ai)) ∼= CHi(X ,2i− n). �

Zariski descent has also been used by Bloch and Levine to show that the higher
Chow groups are functorial for morphisms between smooth schemes. We first
recall their definition and then show in proposition 19.16 below that it agrees with
ours.

DEFINITION 19.13. (Bloch-Levine) Let f be a morphism from X to Y . Natural
maps f ∗ : CHi(Y,m) →CHi(X ,m) for all m and i are defined as follows. As in the
proof of 17.6, write zi(Y,∗) f for zi(Y,∗)Γ f .

If U ⊂Y is open, zi(Y,∗) f restricts to zi(U,∗) f , and zi
f is a complex of sheaves.

Since Y is locally affine, zi
f � zi by 17.6 and there is a map zi

f → f∗zi of com-
plexes of sheaves on Y . The map is now defined using Zariski descent 19.12 as the
composite:

CHi(Y,m) ∼= H−m(Y,zi) ∼= H−m(Y,zi
f )

f ∗� H−m(X ,zi) ∼= CHi(X ,m).

EXAMPLE 19.14. If q : Y ′ → Y is flat, then zi
q = zi, and the map q∗ defined in

19.13 is just the flat pullback of cycles map q∗, described in 17.12.

LEMMA 19.15. If X
g� Y

f� Z are morphisms of smooth schemes, then
the maps defined in 19.13 satisfy ( f g)∗ = g∗ f ∗.

PROOF. If f g � f : X � Y → Z, we can restrict ( f g)∗ and f ∗ to the subgroup
zi(Z,m) f g� f . Since ( f g)∗ = g∗ f ∗ on cycles (see [Ser65, V-30]), f ∗ maps this
subgroup into zi(Y,m)g. By construction, the diagram of groups

zi(Z,m) f g� f
⊂� zi(Z,m) f g

zi(Y,m)g

f ∗
� g∗� zi(X ,m)

( f g)∗
�

commutes. Sheafifying and applying hypercohomology, 17.6 and Zariski descent
19.12 show that the composite

CHi(Z,m) ∼= H−m(Z,zi
f g� f )

f ∗� H−m(Y,zi
g)

g∗� H−m(X ,zi) ∼= CHi(X ,m)

is just ( f g)∗, as required. �

PROPOSITION 19.16. The map f ∗ : CHi(Y,m) → CHi(X ,m) defined in 19.13
agrees with the map f ∗ = Γ∗

f defined in 17.17.
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PROOF. Suppose first that X and Y are affine, and consider the commutative
diagram

CHi(Y,m) = H−mzi(Y,∗) �
∼=

H−mzi(Y,∗) f
� H−mzi(X ,∗)= CHi(X ,m)

H−m(Y,zi)

∼=
�

�
∼=

H−m(Y,zi
f )

�
� H−m(X ,zi).

∼=
�

The arrows marked ‘∼=’ are isomorphisms by 17.6 and 19.12. The top composite is
the map of 17.12, which by 17.18 is the map Γ∗

f of 17.17. The bottom composite
is the map f ∗ of 19.13, proving that f ∗ = Γ∗

f in this case.
In the general case, 17.15 gives a diagram

X ′ g � Y ′

X

p
� f � Y,

q
�

where X ′ → X and Y ′ → Y are affine vector bundle torsors. By definition 17.17,
Γ∗

f is (p∗)−1Γ∗
gq∗, where p∗ and q∗ are flat pullbacks of cycles. By 19.14, these are

the same as the maps p∗ and q∗ defined in 19.13. Since Γ∗
g = g∗ by the first part of

the proof and g∗q∗ = (qg)∗ = (p f )∗ = p∗ f ∗ by 19.15, we have:

Γ∗
f

17.17= (p∗)−1Γ∗
gq∗ = (p∗)−1g∗q∗

19.15= (p∗)−1 p∗ f ∗ = f ∗. �

We conclude this lecture by reinterpreting theorem 19.1 in terms of the Borel-
Moore motivic homology groups HBM

n,i (X ,Z) = HomDMeff,−
Nis

(Z(i)[n],Mc(X)), as-
suming resolution of singularities. We begin with the smooth case.

EXAMPLE 19.17. When X is smooth of dimension d, the identification follows
from the isomorphism CHi(X ,n) ∼= H2i−n,i(X ,Z) of 19.1. To see this we set j =
d − i and compute:

CH j(X ,n) ∼= H2 j−n, j(X ,Z) by 19.1,

= Hom(M(X),Z( j)[2 j−n]) by 14.16

= Hom(Z(d)[2d],Mc(X)( j)[2 j−n]) by 16.24.

= Hom(Z(i)[2i+n],Mc(X)) by 16.25.

= HBM
2i+n,i(X ,Z) by definition 16.20.

We now establish this isomorphism when X is not smooth, using 16.22.

PROPOSITION 19.18. Assume that k admits resolution of singularities. Let X
be a quasi-projective equidimensional scheme over k of dimension d. Then for
every positive i ≤ d and n there is a canonical isomorphism:

CHd−i(X ,n) ∼= HBM
2i+n,i(X ,Z) = Hom(Z(i)[2i+n],Mc(X)).
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PROOF. By 16.22, the right-hand side is isomorphic to Hom(Z[n],C∗zequi(X , i)).
But by 13.5 this is isomorphic to HnC∗zequi(X , i)(Speck), i.e., the n-th homology of
the complex of abelian groups zd−i

equi(X ,∗). We conclude using corollary 18.5. �

COROLLARY 19.19. If i ≥ 0 there are canonical isomorphisms:

CHd+i(X ,n) ∼= Hom(Z,Mc(X)(i)[2i−n]).

PROOF. By homotopy invariance (see 17.4), CHd+i(X ,n) =CHd+i(X ×Ai,n).
By 19.18, this is Hom(Z[n],Mc(X × Ai)), and Mc(X × Ai) ∼= Mc(X)(i)[2i] by
16.16. �





LECTURE 20

Geometric motives

In lectures 14 and 16 we introduced the category DMeff
gm of effective geomet-

ric motives, and the category DMgm of all geometric motives. In this lecture we
complete our investigation of the properties of these categories.

We begin by embedding Grothendieck’s classic category Chow of Chow mo-
tives into DMgm. We then construct the dual of any object in DMgm, based on
the RHom of 14.12. This allows us to construct internal Hom objects Hom(X ,Y ).
We will conclude this lecture by proving that the tensor triangulated subcategory
DMgm of DM− is rigid.

Recall that Grothendieck’s category of effective Chow motives Choweff is the
idempotent completion of the category whose objects are smooth projective vari-
eties over k, and whose morphisms are given by: HomChow(Y,X) = CHdimX(X ×
Y ). There is a canonical decomposition P1 = (Speck)⊕L, where L is the Lef-
schetz motive. The category Chow of Chow motives is obtained by inverting L and
Choweff is a full subcategory of Chow.

In this lecture k will always be a perfect field which admits resolution of sin-
gularities and the coefficients will be taken over Z.

PROPOSITION 20.1. Assume that k is a perfect field which admits resolution
of singularities. Then Grothendieck’s category of effective Chow motives embeds
contravariantly into DMeff

gm(k,Z), and hence into DMeff,−
Nis (k,Z), in the sense that

if X and Y are two smooth projective schemes, then

HomChow(Y,X) ∼= Hom(M(X),M(Y )).

PROOF. We set d = dimX and compute in DMeff,−
Nis :

CHd(X ×Y ) = H2d,d(X ×Y,Z) by 19.2,

= Hom(M(X ×Y ),Z(d)[2d]) by 14.16,

= Hom(M(X)(d)[2d],M(Y )(d)[2d]) by 16.24 and Y proper

= Hom(M(X),M(Y )) by 16.25. �

167
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REMARK 20.2. The Lefschetz motive L is mapped to Z(1)[2] by 13.17. So
from 16.25 and 20.1 we have the following diagram of fully faithful tensor func-
tors:

(Choweff)op � DMeff
gm

� DMeff,−
Nis

Chowop
�

� DMgm

�
� DM−

Nis.
�

The category DMgm also has dual objects. We can construct the dual of any
object in DMgm, based on the RHom of 14.12. Recall that if B is in DMeff

gm and A,C

are in DMeff,−
Nis then in DMeff,−

Nis we have:

Hom(A⊗B,C) ∼= Hom(A,RHom(B,C)).

By construction, the functor RHom(B,C) is triangulated in both variables.

PROPOSITION 20.3. If X is smooth of dimension d, the diagonal X → X ×X
induces isomorphisms for r ≥ 0:

∆r : Mc(X)(r)[−2d] ∼= RHom(M(X),Z(d))(r)∼= RHom(M(X),Z(d + r)).

PROOF. If A = M(U)[n] for a smooth scheme U , we have:

Hom(A,Mc(X)(r)[−2d]) = Hom(A(d)[2d],Mc(X)(d + r)) by 16.25
∼= Hom(A⊗M(X),Z(d + r)) by 16.24
∼= Hom(A,RHom(M(X),Z(d + r))) by 14.12.

When A = Mc(X)[−2d], the graph of the identity on X (the diagonal) is the cor-
respondence inducing the identity on M(X) and on Mc(X), so it induces natural
maps ∆r from Mc(X)(r)[−2d] to RHom(M(X),Z(d + r)).

The subcategory of objects A for which Hom(A,∆r) is an isomorphism is tri-
angulated, and contains the M(U)[n], so it is all of DMeff,−

Nis . The Yoneda lemma
implies that each ∆r is a natural isomorphism. �

COROLLARY 20.4. If X is a scheme in Sch/k, then RHom(M(X),Z(i)) is in
DMeff

gm for all i ≥ dim(X).

PROOF. It suffices to recall from 16.17 that each Mc(X) is in DMeff
gm. �

EXERCISE 20.5. Show that RHom(M(X),L)∼= RHom(M(X)(1),L(1)) for ev-
ery smooth X and every L in DMeff,−

Nis , by mimicking the proof of 20.3.

DEFINITION 20.6. If X is in Sm/k and d = dimX , we define the dual to be:

M(X)∗ = RHom(M(X),Z(d))(−d).

By 20.3, M(X)∗ is the same as RHom(M(X),Z(i))(−i) for all i ≥ d.
If M is any object of DMgm, some twist M(r) is effective. We define the dual

M∗ to be RHom(M(r),Z(i))(r− i) for large i. Note that M∗ is independent of i and
r by 20.5 and 20.3, and belongs to DMgm by 20.4. This independence implies that
for every r there is a canonical isomorphism M(r)∗ ∼= M∗(−r).
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LEMMA 20.7. The assignment M �→ M∗ is a contravariant triangulated func-
tor from DMgm to itself.

PROOF. By construction, each contravariant functor RHom(−,Z(i)) and each
covariant functor M �→M(−i) is triangulated. Given any diagram in DMeff

gm, there is
an i such that the dual coincides with the triangulated functor RHom(−,Z(i))(−i)
on the diagram. �

The following proposition justifies the terminology “dual”. For simplicity, we
write Homgm(A,B) for HomDMgm(A,B).

PROPOSITION 20.8. The dual M∗ of an object M in DMgm represents the func-
tor A �→ Homgm(A⊗M,Z), in the sense that there is a natural isomorphism:

Homgm(A,M∗) ∼= Homgm(A⊗M,Z).

PROOF. Since M(r)∗(r) ∼= M∗, Homgm(A(−r),M(r)∗) ∼= Homgm(A,M∗).
Hence we may assume that M is effective. But then Homgm(A,M∗) ∼=
Hom(A(i),RHom(M,Z(i)) for large i. By adjunction, this is Hom(A(i)⊗M,Z(i)).
By 16.25, it is Homgm(A⊗M,Z). �

COROLLARY 20.9. There is a natural morphism εM : M∗ ⊗M → Z for every
M in DMgm, adjoint to the identity of M∗.

REMARK 20.10. The dual M∗ is not the same as RHom(M,Z) in
general. For the Lefschetz motive L = M(P1)/M(Speck), for example,
L∗ ∼= RHom(L,Z(1))(−1) ∼= Z(−1)[−2], while exercise 14.13 implies that
RHom(L,Z) = 0.

EXAMPLE 20.11. If X is smooth of dimension d, the dual M(X)∗ is just an
untwisting of Mc(X). To see this, we combine 20.3 with definition 20.6:

Mc(X) ∼= RHom(M(X),Z(d))[2d] ∼= M(X)∗(d)[2d].

In particular, if X is projective then M(X) ∼= M(X)∗(d)[2d].

PROPOSITION 20.12. There is a natural isomorphism ιM : M
∼=� M∗∗ for M

in DMgm.

PROOF. The identity of M∗ gives a natural map ιM : M →M∗∗ via 20.8, adjoint
to the map εM of 20.9:

Homgm(M,M∗∗) ∼= Homgm(M⊗M∗,Z).

To prove that ιM is an isomorphism for all M, it suffices to prove it when M =
M(X), where X is a smooth projective scheme of dimension d. Since M(X)∗(d) is
effective, we see by 20.6 and 20.3 that for all i ≥ d:

(M(X)∗)∗ = RHom(M(X)∗(d),Z(i))(d− i)
∼= RHom(M(X)[−2d],Z(i))(d− i) ∼= M(X).
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A careful comparison of ιM(X) with this isomorphism shows that they are inverse
to each other. �

PROPOSITION 20.13. There is a natural isomorphism M∗⊗N∗ ∼=� (M⊗N)∗

for every M and N in DMgm.

PROOF. There is a natural map M∗⊗N∗ → (M⊗N)∗ arising from εM ⊗εN via
the isomorphism of 20.8:

Homgm
(
M∗ ⊗N∗,(M⊗N)∗

) ∼= Homgm
(
M∗ ⊗N∗ ⊗ (M⊗N),Z

)
∼= Homgm

(
(M∗ ⊗M)⊗ (N∗ ⊗N),Z

)
.

To show that it is an isomorphism we may assume that M = M(X) and N = M(Y ),
where X and Y are smooth projective varieties of dimensions d and e. Using 20.11
three times, and writing L for Z(1)[2], we have:

M∗ ⊗ N∗ ⊗ Ld+e ∼= (M∗ ⊗ Ld)⊗ (N∗ ⊗ Le) ∼= M ⊗ N ∼= (M ⊗ N)∗ ⊗ Ld+e.

Since this isomorphism is our natural map, we are done. �
Using the dual, we can now show that DMgm has an internal Hom functor.

PROPOSITION 20.14. Let L, M, and N be three objects of DMgm. Then there
is a natural isomorphism

Homgm(L⊗M,N) ∼= Homgm(L,M∗ ⊗N).

PROOF. Using proposition 20.12, which states that M ∼= M∗∗ and N ∼= N∗∗,
20.8 and 20.13, we have:

Homgm(L⊗M,N) ∼= Homgm(L⊗M⊗N∗,Z)
∼= Homgm(L⊗ (M∗ ⊗N)∗,Z) ∼= Homgm(L,M∗ ⊗N). �

Proposition 20.14 says that M∗ ⊗N represents the functor L �→ Homgm(L⊗
M,N). This justifies the following definition.

DEFINITION 20.15. If M and N are two objects of DMgm, we define their
internal Hom to be:

Hom(M,N) = M∗ ⊗N.

By 20.6, Hom(M,N) is a geometric motive, i.e., an object of DMgm. Moreover, it
is clear that Hom(M,Z) = M∗.

EXERCISE 20.16. To see the relation between Hom and RHom, let M and N
be two effective geometric motives. First show that RHom(M,N(i)) is in DMeff

gm
for large i. Then show that Hom(M,N) = RHom(M,N(i))(−i) for large i.

Recall from [DMOS82, p. 111] that a tensor category A is said to be rigid
if it has an internal Hom, bi-distributive for the tensor, and if A → (A∗)∗ is an
isomorphism for every A.

THEOREM 20.17. The tensor category DMgm is rigid.



20. GEOMETRIC MOTIVES 171

PROOF. We have already shown in 20.15 that DMgm has an internal Hom and
in 20.12 that every object is isomorphic to its double dual. It remains to check
bi-distributivity. But this is just the routine calculation:

Hom(M1 ⊗M2,N1 ⊗N2) = (M1 ⊗M2)∗ ⊗ (N1 ⊗N2)
∼= (M∗

1 ⊗N1)⊗ (M∗
2 ⊗N2) = Hom(M1,N1)⊗Hom(M2,N2). �





Part 6

Zariski Sheaves with Transfers





LECTURE 21

Covering morphisms of triples

The main goal of the rest of the lectures will be to prove that if F is a homo-
topy invariant presheaf with transfers, then the presheaf Hn

Nis(−,F) is homotopy
invariant. This was stated in theorem 13.8 and it was used in lectures 13-20. The
remaining lectures depend upon lectures 11, 12, and the first part of 13 (13.1–13.5),
but not on the material from 13.7 to the end of lecture 20.

DEFINITION 21.1. Let TY = (Ȳ ,Y∞,ZY ) and TX = (X̄ ,X∞,ZX) be standard
triples (as defined in 11.5). For convenience, set Y = Ȳ −Y∞ and X = X̄ −X∞. A
covering morphism f : TY → TX of standard triples is a finite morphism f : Ȳ → X̄
such that:

• f−1(X∞) ⊂ Y∞ (or equivalently, f (Y ) ⊂ X);
• f |Y : Y → X is étale;

• f induces an isomorphism ZY
∼=� ZX , where ZY = f−1(ZX)∩Y .

Note that f need not induce a finite morphism f : Y → X .

X̄

Y∞,1 Ȳ

ZY

Y∞,2

ZXX∞

FIGURE 21.1. A covering morphism f : Ȳ → X̄

By definition, the square Q = Q(X ,Y,X−ZX) induced by a covering morphism
of standard triples is upper distinguished (see 12.5):

(Y −ZY ) � Y

(X −ZX)
�

� X .

f
�

We say that this upper distinguished square comes from the covering morphism of
standard triples.

175
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EXAMPLE 21.2. Suppose that an affine X has a covering X = U ∪V and a
good compactification (X̄ ,X∞) over some smooth S. Then the Zariski square

U ∩V � U

Q(X ,U,V ) :

V
�

� X
�

comes from a morphism of triples, provided that X̄ − (U ∩V ) lies in an affine open
neighborhood in X̄ .

Indeed, if Z = X −V then T = (X̄ ,X∞,Z) is a standard triple and T ′ = (X̄ , X̄ −
U,Z) is also a standard triple. The identity on X̄ induces a covering morphism
T ′ → T and the above square comes from this morphism.

Recall from 11.11 that a splitting of a standard triple (X̄ ,X∞,Z) over V ⊂ X is
a trivialization of L∆X on V ×S Z.

LEMMA 21.3. Let f : TY → TX be a covering morphism of standard triples. A
splitting of TX over V induces a splitting of TY over f−1(V )∩Y .

PROOF. Since TX was split over V ⊆ X̄ , we are given t : L∆X |V×ZX
∼= O . We

need a trivialization

f−1(t) : L∆Y | f−1(V )×ZY
∼= O.

Now ( f × f )−1(∆X) is the disjoint union of ∆Y and some Q, so ( f × f )∗(L∆X) is
L∆Y ⊗LQ, where LQ is the associated line bundle. Since f induces an isomor-
phism ZY → ZX , Q is disjoint from Y ×S ZY . Since LQ has a canonical trivialization
outside Q, we have LQ

∼= O on Y ×S ZY . Since ( f × f )∗(t) is a trivialization of
L∆Y ⊗LQ on ( f × f )−1(V ×S ZX), we may regard ( f × f )∗(t) as a trivialization of
L∆Y on ( f−1(V )∩Y )×S ZY . �

EXAMPLE 21.4. Let Ȳ → X̄ be a finite separable morphism of smooth projec-
tive curves, X∞ ⊂ X̄ a finite nonempty set containing the branch locus, and y ∈ Ȳ a
k-rational point so that x = f (y) is not in X∞. Set Y∞ = f−1(X∞) � f−1(x)−{y}.
Then (Ȳ ,Y∞,{y}) → (X̄ ,X∞,{x}) is a covering morphism of standard triples. If
X = SpecA and P is the prime ideal of A defining x, then PB is prime in the co-
ordinate ring B of Y . If a ∈ A then by 11.13, lemma 21.3 states that if P[1/a] is
principal, then so is PB[1/a].

DEFINITION 21.5. Let Q be any commutative square of the form

B
i � Y

A

f

� i � X .

f

�
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We write MV (Q) for the following chain complex in Cork:

MV (Q) : 0 � B
(− f ,i)� A⊕Y

(i, f )� X � 0.

If F is a presheaf, then F(MV (Q)) is the complex of abelian groups:

0 � F(X)
(i, f )� F(A)⊕F(Y )

(− f ,i)� F(B) � 0.

The general theorem below will involve an intricate set of data which we
now describe. Let f be a covering morphism of standard triples, from TY =
(Ȳ ,Y∞,ZY ) to TX = (X̄ ,X∞,ZX). Let Q denote the square that comes from f . Let
Q′ = (X ′,Y ′,A′) be another upper distinguished square with Y ′ and X ′ affine so that
Q and Q′ are of the form:

(21.5.1)

B′ � Y ′ B � Y

Q′ : Q :

A′

f ′

� i′ � X ′

f ′

�
A

f

� i � X .

f

�

THEOREM 21.6. Let j : Q′ → Q be a morphism of upper distinguished squares
of the form 21.5.1 such that:

• Q comes from a covering morphism TY → TX of standard triples;
• X ′ → X is an open embedding, and (X̄ ,X∞,ZX) splits over X ′;
• X ′ and Y ′ are affine.

Then for any homotopy invariant presheaf with transfers F, the map of complexes
F(MV (Q)) → F(MV (Q′)) is chain homotopic to zero.

0 � F(X)
(i, f )� F(A)⊕F(Y )

(− f , i)� F(B) � 0

0 � F(X ′)

jX

� (i′, f ′)� F(A′)⊕F(Y ′)

(
jA
jY

)
� (− f ′, i′)� F(B′)

jB

�
� 0

The proof of 21.6 will be assembled from lemmas 21.7, 21.8 and 21.9 below.
We say that a diagram in Cork is homotopy commutative if every pair of com-

posites f ,g : X →Y with the same source and target are A1-homotopic. Any homo-
topy invariant presheaf with transfers identifies A1-homotopic maps, and converts
a homotopy commutative diagram into a commutative diagram.

LEMMA 21.7. Let j : Q′ → Q be as in the statement of 21.6. Then there are
maps λA ∈Cor(X ′,A) and λB ∈Cor(Y ′,B), well-defined up to A1-homotopy, such
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that the following diagram is homotopy commutative.

Y ′ f ′ � X ′

Y � i

jY

�
B

∃λB

� f � A

∃λA

� i � X

jX

�

Applying a homotopy invariant presheaf with transfers F gives a commutative di-
agram:

F(X)
i � F(A)

f � F(B) � i
F(Y )

F(X ′)

∃λA

� f ′�

jX �

F(Y ′).

∃λB

�
jY

�

The assertion in the lemma that λA is only well defined up to A1-homotopy
equivalence reflects the identification

Cor(X ′,A)/A1-h.e. = Hsing
0 (X ′ ×S A/X ′)

∼=� Pic(X ′ ×S X̄ ,X ′ ×S (X∞ � ZX))

arising from 7.2 and 7.16. A similar remark applies to the indeterminacy of λB.

PROOF. By 21.3, both triples TX and TY split over an affine. Hence the maps in
question exist and the outer triangles commute up to A1-homotopy by 11.15. The
construction of the relative Picard classes representing λA and λB from the com-
patible splittings in the proof of 11.15 shows that the middle square is homotopy
commutative. �

Since Cor(X ,Y )/A1-homotopy = Hsing
0 (X ×Y/X) by 7.2, two elements of

Cor(X ,Y ) are A1-homotopic exactly when they agree in Hsing
0 (X ×Y/X). This

allows us to apply the relative Picard techniques of lecture 7.

LEMMA 21.8. Let h be a rational function on X̄ ×S Ȳ which is invertible in a
neighborhood U of A′ ×S Y∞ and A′ ×S ZY , and equals 1 on A′ ×S Y∞. Then the Weil
divisor D defined by h defines an element ψ of Cor(A′,B) such that the composition
iψ ∈Cor(A′,Y ) is A1-homotopic to zero.

PROOF. As a divisor on the normal variety A′ ×S Ȳ , we can write D = ∑niDi

with each Di integral and supported off of U . Since each Di misses A′ ×S Y∞, it
is quasi-finite over A′. Since Di is proper over A′, and has the same dimension
as A′, it is finite and surjective over A′. As such, each Di and hence D defines an
element of C0(A′ ×S B/A′) which is a subgroup of C0(A′ ×B/A′) = Cor(A′,B). By
construction (see 7.15), the image of D in Pic(A′ ×S Ȳ ,A′ ×S (Y∞ � Z)) is given
by (O,h), the trivial line bundle with trivialization 1 on A′ ×S Y∞, and h on A′ ×S

ZY . The composition with i : B → Y sends D to an element of C0(A′ ×S Y/A′)
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whose image in Pic(A′ ×S Ȳ ,A′ ×S Y∞) is the class of (O,h). By 7.16, this group
is isomorphic to Hsing

0 (A′ ×S B/A′). But in this group (O,h) = (O,1) is the zero
element. This implies that the image is zero in Hsing

0 (A′ ×B/A′). �

LEMMA 21.9. Let j : Q′ → Q be as in the statement of 21.6. Then there are
λA ∈ Cor(X ′,A), λB ∈ Cor(Y ′,B), satisfying the conditions of lemma 21.7, and a
ψ in Cork(A′,B) fitting into a homotopy commutative diagram in Cork:

B′ λB ◦ i′ − jB� B

A′

f ′

�

λA ◦ i′ − jA
�

ψ
....

....
....

....
....

....
....

....
.�

A.

f

�

Moreover the composition A′ ψ� B
i� Y is A1-homotopic to 0.

Applying a homotopy invariant presheaf with transfers F gives a commutative
diagram:

F(A)
f � F(B)

F(A′)

i′ ◦λA − jA

�

f ′
�

ψ

�...
.....

.....
.....

.....
.....

...

F(B′),

i′ ◦λB − jB

�

and the composite F(Y )
i� F(B)

ψ� F(A′) is zero.

PROOF OF 21.9. In order to streamline notation, we write × for ×S.
Let L∆X ′ be the line bundle on X ′ × X̄ corresponding to the graph ∆X ′ of

X ′ ⊂ � X̄ , and L∆Y ′ for the line bundle on Y ′ × Ȳ corresponding to the graph
∆Y ′ of Y ′ ⊂ � Ȳ . In between these, we have the line bundle M on X ′ × Ȳ ,
obtained by pulling back L∆X ′ .

Since these three line bundles come from effective divisors, they have canon-
ical global sections. We will write sX for the canonical global section of L∆X ′ on
X ′ × X̄ , sM for M on X ′ ×Ȳ , and sY for L∆Y ′ on Y ′ ×Ȳ . Each global section deter-
mines a section on X ′ ×ZX , X ′ ×ZY , and Y ′ ×ZY , respectively. Since A′ ⊆ X ′ −ZX

and B′ ⊆Y ′−ZY , the restrictions of sX ,sM ,sY also determine trivializations in each
case, of L∆X ′ on A′ ×ZX , of M on A′ ×ZY , and of L∆Y ′ on B′ ×ZY .

Because ZY
∼= ZX , the inclusion of X ′ ×ZX in X ′ × X̄ lifts to X ′ × Ȳ , and we

may identify the pullbacks of L∆X ′ and M to X ′×ZY , together with their respective
trivializations sX and sM on A′ ×ZY .

Since the standard triple (X̄ ,X∞,ZX) splits over X ′, we are given a fixed trivial-
ization tX of L∆X ′ on X ′ ×ZX . As with sX , we may identify tX with a trivialization
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tM of M on X ′ ×ZY . By 21.3, tX also induces a trivialization tY of L∆Y on Y ′ ×ZY .
Since ZX lives in an affine neighborhood UX in X̄ , we extend tX to X ′ ×UX and we
fix this particular extension. Pulling back, the same is true for tM and tY and we
fix those two extensions too.

Because tX , tM , tY are trivializations, there are regular functions rX ,rM ,rY so
that:

sX = rXtX on X ′ ×ZX ; sM = rM tM on X ′ ×ZY ; sY = rY tY on Y ′ ×ZY .

Because sX is a trivialization on A′ ×ZX , rX is invertible on A′ ×ZX . Similarly, rM

is invertible on A′ ×ZY , and rY is invertible on B′ ×ZY . (See figure 21.2.)

A′ ×X∞

A′ ×ZY

A′ ×Y∞,1

A′ ×Y∞,2

1

rM

1

A′ × Ȳ A′ × X̄

A′ ×ZX
rX

1

FIGURE 21.2. The covering morphism f : Ȳ → X̄ over A′

Because (Ȳ ,Y∞,ZY ) is a standard triple, there is an affine open neighborhood
U of Y∞ � ZY in Ȳ . Hence X ′ ×U is an affine open neighborhood of X ′ ×ZY and
X ′ ×Y∞ in X ′ × Ȳ . Since ZY and Y∞ are disjoint, the Chinese Remainder Theorem
yields a regular function h on X ′ ×U which equals 1 on X ′ ×Y∞ and equals rM on
X ′ ×ZY . Let D⊂ X ′ ×Ȳ denote the principal divisor corresponding to h. By lemma
21.8, the divisor −D defines an element ψ of Cor(A′,B) such that the composition
iψ ∈Cor(A′,Y ) is homotopically trivial. By 7.15, the map Cor(A′,B) → Pic(A′ ×
Ȳ ,A′ × (Y∞ � ZY )) sends ψ to the class of (OA′×Ȳ ,1∞ � r−1

M ).
It remains to verify that the diagram in 21.9 is homotopy commutative.
We first interpret the horizontal maps in 21.9. By the construction of λA and

λB in 11.15 and 21.7, the compositions λA ◦ i′ ∈Cor(A′,A) and λB ◦ i′ ∈Cor(B′,B)
represent the classes of (L∆A′ ,s∞ � tX) and (L∆B′ ,s∞ � tY ) in Pic(A′ × X̄ ,A′ ×
(X∞ � ZY )) and Pic(B′ × Ȳ ,B′ × (Y∞ � ZY )), respectively. On the other hand, the
inclusions jA and jB represent the classes of (L∆A′ ,s∞ � sX) and (L∆B′ ,s∞ � sY ),
respectively. It follows that the differences jA −λA ◦ i′ ∈ Cor(A′,A) and jB −λB ◦
i′ ∈ Cor(B′,B) represent the classes of (OA′×X̄ ,1∞ � rX) and (OB′×Ȳ ,1∞ � rY ),
respectively (cf. exercise 11.16).
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The composition ψ f ′ ∈ Cor(B′,B) represents (OB′×Ȳ , f ∗h−1). Since f ∗h is
a rational function on B′ × Ȳ which is 1 on B′ ×Y∞ and rY on B′ × ZY , we have
ψ f ′ = λB ◦ i′ − jB in Pic(B′ × Ȳ ,B′ × (Y∞ � ZY )).

Now the composition f ψ ∈ Cor(A′,A) represents the push-forward of ψ
along H0(A′ × B/A′) → H0(A′ × A/A′). By 7.24, this represents the class of
(OA′×X̄ , f∗(1∞ � r−1

M )). By definition 7.22, the norm of h is a rational function
which extends the trivialization f∗(1∞ � rM ) to an affine neighborhood. Since h is
identically 1 on f−1(X∞) ⊂ Y∞, N(h) = 1 on A′ ×X∞ by 7.23. We will show that
N(h) = rX on A′ ×ZX in lemma 21.10 below. Hence f ψ = λAi′ − jA in Cor(A′,A),
as desired. �

LEMMA 21.10. Let f : U →V be a finite map with U and V normal. Suppose
that Z ⊂V and Z′ ⊂U are reduced closed subschemes such that the induced map
Z′ → Z is an isomorphism, and U →V is étale in a neighborhood of Z′.

If h ∈O∗(U) is 1 on f−1(Z)−Z′, then N(h)|Z and h|Z′ are identified by Z′ ∼= Z.

PROOF. Suppose first that f has a section s : V → U sending Z to Z′. Then
U ∼= s(U) �U ′ and h is 1 on f−1(Z)∩U ′. In this case, the assertion follows from
the componentwise calculation of the norm N(h), together with 7.23.

In the general case, let U ′ ⊂U be a neighborhood of Z′ which is étale over V ,
and let h′ ∈ O∗(U ′ ×V U) be the pullback of h. The graph Z′′ ⊂U ′ ×V U of Z′ → Z
is isomorphic to Z′, and U ′ ×V U ′ is an étale neighborhood of Z′′ in U ′ ×V U . By
construction, h′ is 1 on U ′ ×V ( f−1(Z)−Z′′) and U ′ ×V U → U ′ has a canonical
section sending Z′ to Z′′; in this case we have shown that N(h′)|Z′ is identified with
h|Z′ . Since norms commute with base change, we can identify N(h) with N(h′)
under O∗(V ) ⊆ O∗(U ′). This proves the lemma. �

PROOF OF 21.6. From 21.7 and 21.8, we have maps s1 = (λA,0) : F(A)⊕
F(Y )→F(X ′) and s2 = (ψ,λB) : F(B)→F(A′)⊕F(Y ′). In order for these maps to
form a chain homotopy from j to zero, we must have sd +ds = j. This amounts to
six equations, three of which come from the commutativity of the trapezoid in 21.7.
The other three, which involve ψ are: ψi � 0, jA � i′λA−ψ f and jB � i′λB− f ′ψ .
These are provided by 21.9. �

We isolate a special case of theorem 21.6 as a corollary, which will be needed
in the proof of theorem 22.2.

COROLLARY 21.11. Let Q = Q(X ,Y,A) be an upper distinguished square of
smooth schemes coming from a covering morphism of standard triples and let Σ be
a finite set of points in Y . Then there exist affine neighborhoods X ′ of f (Σ) in X
and Y ′ of Σ in Y ∩ f−1(X ′) such that:

• The induced square Q′ = Q(X ′,Y ′,A′) is upper distinguished, where A′ =
A∩X ′ and B′ = B∩Y ′;
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• For any homotopy invariant presheaf with transfers F, the map
F(MV (Q)) → F(MV (Q′)) is chain homotopic to zero.

0 � F(X) � F(A)⊕F(Y ) � F(B) � 0

0 � F(X ′)
�

� F(A′)⊕F(Y ′)
�

� F(B′)
�

� 0

PROOF. By 11.14, f (Σ) has an affine neighborhood X ′ over which the triple
(X̄ ,X∞,Z) splits. Set Ȳ ′ = X ′ ×X̄ Ȳ , Z′

X = ZX ∩X ′ and Z′
Y = ZY ∩ Ȳ ′, and note

that Z′
Y → Z′

X is an isomorphism by 21.1. Since Ȳ ′ → X ′ is finite, Ȳ ′ is affine. The
subsets Y∞ ∩ Ȳ ′ and Z′

Y ∪Σ of Ȳ ′ are closed in Ȳ ′, and disjoint by 11.5. Hence there
is an affine open subscheme Y ′ of Ȳ ′ which contains both Z′

Y and Σ but is disjoint
from Y∞ ∩ Ȳ ′. Since Y ′ is open in Y , it is étale over X ′. Since B′ = B∩Y ′ is the
complement in Y ′ of Z′

Y = ZY ∩Y ′, and B′ = A×X Y ′ = A′ ×X ′ Y ′, the square Q′ =
Q(X ′,Y ′,A′) is upper distinguished (see 12.5). Thus the hypotheses of theorem
21.6 are satisfied for Q′ → Q, and the final part of the corollary is the conclusion
of 21.6. �



LECTURE 22

Zariski sheaves with transfers

With the technical results of the last lecture in hand, we are ready to prove the
following results.

THEOREM 22.1. Let F be a homotopy invariant presheaf with transfers. Then
the Zariski sheaf FZar is homotopy invariant.

THEOREM 22.2. Let F be a homotopy invariant presheaf with transfers. Then
FZar = FNis.

Combining 22.1 and 22.2, we obtain theorem 22.3 below, which is the case
n = 0 of theorem 13.8. This theorem does not require k to be perfect.

THEOREM 22.3. If F is a homotopy invariant presheaf with transfers, then the
Nisnevich sheaf FNis is homotopy invariant.

We will prove theorems 22.1 and 22.2 in order, using a sequence of lemmas.
We make the running assumption that F is a homotopy invariant presheaf with
transfers. The Mayer-Vietoris sequence F(MV (Q)) associated to a commutative
square Q is defined in 21.5.

LEMMA 22.4. Let U be an open subset of A1 and U =U1∪U2 be a Zariski cov-
ering of U. Then the complex F(MV (Q)) is split exact, where Q = Q(U,U1,U2).

F(MV (Q)) : 0 � F(U) � F(U1)⊕F(U2) � F(U1 ∩U2) � 0.

In particular, F is a Zariski sheaf on A1.

PROOF. Setting Y∞ = P1−U , Y ′
∞ = P1−U1 and Z = U −U2, the identity of P1

is a covering morphism (P1,Y ′
∞,Z) → (P1,Y∞,Z) of standard triples as in example

21.2. Both triples are split over U itself by 11.13, so by theorem 21.6 with Q′ = Q,
the complex F(MV (Q)) is chain contractible, i.e., split exact. �

LEMMA 22.5. If F is a homotopy invariant Zariski sheaf with transfers, and
U is an open subset of A1, then Hn

Zar(U,F) = 0 for n > 0.

PROOF. If U = {U1, . . . ,Un} is a finite cover of U , it follows from 22.4 and
induction on n that the following sequence is exact.

0 → F(U) →⊕iF(Ui) →⊕i, jF(Ui ∩Uj) → ·· · → F(∩iUi) → 0

Hence the Čech cohomology of F satisfies Ȟi(U ,F) = 0 for i > 0. But then
H1(U,F) = Ȟ1(U,F) = 0 by [Har77, Ex III.4.4]. Since dimU = 1, we must also
have Hi(U,F) = 0 for i > 1 (see [Har77, III.2.7]). �

183
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EXERCISE 22.6. Show that 22.4 and 22.5 fail for F = O∗ if A1 is replaced by
an affine elliptic curve.

LEMMA 22.7. If F is a homotopy invariant Nisnevich sheaf with transfers, and
U is an open subset of A1, then Hn

Nis(U,F) = 0 for n > 0.

PROOF. Since dimU = 1, we have Hn
Nis(U,F) = 0 for n > 1. By [Mil80,

III.2.10], H1
Nis(U,F) = Ȟ1(U,F). Therefore we only need to show that Ȟ1(U,F) =

0.
Since F takes disjoint unions to direct sums, the Čech cohomology can be

computed using covering families V → X , instead of the more general {Vi → X}.
By 12.6, any such cover of U has a refinement U = {A,V}, where A ⊂ U is
dense open, V →U is étale, and the square Q = Q(U,V,A) is upper distinguished
(see 12.5). Embed V in a smooth projective curve V̄ finite over P1, and set
V∞ = V̄ −V . By construction (see 21.1), Q comes from the covering morphism
of standard triples (V̄ ,V∞,Z) → (P1,U∞,Z), where U∞ = P1 −U and Z = U −A.
Since (P1,U∞,Z) splits over U by 11.13, theorem 21.6 with Q′ = Q implies that
the complex F(MV (Q)) is split exact. That is Ȟ1(U ,F) = 0. Passing to the limit
over all such covers yields Ȟ1(U,F) = 0. �

LEMMA 22.8. Let F be a homotopy invariant presheaf with transfers. If X is
smooth and U ⊂ X is dense open, then FZar(X) → FZar(U) is injective.

PROOF. As FZar is a sheaf it suffices to verify this locally. Let f ∈ FZar(X)
be a nonzero section which vanishes in FZar(U). Pick a point x ∈ X so that f is
nonzero in the stalk Fx = F(SpecOX ,x). By shrinking X around x we may assume
that f ∈ F(X). By shrinking U , we may assume that f vanishes in F(U) and hence
in F(V ) for V = Spec(OX ,x)∩U . By 11.1, f is nonzero in F(V ), and this is a
contradiction. �

PROOF OF 22.1. We have to prove that i∗ : FZar(X ×A1) → FZar(X) is an iso-
morphism, where i : X → X ×A1. It is enough to prove that i∗ is injective. We may
assume that X is connected and therefore irreducible. Let γ : SpecK � X be the
generic point. We get a diagram:

FZar(X ×A1)
i∗ � FZar(X)

FZar(SpecK ×A1)

(γ ×1)∗
� ∼=� FZar(SpecK)

γ∗
�

where the vertical maps are injective by 22.8. The bottom map is an isomorphism
by 22.4 since we may regard F as a homotopy invariant presheaf with transfers
over the field K by 2.10:

FZar(A1
K) = F(A1

K)
∼=� F(SpecK) = FZar(SpecK).

Thus i∗ is injective. �
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Let sZar(F) be the separated presheaf (with respect to the Zariski topology)
associated to the presheaf F . It is defined by the formula:

sZar(F)(X) = F(X)/F0(X), F0(X) = colim
covers

{Ui→X}
kerF(X) → ∏F(Ui).

LEMMA 22.9. sZar(F) is a homotopy invariant presheaf with transfers.

PROOF. The homotopy invariance of sZarF is immediate from the fact that
homotopy invariance is preserved by quotient presheaves. The existence of trans-
fers is more difficult. Let Z ⊂ S×X be an elementary correspondence from S to
X . We must show that the corresponding transfer F(X) → F(S) sends F0(X) to
F0(S), i.e., that the image of F0(X) vanishes at each stalk F(SpecOS,s). It suffices
to suppose S local, so that Z is semilocal. Hence there is a semilocal subscheme
X ′ of X with Z ⊂ S×X ′. But by 11.1, F(X ′) injects into F(U) for each dense
U ⊂ X ′, so F0(X ′) = 0. Hence F0(X) → F(S) is zero, because it factors through
F0(X ′) = 0. �

For the next few lemmas, S will be the semilocal scheme of a smooth quasi-
projective variety X at a finite set of points. Since any finite set of points lies in
an affine neighborhood, we may even assume that X is affine. Clearly, S is the
intersection of the filtered family of its affine open neighborhoods Xα in X .

LEMMA 22.10. Suppose that F is a homotopy invariant presheaf with trans-
fers. Then for any open covering S = U0 ∪V there is an open U ⊂ U0 such that
S = U ∪V and the sequence F(MV (Q)) is exact, where Q = Q(S,U,V ):

0 → F(S) → F(U)⊕F(V ) → F(U ∩V ) → 0.

PROOF. We may assume that S is connected, since we can work separately
with each component. By assumption, there are open Ũ0, Ṽ in X such that U0 =
S∩ Ũ0, V = S∩ Ṽ . Since Ũ0 is open in X , there is an affine open Ũ contained in
Ũ0 which contains the finite set of closed points of U0. Setting U = S∩Ũ , we have
S = U ∪V . We will show that F(MV (Q)) is exact for the square Q = Q(S,U,V ).

We first suppose that k is an infinite field. For each α , set Uα = Xα ∩ Ũ and
Vα = Xα ∩Ṽ . The canonical map from Q to the square Qα = Q(Xα ,Uα ,Vα) induces
a morphism of Mayer-Vietoris sequences, F(MV (Qα)) → F(MV (Q)). It suffices
to show that these morphisms are chain homotopic to zero, because F(MV (Q)) is
the direct limit of the F(MV (Qα)).

Let Z ⊂ X denote the union of X − (Ũ ∩ Ṽ ) and the closed points of S. For
each Xα , we know by 11.17 that there is an affine neighborhood X ′

α of S in Xα and
a standard triple Tα = (X̄α ,X∞,α ,Zα) with X ′

α
∼= X̄α −X∞,α and Zα = Xα ∩Z. Set

U ′
α = X ′

α ∩ Ũ and V ′
α = X ′

α ∩ Ṽ . Since X̄α − (U ′
α ∩V ′

α) lies in X∞,α ∪ Zα , it lies
in an affine open subset of X̄α (by definition 11.5). By 21.2, the Zariski square
Q′

α = Q(X ′
α ,U ′

α ,V ′
α) comes from a covering morphism of triples T ′

α → Tα .
By 11.14, the triple Tα is split over an affine neighborhood X ′′

α of S in X ′
α . Set

U ′′
α = X ′′

α ∩Ũ and V ′′
α = X ′′

α ∩ Ṽ , and form the square Q′′
α = Q(X ′′

α ,U ′′
α ,V ′′

α ). Since
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X ′′
α and Ũ are affine, so is U ′′

α . By theorem 21.6, the morphism F(MV (Q′
α)) →

F(MV (Q′′
α)) is chain homotopic to zero. Since F(MV (Qα))→ F(MV (Q)) factors

through this morphism, it too is chain homotopic to zero.

0 � F(Xα) � F(Uα)⊕F(Vα) � F(Uα ∩Vα) � 0

0 � F(X ′
α)

�
� F(U ′

α)⊕F(V ′
α)

�
� F(U ′

α ∩V ′
α)

�
� 0

0 � F(X ′′
α)

�
� F(U ′′

α)⊕F(V ′′
α )

�
� F(U ′′

α ∩V ′′
α )

�
� 0

0 � F(S)
�

� F(U)⊕F(V )
�

� F(U ∩V )
�

� 0

If k is finite, exactness follows by a transfer argument. Any element a in the
homology of F(MV (Q)) must vanish when we pass to Q ⊗k k′ for any infinite
algebraic extension k′ of k. Since a must vanish for some finite subextension k′0, a
has exponent [k′0 : k]. Since [k′0 : k] can be chosen to be a power of any prime, we
conclude that a = 0. �

Lemma 22.10 corrects [CohTh, 4.23], which omitted the passage from U0 to U .

COROLLARY 22.11. Let S′ and S′′ be semilocal schemes of a smooth quasi-
projective scheme X at finite sets of points, and set S = S′ ∪ S′′. Then the Mayer-
Vietoris sequence F(MV (Q)) is exact, where Q = Q(S,S′,S′′):

0 → F(S) → F(S′)⊕F(S′′) → F(S′ ∩S′′) → 0.

PROOF. Write S′ as the intersection of open sets Uα ⊂ S and S′′ as the inter-
section of open sets Vβ ⊂ S. The sequence F(MV (Q)) is the direct limit of the se-
quences F(MV (Qαβ )), where Qαβ = Q(S,Uα ,Vβ ). By 22.10, there are Uαβ ⊂Uα
such that the sequences F(MV (Q(S,Uαβ ,Vβ ))) are exact. Hence the morphisms
from F(MV (Qαβ )) to F(MV (Q)) are zero on homology. Passing to the direct
limit, we see that the homology of F(MV (Q)) is zero, i.e., it is exact. �

Note that the sequence 0 → F (S) → F (S′)⊕F (S′′) → F (S′ ∩S′′) is always
exact when F is a Zariski sheaf on S. This is because it is the direct limit of the
exact sequences 0 → F (S) → F (Uα)⊕F (Vβ ) → F (Uα ∩Vβ ) associated to the
family of open covers {Uα ,Vβ} of S with S′ ⊂Uα and S′′ ⊂Vβ .

LEMMA 22.12. Let S be the semilocal scheme of a smooth quasi-projective
scheme X at a finite set of points. Then FZar(S) = F(S).

PROOF. By 11.1, F(S) = (sZarF)(S). Since sZarF is a homotopy invariant
presheaf with transfers by 22.9, we may replace F by sZarF and assume that F is
separated. We now proceed by induction on the number of the closed points of S.
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Let S′ be the local scheme at a closed point x of S, and S′′ the semilocal scheme at
the remaining points. Consider the following commutative diagram.

0 � F(S) � F(S′)⊕F(S′′) � F(S′ ∩S′′)

0 � FZar(S)
�

� FZar(S′)⊕FZar(S′′)

=
�

� FZar(S′ ∩S′′)

into
�

The top row is exact by 22.11, and we have noted that the bottom row is exact
because FZar is a Zariski sheaf. The right vertical map is an injection because F is
separated. The middle vertical map is the identity by induction. A diagram chase
shows that the left vertical map is an isomorphism, as desired. �

We need an analogue of lemma 6.16 for the Zariski topology, showing that we
can lift finite correspondences to open covers under mild conditions.

LEMMA 22.13. Let W be a closed subset of X ×Y , x ∈ X a point and V ⊂Y an
open subset such that p−1(x) ⊂ {x}×V , where p : W → X is the projection. Then
there is a neighborhood U of x such that W ×X U is contained in U ×V .

PROOF. The subset Z = W −W ∩ (X ×V ) is closed, and x �∈ p(Z). Because p
is a closed map, p(Z) is closed and U = X − p(Z) is an open neighborhood of x.
By construction, W ×X U is contained in U ×V . �

COROLLARY 22.14. Let W ∈ Cor(X ,Y ) have support W and let p : W → X
be the projection. If x ∈ X and V ⊂ Y are such that p−1(x) ⊂ {x}×V , then there
is a neighborhood U of x and a canonical WU ∈Cor(U,V ) such that the following
diagram commutes.

U
WU � V

X
� W � Y

�

PROOF. Writing W = ∑ni[Wi], we may apply lemma 22.13 to each Wi. Since
Wi is finite over X , Wi ×X U is finite over U , so WU = ∑ni[Wi ×X U ] is the required
finite correspondence. It is canonical because if U ′ ⊂U , the composition of U ′ ⊂U
with WU is WU ′ = ∑ni[Wi ×X U ′]. �

THEOREM 22.15. Let F be a homotopy invariant presheaf with transfers. Then
the Zariski sheaf FZar has a unique structure of presheaf with transfers such that
F → FZar is a morphism of presheaves with transfers.

PROOF. By 22.9 we may assume that F is separated, i.e., that F(V )⊆ FZar(V )
for every V . We may also assume that X and Y are irreducible without loss of
generality. We begin by defining an element W ∗( f ) in FZar(X) for every element
f ∈ FZar(Y ) and every finite correspondence W from X to Y .
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The first step is to fix a point x ∈ X and construct an element W ∗( f )x of
FZar(Ux) for an appropriate neighborhood Ux of x. Since p :W →X is finite, the im-
age of p−1(x) under the natural map W → Y consists of only finitely many points;
let S denote the semilocal scheme of Y at these points. Since F(S) = FZar(S) by
22.12, there is an open Vx ⊂ Y such that fx = f |Vx ∈ FZar(Vx) lies in the subgroup
F(Vx) ⊆ FZar(Vx). By 22.14, there is a neighborhood Ux of x such that W restricts
to a finite correspondence Wx from Ux to Vx. Let W ∗( f )x denote the image of fx

under W ∗
x : F(Vx) → F(Ux) ⊆ FZar(Ux).

Uniqueness of W ∗( f )x. Suppose that F → FZar is a morphism of presheaves
with transfers. Given W ∈ Cor(X ,Y ) and f ∈ FZar(Y ), it suffices to show that
W ∗( f ) ∈ FZar(X) is uniquely defined in some neighborhood of any point x. The
construction above shows that the image of W ∗( f ) in FZar(Ux) must equal W ∗( f )x,
which is defined using only the sheaf structure on FZar and the transfer structure on
F .

Existence of W ∗( f )x. Fix W ∈Cor(X ,Y ) and f ∈ FZar(Y ). In the above con-
struction, we produced a neighborhood Ux of every point x ∈ X , an open set Vx

in Y so that fx = f |Vx belongs to the subgroup F(Vx) of FZar(Vx), and we consid-
ered the image W ∗( f )x = W ∗

x ( fx) of fx in F(Ux) ⊆ FZar(Ux). This construction
corresponds to the top row of figure 22.1.

FZar(Y ) FZar(X)

∏FZar(Vx)
�

� ⊃ ∏F(Vx)
W ∗

x� ∏F(Ux) ⊂ � ∏FZar(Ux)
�

∏FZar(Vxx′)
�

�into ∏F(Vxx′)
� W ∗

xx′� ∏F(Uxx′)
�

� ∏FZar(Uxx′)
�

FIGURE 22.1. The transfer map for FZar

To construct the rest of figure 22.1, pick two points x,x′ ∈ X and set Uxx′ =
Ux∩Ux′ , Vxx′ =Vx∩Vx′ . Since W ×X Ux lies in Ux×Vx for all x (by 22.13), it follows
that W ×X Uxx′ lies in Uxx′ × (Vx ∩Vx′). Hence there is a finite correspondence Wxx′

from Uxx′ lifting both Wx and Wx′ in the sense of 22.14. That is, the middle square
commutes in figure 22.1.

A diagram chase on 22.1 shows that the W ∗( f )x agree on all intersections
Uxx′ = Ux ∩Ux′ . Thus the element W ∗( f ) ∈ FZar(X) exists by the sheaf axiom.

Fix x ∈ X and choose V ⊂ Y , fV ∈ F(V ) and Ux as above. Because F is sepa-
rated we have F(V ) ⊂ FZar(V ), so the element fV ∈ F(V ) is well defined. Given a
dense V0 ⊂V , the map F(V )→ F(V0) sends fV to fV0 , because FZar(V )⊂ FZar(V0)
by 22.8. Given U0 ⊂ Ux, the proof of 22.14 shows that the the canonical lift
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WU0 ∈ Cor(U0,V ) is the composition of the inclusion U0 ⊂ U with the canoni-
cal lift WU ∈Cor(U,V ). Hence FZar(Ux)→ FZar(U0) sends the element W ∗( f )x to
the image of fV0 under F(V0) → F(U0) ⊂ FZar(U0).

It is now easy to check using 22.8 that the maps W ∗ are additive and give FZar

the structure of a presheaf with transfers. �
PROOF OF 22.2. We have to prove that FZar = FNis. Let F ′ and F ′′ denote

the kernel and cokernel presheaves of F → FNis, respectively. By 13.1, they are
presheaves with transfers whose associated Nisnevich sheaf is zero. Since sheafi-
fication is exact, it suffices to show that F ′

Zar = F ′′
Zar = 0. That is, we may assume

that FNis = 0.
By 22.1 and 22.15, FZar is also a homotopy invariant presheaf with transfers.

Since FNis = (FZar)Nis, we may assume that F = FZar, i.e., that F is a Zariski sheaf.
Therefore it suffices to show that F(S) = 0 for every local scheme S of a smooth
variety X . Let S be the local scheme associated to a point x of X .

By 12.7, it suffices to check that, for any upper distinguished square

B
i � Y

Q :

A

f
� i � X

f
�

(see definition 12.5), the square F(Q×X S) is a pullback. By 21.5, this is equivalent
to checking that the complex F(MV (Q×X S)) is exact. This is evident if x ∈ A,
when A×X S = S and B×X S = Y ×X S, so we may assume that x ∈ ZX .

Shrinking X around x, we may suppose by 11.17 that X is affine and fits into
a standard triple (X̄ ,X∞,Z) with A = X − Z. Shrinking Y around the finite set
Σ = f−1(x), we may also suppose by 11.17 that Y is affine, and fits into a standard
triple so that Q comes from a covering morphism of standard triples in the sense of
21.1. Hence 21.11 implies that Q×X S →Q factors through an upper distinguished
square Q′ in such a way that

F(MV (Q)) → F(MV (Q′)) → F(MV (Q×X S))

is chain homotopic to zero.

0 � F(X) � F(A)⊕F(Y ) � F(B) � 0

0 � F(X ′)
�

� F(A′)⊕F(Y ′)
�

� F(B′)
�

� 0

0 � F(S)
�

� F(A∩S)⊕F(Y ×X S)
�

� F(B×X S)
�

� 0

Taking the limit over smaller and smaller neighborhoods X of x, we see that
F(MV (Q×X S)) is exact. But then F(Q×X S) is a pullback square, as claimed. �





LECTURE 23

Contractions

We need one final tool in order to prove theorem 13.8, which says that Nis-
nevich cohomology preserves homotopy invariance for sheaves with transfers. In
this lecture we associate to F a new presheaf F−1 (known as the contraction of F
in the literature). Here is the definition.

Let F be a homotopy invariant presheaf. The presheaf F−1 is defined by the
formula:

F−1(X) = coker
(
F(X ×A1) → F(X × (A1 −0))

)
.

For r > 1 we define F−r to be (F1−r)−1. Sometimes we will write F(X)−r for
F−r(X).

Since the inclusion t = 1 : X ⊂ � X × (A1 − 0) ⊂ X ×A1 is split by the
projection X ×A1 → X , we have a canonical decomposition F(X × (A1 − 0)) ∼=
F(X)⊕F−1(X). Hence, F−1 is also homotopy invariant, and if F is a sheaf then so
is F−1. Here are some examples of this construction.

EXAMPLE 23.1. If F = O∗ then F−1 = Z, because O∗(X × (A1 − 0)) =
O∗(X)×{tn} for every integral X . By 4.1, there is a quasi-isomorphism Z(1)−1 �
Z[−1].

More generally, the higher Chow groups CHi(−,n) are homotopy invariant
(see 17.4) and their contractions are given by the formula:

(23.1.1) CHi(X ,n)−1
∼= CHi−1(X ,n−1).

This follows from the the Localization Theorem (see 17.4):

CHi−1(X ,n)
(t=0)∗� CHi(X ×A1,n) →CHi(X × (A1 −0),n) →CHi−1(X ,n−1),

which is split as above by the pullback along t = 1 (using 19.13).
Theorem 19.1 allows us to rewrite the formula in (23.1.1) as:

Hm,i(X ,Z)−1 = Hm
Zar(X ,Z(i))−1

∼= Hm−1
Zar (X ,Z(i−1)) = Hm−1,i−1(X ,Z).

This yields the formula Z(i)−1 � Z(i−1)[−1] in the derived category, and in DM.

EXAMPLE 23.2. We will see in the next lecture (in 24.1 and 24.8) that if F
is a homotopy invariant Zariski sheaf with transfers, then Hn(−,F) is homotopy
invariant and Hn

Zar(−,F)−1
∼= Hn

Zar(−,F−1).

EXAMPLE 23.3. Suppose that 1/n ∈ k, and let M be a locally constant n-
torsion sheaf, such as µn. The argument of 23.1 applied to étale cohomology,
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shows that

Hm
ét (X ,M⊗µn)−1

∼= Hm−1
ét (X ,M).

EXERCISE 23.4. Let U be the standard covering of X × (An − 0) by U1 =
X ×(A1−0)×An−1, . . . ,Un = X ×An−1×(A1−0). If F is homotopy invariant and
n ≥ 2, show that Ȟ0(U ,F) ∼= F(X), Ȟn−1(U ,F) ∼= F−n(X), and that Ȟr(U ,F) =
0 for all other r.

Now suppose that F is a Zariski sheaf, and that its cohomology groups are also
homotopy invariant. Show that, for all m and n > 0, the cohomology with supports
satisfies:

Hm
X×{0}(X ×An,F) ∼= Hm−n(X ,F)−n.

Hint: Use the Čech spectral sequence Ȟ p(U ,HqF) ⇒ H p+q(X × (An −0),F).

PROPOSITION 23.5. Let F be a homotopy invariant presheaf with transfers.
Then (FNis)−1

∼= (F−1)Nis.

PROOF. By 13.1 and 22.3, FNis is a homotopy invariant sheaf with transfers.
By inspection, the natural map (F−1)Nis → (FNis)−1 is a morphism of presheaves
with transfers. By 11.2 (applied to the kernel and cokernel), it suffices to show that
F−1(S) = (FNis)−1(S) when S = SpecE for a field E. The left hand side is F(A1

E −
0)/F(A1

E) by definition, while the right side equals FNis(A1
E −0)/FNis(A1

E). These
are equal by 22.4 and 22.2. �

In the rest of this lecture, we will compare F−1 to various sheaves F(Y,Z), which
we now define.

DEFINITION 23.6. Given a closed embedding i : Z ⊂ � Y , and a presheaf
F , we define a Nisnevich sheaf F(Y,Z) on Z as follows. Let K = K(Y,Z) denote the
presheaf cokernel of F → j∗ j∗F , where j : V ⊂ � Y is the complement of Z. That
is, K(U) is the cokernel of F(U) → F(U ×Y V ) for all U . We set F(Y,Z) = (i∗K)Nis.

Since sheafification is exact, there is a canonical exact sequence of sheaves

(23.6.1) FNis → ( j∗ j∗F)Nis → i∗F(Y,Z) → 0.

EXAMPLE 23.7. If Z = {z} is a closed point on Y , then the value at Z of
F(Y,Z) is the cohomology with supports, H1

Z(Y,FNis). Indeed, if S is the Hensel local
scheme of Y at Z then F(Y,Z)(Z) is the cokernel of FNis(S) → FNis(S−Z,F), i.e.,
H1

Z(S,FNis). But this equals H1
Z(Y,FNis) by excision [Har77, Ex.III.2.3]. Similarly,

we have Hn(−,F)(Y,Z)
∼= Hn+1

Z (Y,F) for n > 0. This follows from excision and the
exact sequence

Hn−1(S,F) → Hn−1(U,F) → Hn
z (S,F) → 0.

EXAMPLE 23.8. Fix a Nisnevich sheaf F and consider the presheaf Hn(−,F).
We claim that if n > 0 then

Hn(−,F)(Y,Z) = i∗Rn j∗(F).
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Indeed, in (23.6.1) we have Hn(−,F)Nis = 0, and Rn j∗(F) is the sheaf on Y as-
sociated to the presheaf j∗ j∗Hn(−,F) = j∗Hn(−,F|V ). Hence i∗Hn(−,F)(Y,Z)

∼=
( j∗ j∗Hn(−,F))Nis = Rn j∗(F). Now apply i∗ and observe that i∗i∗ is the identity.

EXAMPLE 23.9. Let i : S ⊂ � S×A1 be the embedding i(s) = (s,0), with
complement S× (A1−0). By definition, F−1(U) = K(U ×A1) where the cokernel
presheaf K is defined in 23.6. The adjunction yields a natural map from K(U ×A1)
to i∗i∗K(U ×A1) = i∗K(U). That is, we have a natural morphism of sheaves on S:

(F−1)Nis → F(S×A1,S×0).

PROPOSITION 23.10. Let F be a homotopy invariant presheaf with transfers.
Then (F−1)Nis|S ∼= F(S×A1,S×0) for all smooth S.

PROOF. We need to compare F−1 and j∗ j∗F/F in a sufficiently small neigh-
borhood of any point s of any smooth affine S. We will use the standard triple
T = (P1

S → S,S×∞,S× 0), which is split over S×A1 by 11.12. For each affine
neighborhood U of S×0 in S×A1, set TU = (P1

S,P
1
S −U,S×0).

We claim that by shrinking S we can make TU into a standard triple. At issue is
whether or not (P1

S−U)∪ (S×0) lies in an affine open subscheme of P1
S. Since the

fiber Us over s is open in P1
s , there is an affine open V ⊂ P1

k so that s×k V contains
both 0 and the finite set P1

s −Us. Hence the complements of U and S×V in P1
S

intersect in a closed subset, disjoint from the fiber P1
s . Since P1

S is proper over S,
we may shrink S about s (keeping S affine) to assume that the complements are
disjoint. Hence the affine S×V contains the complement P1

S −U as well as S×0,
as claimed.

Now the identity on P1
S is a finite morphism of standard triples TU → T in the

sense of 21.1 by 21.2. Setting U0 = U − (S×0), the square Q coming from this is:

U0 � U

S× (A1 −0)
�

j� S×A1.

�

By the standard triples theorem 21.6 applied to Q′ = Q, the complex F(MV (Q)) is
split exact:

0 → F(S×A1) → F(S× (A1 −0))⊕F(U) → F(U0) → 0.

Since F is homotopy invariant, this implies that F(U) → F(U0) is injective and
that F−1(S) ∼= F(U0)/F(U). Since j : S × (A1 − 0) ↪→ S ×A1 has j∗ j∗F(U) =
F(U0), the right side is j∗ j∗F/F(U). Passing to the limit over U and S, we get the
statement. �

LEMMA 23.11. Let f : Y → X be an étale morphism and Z a closed subscheme
of X such that f−1(Z) → Z is an isomorphism. Then for every presheaf F:

F(X ,Z)
∼=� F(Y, f−1(Z)).
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PROOF. Since this is to be an isomorphism of Nisnevich sheaves, we may
assume that X is Hensel local, and that Z is not empty. Then Y is Hensel semilocal;
the assumption that f−1(Z) ∼= Z implies that Y is local and in fact Y ∼= X . In this
case the two sides are the same, namely F(X −Z)/F(X) ∼= F(Y −Z)/F(X). �

Lemma 23.11 uses the Nisnevich topology in a critical way. For the Zariski
topology, the corresponding result requires F to be a homotopy invariant presheaf
with transfers, and may be proven along the same lines as 23.10; see [CohTh,
4.13].

THEOREM 23.12. Let i : Z → X be a closed embedding of smooth schemes of
codimension 1, and F a homotopy invariant presheaf with transfers. Then there
exists a covering X = ∪Uα and isomorphisms on each Uα ∩Z:

F(Uα ,Uα∩Z)
∼= (F−1)Nis.

That is, for each α there is an exact sequence of Nisnevich sheaves on Uα :

0 → Fα → jα∗ j∗αFα → i∗(F−1)Nis → 0.

Here Fα = (F |Uα )Nis and jα denotes the inclusion Uα ∩ (X −Z) ⊂ � Uα .
Moreover, for every smooth T we also have isomorphisms on (Uα ∩Z)×T :

F(Uα×T,(Uα∩Z)×T )
∼= (F−1)Nis.

PROOF. We have to show that every smooth pair (X ,Z) of codimension one is
locally like (S×A1,S× 0). If dim(Z) = d then, by shrinking X about any point
(and writing X instead of U), we may find an étale map f : X → Ad+1 such that
Z ∼= f−1(Ad).

Z ⊂
i � X

Ad

f

�
⊂ � Ad+1∼= Ad ×A1

f

�

By construction, Z ×A1 is étale over Ad ×A1. Form the pullback X ′ = X ×Ad+1

Z ×A1 and note that both X ′ → X and X ′ → Z ×A1 are étale with Z′ = Z ×Ad Z
lying above Z and Z × 0, respectively. Since Z′ → Z is étale and has a canonical
section ∆, we can write Z′ = ∆(Z) �W . Setting X ′′ = X −W , both X ′′ → X and
X ′′ → Z ×A1 are étale, with ∆(Z) the inverse image of Z and Z × 0, respectively.
Applying lemma 23.11 twice and then 23.10, we obtain the required isomorphisms
of Nisnevich sheaves on Z:

F(X ,Z)
�

∼=
F(X ′′,∆(Z))

∼=� F(Z×A1,Z×0)
∼= (F−1)Nis.

To see that the sequence of sheaves is exact, we only need to observe that Fα injects
into j∗ j∗Fα by lemma 22.8, since Fα = (F|Uα )Zar by 22.2.

In order to prove the final assertion, it suffices to replace Z, X and Ad with
Z ×T , X ×T and Ad ×T in the above argument. �
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PORISM 23.13. The same proof shows that if Z → X is a closed embedding of
smooth schemes of codimension r, then locally F(X ,Z)

∼= F(Z×Ar,Z×0).

EXAMPLE 23.14. Let M be a locally constant n-torsion étale sheaf and con-
sider F(X) = H1(X ,M⊗µn). By 23.3, (F−1)Nis

∼= M. By [Mil80, p. 243], we also
have F(X ,Z)

∼= M. In this case, the isomorphisms F(X ,Z)
∼= (F−1)Nis of 23.12 hold for

any cover of X .





LECTURE 24

Homotopy invariance of cohomology

We finally have all the tools to prove 13.8 which we restate here for the conve-
nience of the reader.

THEOREM 24.1. Let k be a perfect field and F a homotopy invariant presheaf
with transfers. Then Hn

Nis(−,FNis) is a homotopy invariant presheaf (with transfers)
for every n.

PROOF. It suffices to prove that the Hn
Nis(−,FNis) are homotopy invariant, since

we already know that they are presheaves with transfers from 13.4. We shall pro-
ceed by induction on n. The case n = 0 was completed in theorem 22.3, so we
know that FNis is homotopy invariant. Hence, we may assume that F = FNis.

Consider X ×A1 π � X . Since π∗F(U) = F(U ×A1) ∼= F(U), we have
π∗F = F . By induction we know that Rqπ∗F = 0 for 0 < q < n. By theorem 24.2
below, Rnπ∗F = 0 as well. Hence the Leray spectral sequence

H p
Nis(X ,Rqπ∗F) ⇒ H p+q

Nis (X ×A1,F)

collapses enough to yield Hn
Nis(X ,F) ∼= Hn

Nis(X ×A1,F). That is, the presheaf
Hn

Nis(−,F) is homotopy invariant. �

We have thus reduced the proof of 24.1 to the following theorem. Recall from
[EGA4, 17.5] that the Hensel local scheme Spec(R) of a smooth variety at some
point is formally smooth, i.e., geometrically regular.

THEOREM 24.2. Let k be a perfect field, and F a homotopy invariant Nisnevich
sheaf with transfers such that Rqπ∗F = 0 for 0 < q < n. If S is a formally smooth
Hensel local scheme over k, then Hn

Nis(S×A1,F) = 0.

The requirement that k be perfect comes from the following fact (see [EGA0,
19.6.4]): if k is perfect, every regular local k-algebra is formally smooth over k.

PROOF. We will proceed by induction on d = dim(S). If d = 0 then S =
Spec(K) for some field K; in this case, Hn

Nis(S×A1,F) = Hn
Nis(A

1
K ,F) = 0 by 22.7.

Here we have used exercise 2.10 to regard F as a homotopy invariant presheaf with
transfers over K.

If dim(S) > 0, and U is any proper open subscheme, then dimU < d (S is
local), so Rqπ∗F |U = 0 for 0 < q ≤ n, by induction on d. Thus the canonical map
π|∗U : Hn

Nis(U,F) → Hn
Nis(U ×A1,F) is an isomorphism, and its inverse is induced
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by the restriction s|U of the zero section s : S → S×A1 to U . From the diagram

Hn
Nis(S×A1,F)

j∗� Hn
Nis(U ×A1,F)

0 =Hn
Nis(S,F)

s∗
�

� Hn
Nis(U,F)

s|∗U ∼=
�

we see that the top map j∗ is zero for all such U .
Now S = Spec(R) for a regular local ring (R,m); choose r ∈ m−m2 and set

Z = Spec(R/r), U = S−Z. Because Z is regular and k is perfect, Z is formally
smooth over k. For this choice, the map j∗ is an injection by proposition 24.3
below. Hence the source Hn

Nis(S×A1,F) of j∗ must be zero. �

PROPOSITION 24.3. Let k be a perfect field and S the Hensel local scheme of a
smooth scheme X at some point. Let U be the complement of a smooth divisor Z on
S. Under the inductive assumption that Rqπ∗F = 0 for all 0 < q < n, the following
map is a monomorphism:

Hn
Nis(S×A1,F) → Hn

Nis(U ×A1,F).

PROOF. Let i and j denote the inclusions of Z ×A1 and U ×A1 into S×A1

respectively. Regarding F as a sheaf on S×A1, the map in question factors as:

Hn
Nis(S×A1,F)

τ� Hn
Nis(S×A1, j∗ j∗F)

η� Hn
Nis(U ×A1, j∗F).

We first show that the right-hand map η is injective. This will follow from 24.4 be-
low, once we have shown that Rq j∗F = 0 for 0 < q < n. The inductive assumption
implies that Hq(F) is a homotopy invariant presheaf with transfers. Since q > 0
we have Hq(F)Nis = 0. Now see from 23.5 that (Hq(F)−1)Nis

∼= (Hq(F)Nis)−1 = 0.
By 23.8 and 23.12 (with T = A1) we have

Rq j∗F ∼= i∗Hq(F)(S×A1,Z×A1)
∼= i∗(Hq(F)−1)Nis = 0.

We now prove that the left-hand map τ is injective as well. Since F is a ho-
motopy invariant presheaf with transfers, F injects into j∗ j∗F by lemma 22.8. By
23.6, there is a short exact sequence of Nisnevich sheaves on S×A1:

0 → F → j∗ j∗F → i∗F(S×A1,Z×A1) → 0.

Since S is local, theorem 23.12 (with T = A1) implies that F(S×A1,Z×A1)
∼= F−1 on

Z ×A1. Consider the associated long exact sequence in cohomology.

Hn−1(S×A1, j∗ j∗F) → Hn−1(Z×A1,F−1)
∂� Hn(S×A1,F) → Hn(S×A1, j∗ j∗F) → Hn(Z×A1,F−1).

It suffices to show that the map Hn−1(S×A1, j∗ j∗F) → Hn−1(Z ×A1,F−1) is
onto. If n > 1, this follows from the homotopy invariance of F−1 and the fact that
Z is Hensel local:

Hn−1(Z×A1,F−1) ∼= Hn−1(Z,F−1) = 0.
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If n = 1, we argue as follows. Since F and F−1 are homotopy invariant, the
two left horizontal maps are isomorphisms in the commutative diagram:

F(U)
∼=� F(U ×A1) �= H0(S×A1, j∗ j∗F)

F−1(Z)

23.12 onto
� ∼=� F−1(Z×A1)

�
�= H0(Z×A1,F−1).

�

The left vertical map is onto by 23.12, because S is local. It follows that the right
vertical map is onto, as desired. �

LEMMA 24.4. Let G be any sheaf on U×A1 such that Rq j∗G = 0 for 0 < q < n.
Then the canonical map Hn(X ×A1, j∗G) → Hn(U ×A1,G) is an injection.

PROOF. Consider the Leray spectral sequence

H p(X ×A1,Rq j∗G) =⇒ H p+q(U ×A1,G).

Using the assumption on the vanishing of the Rq j∗G, it is easy to see that there is a
short exact sequence:

0 → Hn(X ×A1, j∗G) → Hn(U ×A1,G) → H0(X ×A1,Rn j∗G). �

We have now completed the proof of homotopy invariance of the cohomology
sheaves, which was promised in lecture 13 (as theorem 13.8).

For the rest of this lecture, we fix a homotopy invariant Zariski sheaf with
transfers F over a perfect field k. Because we have proven theorem 13.8, we may
use proposition 13.9, which says that H∗

Zar(X ,F)∼= H∗
Nis(X ,F). We will sometimes

suppress the subscript and just write H∗(X ,F).

COROLLARY 24.5. If S is a smooth semilocal scheme over k and F is a homo-
topy invariant sheaf with transfers, then for all n > 0:

• Hn(S,F) = 0;
• Hn(S×T,F) = 0 for every open subset T of A1

k .

PROOF. (Cf. 13.9.) By 24.1, each Hn(−,F) is a homotopy invariant presheaf
with transfers. If E is the field of fractions of S, then Hn(SpecE,F) = 0 for n > 0
because dimE = 0. By 11.1, this implies that Hn(S,F) = 0.

Now Hn(X) = Hn(X ×T,F) is also a homotopy invariant presheaf with trans-
fers by 24.1, and Hn(S) injects into Hn(SpecE) = Hn(Spec(E)× T,F) by 11.1.
By 2.10 and 22.7, this group vanishes for n > 0. �

EXAMPLE 24.6. Let (R,m) be a discrete valuation ring containing k, with
field of fractions E and residue field K = R/m. Setting S = SpecR and Z = SpecK,
theorem 23.12 yields F(S,Z)

∼= F−1 and an exact sequence of Nisnevich sheaves
on S, 0 → F → j∗F → i∗F−1 → 0. Since H1

Nis(S,F) = 0 by 24.5, the Nisnevich
cohomology sequence yields the exact sequence:

0 → F(SpecR) → F(SpecE) → F−1(SpecK) → 0.
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More generally, if R is a semilocal principal ideal domain with maximal ideals mi,
the same argument (using 24.5) yields an exact sequence:

0 → F(SpecR) → F(SpecE) →⊕iF−1(SpecR/mi) → 0.

EXERCISE 24.7. If X is a smooth curve over k, show that F−1(x) ∼= H1
x (X ,F)

for every closed point x ∈ X . Conclude that there is an exact sequence

0 → F(X) → F(Speck(X)) →
⊕
x∈X

F−1(x) → H1
Zar(X ,F) → 0.

PROPOSITION 24.8. Let k be a perfect field and F a homotopy invariant
Zariski sheaf with transfers. Then Hn(−,F)−1

∼= Hn(−,F−1) for all smooth X.
That is, there is a natural isomorphism:

Hn
Zar(X × (A1 −0),F) ∼= Hn

Zar(X ,F)⊕Hn
Zar(X ,F−1).

PROOF. Write T for A1 −0 and consider the projection π : X ×T → X . Let S
be the local scheme at a point x of X . The stalk of Rqπ∗F at x is Hq(S×T,F), which
vanishes for q > 0 by 24.5. Therefore the Leray spectral sequence degenerates to
yield Hn(X×T,F)∼= Hn(X ,π∗F). But π∗F ∼= F⊕F−1 by the definition of F−1. �

EXAMPLE 24.9. Let F be a homotopy invariant Zariski sheaf with transfers.
Combining proposition 24.8 with 24.1 and 23.4, we get the formula:

Hn
Z×{0}(Z×Ar,F) ∼= Hn−r(Z,F−r).

If Z = Spec(K) for a field K, this shows that Hn
{0}(A

r
K ,F) vanishes for n �= r, while

the value of Hr
{0}(A

r
K ,F) at Spec(K) is F−r(Spec(K)).

LEMMA 24.10. Let S be a d-dimensional regular local scheme over a perfect
field k. If F is a homotopy invariant sheaf with transfers and Z is the closed point
of S, then Hn

Z(S,F) vanishes for n �= d, while Hd
Z (S,F) ∼= F−d(Z).

PROOF. Since the case d = 0 is trivial, and d = 1 is given in example 24.6, we
may assume that d > 1. Write U for S−Z. Since F(S) injects into F(U) by 11.1,
H0

Z(S,F) = 0. For n > 0, we may use Hn−1(−,F), which is a homotopy invariant
presheaf with transfers by 24.1. By 23.11 and two applications of 23.7, we have

Hn
Z(S,F) ∼= Hn−1(−,F)(S,Z)

∼= Hn−1(−,F)(Z×Ad ,Z×0)
∼= Hn

Z×0(Z×Ad ,F).

By 24.9, this group vanishes for n �= d, and equals F−d(Z) if n = d. �

If z is a point of X with closure Z, and A is an abelian group, let (iz)∗(A) denote
the constant sheaf A on Z, extended to a sheaf on X .

THEOREM 24.11. Let X be smooth over k, and F a homotopy invariant Zariski
sheaf with transfers. Then there is a canonical exact sequence of Zariski sheaves
on X:

0 → F →
∐

codimz=0

(iz)∗(F) →
∐

codimz=1

(iz)∗(F−1) → ·· · →
∐

codimz=r

(iz)∗(F−r) → ·· · .
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PROOF. It suffices to assume that X is local with generic point x0 and closed
point xd , and construct the exact sequence

0 →F(S) → F(x0) →
∐

codimz=1

(F−1(z)) → ·· · →
∐

codimz=r

(F−d(z)) → ·· · → F(xd) → 0.

When dim(X) = 1 this is 24.6, so we may assume that d = dim(X) > 1. For
any r ≤ d, let Hn(Xr,F) denote the direct limit of the groups Hn(X −T,F) with
codim(T ) > r. For any Zariski sheaf F , and r > 0, the direct limit (over T and
all Z of codimension r) of the long exact cohomology sequences H∗

Z(X −T,F) →
H∗(X −T,F) → H∗(X −Z −T,F) yields an exact sequence

0 →
∐

codimz
=r

H0
z (Xz,F) → F(Xr) → F(Xr−1) →

∐

codimz
=r

H1
z (Xz,F) → H1(Xr,F) → ·· · .

Each Xz is an r-dimensional local scheme. Hence the groups Hn
z (Xz,F) vanish

except for n = r by 24.10, and Hr
z (Xz,F) ∼= F−r(z). For r > 0 this yields:

F(X) ∼= F(Xd−1) ∼= · · ·F(Xr) ∼= · · · ∼= F(X1);

0 = Hr(X ,F) ∼= Hr(Xd−1,F) ∼= · · · ∼= Hr(Xr+1,F);
and (since X0 is a point)

0 = Hr(X0,F) ∼= Hr(X1,F) ∼= · · · ∼= Hr(Xr−1,F).

Using these, we get exact sequences:

0 → F(X) → F(x0) →
∐

codimz=1

H1
z (Xz,F) → H1(X1,F) → 0;

and (for 0 < r ≤ d)

0 → Hr−1(Xr−1,F) →
∐

codimz=r

Hr
z (Xz,F) → Hr(Xr,F) → 0.

Splicing these together (and using 24.10) yields the required exact sequence. �

REMARK 24.12. Since the sheaves (iz)∗(F−r) are flasque, theorem 24.11 gives
a flasque resolution of the sheaf F . Taking global sections yields a chain complex
which computes the cohomology groups Hn(X ,F). This shows that the coniveau
spectral sequence

E p,q
1 =

⊕
codimx=p

H p+q
z (X ,F) =⇒ H p+q(X ,F)

degenerates, with E p,0
2 = H p(X ,F) and E p,q

2 = 0 for q �= 0.
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Glossary

⊗L total tensor product, 56
⊗tr tensor product of presheaves with transfers, 57
⊗tr

L tensor product of complexes of presheaves with transfers, 57
⊗tr

ét tensor product of étale sheaves with transfers, 58
⊗tr

L,Nis tensor product on D−ShNis(Cork,R), 109
⊗tr

L,ét tensor product of complexes of étale sheaves with transfers, 58
⊗L tensor product on L , 73
aét(F) étale sheafification of F , 42
aNis(F) Nisnevich sheafification of F , 90
A ⊕ the closure of A under infinite direct sums, 55
A(q) the complex of presheaves with transfers Z(q)⊗A, 21
Ar,i(Y,X) bivariant cycle cohomology group, 130
c(X/S,0) universally integral relative cycles of X finite and surjective over S, 10
C0(X/S) same as c(X/S,0), 47
C∗F the complex obtained from the simplicial presheaf F(−×∆•), 17
CDK
∗ F normalized complex associated to C∗F , 17

C [T−1] category obtained from C by inverting ⊗T , 65
CHi(X) Chow group of codimension i cycles of X , 14
Ch−(A ) category of bounded above cochain complexes in A , 56
CHi(X ,m) Bloch’s higher Chow group, 135
Chow (Choweff) the category of (effective) Chow motives, 167
Cork category of finite correspondences, 4
Cor(X ,Y ) group of finite correspondences from X to Y , 3
CorS category of finite correspondences over a Noetherian scheme S, 7
CorS(X ,Y ) the group c(X ×S Y/X ,0), 11
Cycl(X/S,r) free abelian group of the relative cycles W on X over S such that each

component has dimension r over S, 9
D− or D−

ét or D−(Shét(Cork,R)) derived category of étale sheaves of R-modules
with transfers, 67

D− or D−(ShNis(Cork,R)) derived category of Nisnevich sheaves with transfers,
109

D−
Nis or D−

Nis(ShNis(Sm/k)) derived category of Nisnevich sheaves, 92
∆• cosimplicial scheme with ∆n ∼= An, 16
D−(G,Z/m) derived category of discrete Z/n-modules over G, 74
DM−(k,R) category of motives, 110
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208 Glossary

DMeff,−
ét or DMeff,−

ét (k,R) category of effective étale motives, 67
DM−

ét or DM−
ét(k,R) category of étale motives, 68

DMeff
gm(k,R) category of effective geometric motives, 109

DMgm(k,R) category of geometric motives, 110
DMeff,−

Nis or DMeff,−
Nis (k,R) category of effective motives, 109

EA the thick subcategory of D− such that DM− = D−/EA, 67
Et/k category of smooth schemes over k of dimension zero, 38
F−r contraction of the presheaf F , 191
Fcdh cdh sheafification of F , 95
Fét same as aét(F), 42
FNis same as aNis(F), 90
F(Y,Z) Nisnevich sheaf on Z associated to a closed embedding of Z into Y , 192
Γ f the graph of f , 3
Gm the pointed scheme (A1 −0,1), 15
GX̄ ,Y units of X̄ equal to 1 on Y , 49
H p,q(X ,A) motivic cohomology group, 22
HBM

n,i (X ,R) (Borel-Moore) motivic homology with compact supports, 130

Hn,i
c (X ,R) motivic cohomology with compact supports, 130

H p,q
L (X ,A) étale (or Lichtenbaum) motivic cohomology, 75

Hsing
0 (X/k) the group H0C∗Ztr(X)(Speck), 18

Hsing
∗ (X/S) algebraic singular homology of X over S, 47

Hsing
∗ (X ,R) algebraic singular homology, 78

hX additive functor HomA (−,X), 55
Hn

cdh(X ,L) cdh hypercohomology of a complex of cdh sheaves, 115
Hi

ét(X ,K) étale hypercohomology of a complex of sheaves, 45
Hn

Nis(X ,K) Nisnevich hypercohomology of a complex of sheaves, 100
Hp

Zar(X ,L) Zariski hypercohomology of a complex of sheaves, 22
Hom(M,N) internal Hom in DMgm, 170
Hom(F,G) Hom presheaf, 56
K−(A ) chain homotopy category of complexes in A , 57
KM
∗ (k) the Milnor K-theory of a field k, 29

Kn K-theory group, 14
L the Lefschetz motive Z(1)[2], 167
L or Lét A1-local objects in D−(Shét(Cork,R)), 71
L of LNis A1-local objects in D−(ShNis(Cork,R)), 111
L∆ line bundle on U ×S X̄ corresponding to the diagonal map, 85
(L , t) line bundle L with a trivialization t, 49
M ∗(P1;0,∞) sheaf sending X to the rational functions on X×P1 which are regular

in a neighborhood of X ×{0,∞} and equal to 1 on X ×{0,∞}, 25
M∗ the dual of a motive M, 168
M(q) Tate twist M⊗tr

L,Nis R(q), 110
Mc(X) motive with compact support of X , 128
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µn sheaf of nth roots of unity, 14
MV (Q) Mayer-Vietoris sequence of a square Q, 177
M(X) the motive of X in DMeff,−

Nis , DM− or DMgm, 109
O sheaf of global functions, 13
O∗ sheaf of global units, 13
Oh

X ,x Hensel local ring of X at x, 44
Pic(X) the Picard group of X , 25
Pic(X̄ ,Y ) relative Picard group, 49
PreSh(Cork) category of additive presheaves with transfers, 13
PST(k) same as PreSh(Cork), 13
Q(X ,Y,A) cartesian square of schemes, 90
RHom(M,L) internal Hom in DMeff,−

Nis , 113
Sch/k category of schemes of finite type over k, 94
Shét(Cork) category of étale sheaves with transfers, 37
Shét(Sm/k) category of étale sheaves on smooth schemes, 37
Shlc

ét category of locally constant sheaves in Shét(Sm/k), 38
ShNis(Cork) category of Nisnevich sheaves with transfers, 99
ShNis(Sm/k) category of Nisnevich sheaves on smooth schemes, 90
Sl Henselization at {0} in Al , 52
Sm/k category of smooth separated schemes, 3
WA multiplicative system of A1-weak equivalences, 67
(X̄ ,X∞,Z) standard triple, 84
Z1 ·Z2 intersection product of cycles, 143
Z(A ) category of additive presheaves on A , 55
zequi(T,r) sheaf of equidimensional cycles of relative dimension r, 125
zi

equi(X ,m) same as zequi(X ,dimX − i)(∆m), 149
zi(X ,m) Bloch’s cycle group, 135
zi(Y,m)W cycles in zi(Y,m) meeting W properly, 137
Z(q) the motivic complex C∗Ztr(G

∧q
m )[−q], 21

ZSF(i) Suslin-Friedlander motivic complex, 126
Ztr(Gm) the presheaf with transfers Ztr(A1 −0)/Z, 15
Ztr(G

∧q
m ) smash product, 16

Ztr(Ǔ) Čech complex associated to a cover Ǔ of X , 39
Ztr(X) representable presheaf with transfers associated to X , 15
Ztr(X ,x) cokernel of the map x∗ : Z → Ztr(X), 15
Z(X) Nisnevich sheafification of Z[HomSm/k(−,X)], 92





Index

Page numbers in boldface refer to
definitions.

A1-homotopy, 19, 19–20
A1-homotopic, 19, 19–20, 47, 69, 69, 71,

85, 86, 113, 113, 121–123, 141, 142,
177–179

A1-homotopy equivalence, 20, 20, 69,
120, 178

strict, 72, 72–74, 100
A1-local complexes, see Nisnevich A1-local
A1-local objects, see étale A1-local,

Nisnevich A1-local
A1-weak equivalences, see étale A1-weak

equivalences, Nisnevich A1-weak
equivalences

abelian category, 13, 15, 39, 42–44, 55, 90,
99

abstract blow-up, see blow-up
additive category, 3–5, 19, 37, 55–57, 63, 64,

67
adjoint functors, 6, 20, 38, 42, 51, 56, 61, 70,

71, 99, 112, 113, 169, 193
algebraic singular homology Hsing

i (X/S), 48,
47–54, 78, 78–80, 179

and Chow groups, 136
and higher Chow groups, 136
and motivic homology, 114
and transfers, 48

balanced functor, 56
Bass-Tate lemma, 33
Bertini’s Theorem, 87
bivariant cycle cohomology group, 130
Bloch’s cycle complex zi(X ,∗), 135,

135–142, 149–154
and equidimensional cycle complex, 149
subcomplex zi(X ,∗)W , 137, 136–139,

163–165
and equidimensional cycles, 160

is isomorphic when X affine, 137
Bloch’s cycle presheaf zi(−×T,∗), 160,

160–163
Bloch, Spencer, 135, 162, 163
blow-up

abstract, 94, 94–97, 106, 109, 111, 115
decomposition of motives, 123
sequence in cohomology, 104
sequence in motivic cohomology, 115
triangle, 106, 111

Borel-Moore motivic homology, see motivic
homology with compact supports

Brauer group, 44
Brown-Gersten, 162

calculus of fractions, 67, 71
Cancellation Theorem, 110, 131, 135, 164,

167–169
canonical flasque resolution, see flasque

resolution
Cartier divisor, 50, 86, 180
cdh cohomology, 97
cdh hypercohomology, 130

and hyperext, 115
and motivic cohomology, 115

cdh resolution, 106
cdh sheaf, 129
cdh sheaves with transfers, 105–106
cdh topology, 45, 95, 94–97, 115
Čech cohomology, 183, 184, 192
Čech resolution, 39, 41, 59, 99, 103, 119,

121
Chevalley’s theorem, 84
Chow group, 14, 135, 136, 167

and algebraic singular homology, 136
and motivic cohomology, 159
and zequi(T,r), 126
higher, see higher Chow group
is a presheaf with transfers, 14

Chow motives, 167–169
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cohomological dimension
cdh, 95, 115
étale, 45, 71–73, 117
Nisnevich, 89, 100, 101, 112
Zariski, 101

cohomology, see motivic cohomology, étale
cohomology, Nisnevich cohomology,
cdh cohomology

compact support, see motive with compact
support

compactification, see good compactification
contraction, 191, 198

of higher Chow groups, 191
of homotopy invariant Zariski sheaf, 200
of locally constant étale sheaf, 191
of motivic cohomology, 191
of motivic complex, 191
of relative sheaf, 193, 194
of Zariski cohomology, 191

corrections, 69, 186
correspondence

A1-homotopic, see A1-homotopy
composition, 4
elementary, 3, 3–6, 121
finite, 3, 3–6

lifts to a vector bundle torsor, 139
covering morphism, see standard triple
cycles

equidimensional, see equidimensional
cycles

in good position, 138, 139, 144, 143–147
intersection, 4, 135, 143
properly intersecting, 5, 135–138, 143,

143–147, 150
pullback, see pullback
push-forward, see push-forward

deformation retract, 93
Deligne, Pierre, 28
direct limit, 6, 15, 83
Dold-Kan correspondence, 17
dual motive, see geometric motive
dual vector space, 78
Duality Theorem, 131, 164, 167, 168

effective étale motives, see étale motives
effective geometric motives, see geometric

motives
effective motives, 109, 109–118

and Chow motives, 167
and Nisnevich A1-local, 113
list of properties, 110
Q coefficients, 116–118

are effective étale motives, 118
Eilenberg-Zilber theorem, 24, 76
elementary correspondence, see

correspondences
elementary matrices, 122
enough injectives, 13, 43, 44, 79, 99
enough projectives, 13, 56
equidimensional cycle complex zi

equi(X ,∗),
149, 149–154

and Bloch’s cycle complex, 149
equidimensional cycle presheaf zequi(T,r),

125, 125–131, 135, 136, 159
and Chow group, 126
and motives with compact support, 128
is a presheaf with transfers, 126
is an étale sheaf, 125
is Ztr(T ) if T proper, 125

equidimensional cycles, 9, 11, 143, 145
locally, 137

equidimensional scheme, 135, 149–150, 164
étale A1-local, 71, 71–80, 117–118

and étale effective motives, 74
is Nisnevich A1-local rationally, 117

étale A1-weak equivalence, 67, 67–80
étale cohomology, 27, 45

and Ext, 45
preserves transfers, 44

étale hypercohomology
and hyperext, 45

étale motives, 68
and étale effective motives, 68
effective, 67, 67–80

étale motivic cohomology, 67, 75, 75–80,
117, 118

and étale cohomology, 75
is motivic cohomology rationally, 117
is representable, 78, 118

étale resolution, 61, 103
étale sheaf, 37

locally constant, 38, 38–39, 51, 58, 60, 61,
72–74, 79, 191, 195

with transfers, 37, 37–45
étale sheafification

preserves transfers, 42
étale topology, 40, 160

and Tate twist, see Tate twist
Ext group, 78

fat point, 8
ffp cohomology, 28
field

extension, see field extension
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perfect, 100–103, 105, 112, 113, 117–119,
124, 126, 128, 131, 159, 167, 183,
197–200

separable closure, 39, 51
separably closed, 51, 52, 78–80

field extension, 6–9, 23, 26, 30–33, 87, 88,
102, 186

Galois, 6, 10, 39, 60
inseparable, 10, 33
inseparable degree, 39
normal, 39
purely inseparable, 10
separable, 6, 10, 15, 20, 23, 33, 38, 89
separable degree, 39

finite correspondence, see correspondences
flasque resolution, 61, 162, 201

canonical, 44, 45, 92, 99, 100
flat presheaf, see tensor product
flat site, 160
formally smooth, 197
Friedlander, Eric, 130, 131
Friendlander-Voevodsky Duality, see Duality

Theorem

Gabber, Offer, 84
Galois group, 6, 10, 38, 39, 67, 74
Galois module, 38, 39, 58, 60, 67
Generic Equidimensionality Theorem, 151,

153, 155
geometric motives, 110, 167–171

are rigid, 170
double dual isomorphism, 169
dual, 168
dual and motive with compact supports,

169
dual and tensor product, 170
effective, 109, 167–171

geometric point, 51
geometrically regular, 197
Gersten resolution, 135, 200
global functions

is a presheaf with transfers, 13
is zero in motives, 71

global units, 184, 191
is a presheaf with transfers, 13
is Z(1)[1], 25

good compactification, 47–54, 84, 85, 176
Gysin

map, 123
map for compact supports, 130
triangle, 111, 124

h-topology, 95

Hensel local ring or scheme, 40, 51, 90, 101,
102, 117, 128, 192, 194, 197, 198

strictly, 40, 44
Henselization, 52
higher Chow groups, 125, 130, 131, 135,

135–142, 149, 150, 159–165, 191
and algebraic singular homology, 136
and Chow groups, 136
and vector bundle torsors, 139
are functors on affine schemes, 139
are HBM

i,n , 159, 164
are hypercohomology, 162
are motivic cohomology, 159, 163
are presheaves with transfers, 142
are representable, 165
definition of transfer, 140
Homotopy Invariance, 136, 139, 149, 161,

165, 191
Localization Theorem, 136, 139, 150,

161, 191
Hom presheaf, 56, 61
homogeneous form, 156
homotopic

A1−, see A1-homotopy
weekly, see weakly homotopic

homotopy commutative, 177, 177–181
homotopy invariance, 17, 17–20, 83–88

higher Chow groups, see higher Chow
groups

Nisnevich A1-local and, 112
Nisnevich cohomology preserves, 100,

197
Nisnevich sheaf, 100

is the Zariski sheaf, 183
Nisnevich sheaf and contractions, 192
Nisnevich sheafification preserves, 183
presheaf HnC∗F , 18
Zariski sheaf, 199
Zariski sheafification and, 183, 187

homotopy invariant presheaf with transfers,
see homotopy invariance

hyperext, see cohomology

injective resolution, 79
internal Hom, 113, 168

of geometric motives, 170
intersection cycle, see cycles
intersection multiplicity, 143, 144

and the Tor formula, 143

Jouanolou’s device, 139, 140

K-theory, 14, 48
Milnor, see Milnor K-theory
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Kummer Theory, 50, 51

leading form, 156
Lefschetz motive, 167
Levine, Marc, 137, 138, 163
Lichtenbaum motivic cohomology, see étale

motivic cohomology
line bundle, 14, 50, 85–87, 123, 176, 178,

179
trivialization, 49, 50, 84–86, 123, 176,

178–181
localization, 64, 65, 67, 68, 109, 110
localization sequence, 127, 136
Localization Theorem, see higher Chow

groups
locally constant, see étale sheaf

Mayer-Vietoris property, 162
Mayer-Vietoris sequence MV (Q), 177,

183–186, 189, 193
Mayer-Vietoris triangle, 103, 110, 123, 129
Milnor K-theory, 29–34

is Hn,n, 29
motive M(X), see also effective motives,

geometric motives, motives, 20, 109
Chow, see Chow motive
decomposition of projective space, 121
dual, see geometric motive
geometric, see geometric motive
is homotopy invariant, 20
isomorphic to C∗Ztr(X), 110
list of properties, 110
projective bundle, 111, 123
vector bundle, 111

motive with compact support Mc(X), 128,
128–131, 168–169

Duality Theorem, 131
embedding triangle, 129
is geometric, 129
is M(X) for X proper, 129

motives DM−(k,R), 110, 168
motivic cohomology, 22

and cdh hypercohomology, 115
and Chow group, 159
and Nisnevich hypercohomology, 101
colimits, 23
independent of k, 23
is a presheaf with transfers, 14
is étale motivic cohomology rationally,

117
is higher Chow groups, 159
is representable, 101, 110, 114
pairing, 24, 122

product is graded-commutative, 122
singular X, 114
with compact supports, 130

motivic complex, 21, 21–24
and the projective space, 119
is ZSF (i), 126
product, 24, 76, 122

motivic homology, 114
with compact supports, 130, 159, 164

is higher Chow groups, 164
multiplicative system, 64, 67, 109

Nisnevich A1-local, 111, 111–118
and effective motives, 113
and homotopy invariance, 112
is étale A1-local rationally, 117

Nisnevich cohomology
and cdh cohomology, 97, 106
and Ext, 92, 99
and Zariski cohomology, 101
is étale cohomology rationally, 116
preserves homotopy invariance, 100, 197
preserves transfers, 99

Nisnevich cover, 96
Nisnevich hypercohomology

and hyperext, 100
and Zariski hypercohomology, 101
is étale hypercohomology rationally, 117

Nisnevich lifting property, 89, 95
Nisnevich resolution, 40, 92, 94, 99, 106
Nisnevich sheaf, 40, 89–94, 96, 102

criterion, 90
not étale sheaf, 91
with transfers, 99–106

is étale after ⊗Q, 116
Z(X), 92, 92–94, 103–105, 115

Nisnevich sheafification
preserves transfers, 99

Nisnevich topology, 40–42, 44, 45, 68, 83,
89, 194

and Zariski topology, 102
points are Hensel local, 90

nodal curve, 97
norm map, 13, 30–34, 53, 181

Milnor K-theory, 30–34
normal bundle, 123
normal surface, 97

perfect field, see field
Picard group, 25–27, 44, 49, 50, 91, 122, 135

relative, 47, 49, 49–54, 83–86, 178–181
platification, 7, 96, 106, 129
Pontrjagin dual, 61, 80
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presheaf with transfers, 13, 13–20
homotopy invariant, see homotopy

invariance
Ztr(X), see Ztr(X)

Projection Formula, 137, 145
projective bundle, 95, 122, 123
Projective Bundle Theorem, 123
projective objects, 15, 16, 55–58, 79
projective resolution, 55–58, 60, 61
proper birational cover, 95
proper cdh cover, 95, 94–97
pseudo pretheory, 48
pullback of cycles, 5, 126, 131, 137,

145–147, 150, 160, 191
along a fat point, 8, 8–11
along a finite correspondence, 144
and relative cycles, 125, 145
flat, 7, 8, 14, 37, 128, 137, 139, 144, 160,

163, 164
is defined, 143

pure subgroup, 83
push-forward of cycles, 4, 5, 11, 14, 30, 33,

53, 54, 126, 136, 144, 147

relative cycle, 9, 8–11, 125, 145
universally integral, 7, 10, 10–11

relative Picard group, see Picard group
relative sheaf, 192, 198
representable presheaf, 55
resolution of singularities, 45, 78, 97, 105,

106, 109, 111, 115, 116, 127, 129–131,
135, 149, 159, 164, 167

rigid tensor category, 168–171
Rigidity Theorem, 51, 73, 79
roots of unity, 14, 25, 27, 28, 38, 49–51, 58,

61, 72, 75, 76, 78, 99, 192, 195
vs. Z/l(1), 27, 99
µ⊗q

n ∼= Z/n(q), 77

semilocal ring or scheme, 3, 40, 83, 86,
185–188, 199, 200

separable closure of a field, see field
separably closed field, see field
separated presheaf, 185
sheaf, see Zariski sheaf, étale sheaf,

Nisnevich sheaf, cdh sheaf
simplicial decomposition, 18, 152
simplicial group, 16, 24, 135, 136, 149, 159,

160
simplicial homotopy, 18, 153
simplicial map, 24, 76
simplicial presheaf, 16, 17, 76, 126, 159, 160
singular schemes, see Ztr(X), cdh topology

skeletal homotopy, 152
skeletal map, 150, 150–154
smash product ∧, 16, 29, 31, 64, 76–78,

119–122
and tensor product, 58

smooth curve, 85, 176, 184, 200
spectral sequence, 60, 73, 79, 94, 102, 103

Čech, 192
coniveau, 201
hypercohomology, 23, 117
hyperext, 104, 112
hyperhomology, 59
Leray, 101, 117, 197, 199, 200

stable homotopy category, 64
standard triple, 84, 84–88, 189, 193

covering morphism, 175, 175–185
split, 85, 85–88, 176, 178, 179, 182

strong deformation retract, see deformation
retract

Suslin, Andrei, 51, 78, 149, 155, 157
Suslin-Friedlander motivic complex ZSF (i),

126, 126–129, 159–163
is independent of k, 126
is isomorphic to Bloch’s cycles sheaf, 161
is Z(i), 126

suspension, 64
symmetric group, 121–122
symmetric monoidal category, 6, 55–57,

63–66, 170

Tate twist, 110
étale is invertible, 61, 68

tensor product
and smash product, 58
in Cork, 6
in derived category, 60
of A1-local objects, 113
of flat presheaves, 56, 92
of motives with compact support, 129
of Nisnevich sheaves, 92
of presheaves, 56–61, 92
of presheaves with transfers, 57
of sheaves, 58–61
total, see total tensor product

tensor triangulated category, 57, 60, 63,
63–66, 68, 74, 109, 113

C [T−1] is a, 65
of motives, 110

thick, 67, 68, 71, 74, 109, 113
topology, see Zariski topology, étale

topology, Nisnevich topology, cdh
topology

total Hom, 79
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trace map, 13, 38
truncation

brutal, 68
good, 102, 105

unibranch scheme
geometrically, 9

universally integral cycles, see relative cycles
upper distinguished square, 90, 91, 175, 177,

181, 182, 184, 189
coming from a covering morphism of

standard triples, 175, 176, 177, 181

Vanishing Theorems, 22, 159
vector bundle, 103, 111, 122, 123

torsor, 139–142, 160, 164
Voevodsky, Vladimir, 95, 110, 130, 131

Walker, Mark, 87
weakly homotopic, 153
Weil divisor, 25, 26, 50, 53, 178, 198
Weil Reciprocity, 30, 34

Yoneda lemma, 15, 55, 57, 69, 92, 100, 105,
127, 168

Zariski covering, 183
Zariski descent, 161, 162, 163
Zariski resolution, 41
Zariski sheaf, 103, 128

with transfers, 116, 183–189, 191,
199–201

Zariski topology, 40, 42, 44, 83, 100, 187,
194

Zariski’s Main Theorem, 49
Ztr(X)

and flatness, 56
is a sheaf, 21, 37
is projective, 15
singular X , 15, 37, 114, 115
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