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1 Introduction.

Consider the following puzzle. The goal is to
cover the region

using the following seven tiles.

1
2 3 4
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6 7

The region must be covered entirely with-
out any overlap. It is allowed to shift and
rotate the seven pieces in any way, but each
piece must be used exactly once.

One could start by observing that some
of the pieces fit nicely in certain parts of the
region. However, the solution can really only
be found through trial and error.
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For that reason, even though this is an
amusing puzzle, it is not very intriguing
mathematically.

This is, in any case, an example of a tiling
problem. A tiling problem asks us to cover a
given region using a given set of tiles, com-
pletely and without any overlap. Such a cov-
ering is called a tiling. Of course, we will fo-
cus our attention on specific regions and tiles
which give rise to interesting mathematical
problems.

Given a region and a set of tiles, there are
many different questions we can ask. Some
of the questions that we will address are the
following:

• Is there a tiling?

• How many tilings are there?

• About how many tilings are there?

• Is a tiling easy to find?

• Is it easy to prove that a tiling does not
exist?

• Is it easy to convince someone that a
tiling does not exist?

• What does a “typical” tiling look like?
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• Are there relations among the different
tilings?

• Is it possible to find a tiling with special
properties, such as symmetry?

2 Is there a tiling?

From looking at the set of tiles and the re-
gion we wish to cover, it is not always clear
whether such a task is even possible. The
puzzle of Section 1 is such a situation. Let
us consider a similar puzzle, where the set of
tiles is more interesting mathematically.

A pentomino is a collection of five unit
squares arranged with coincident sides. Pen-
tominoes can be flipped or rotated freely.
The figure shows the twelve different pen-
tominoes. Since their total area is 60, we
can ask, for example: Is it possible to tile
a 3 × 20 rectangle using each one of them
exactly once?

This puzzle can be solved in at least two
ways. One solution is shown above. A dif-
ferent solution is obtained if we rotate the
shaded block by 180◦. In fact, after spending

some time trying to find a tiling, one discov-
ers that these (and their rotations and reflec-
tions) are the only two possible solutions.

One could also ask whether it is possible to
tile two 6×5 rectangles using each pentomino
exactly once. There is a unique way to do it,
shown below. The problem is made more
interesting (and difficult) by the uniqueness
of the solution.

Knowing that, one can guess that there
are several tilings of a 6× 10 rectangle using
the twelve pentominoes. However, one might
not predict just how many there are. An
exhaustive computer search has found that
there are 2339 such tilings.

These questions make nice puzzles, but
are not the kind of interesting mathematical
problem that we are looking for. To illustrate
what we mean by this, let us consider a prob-
lem which is superficially somewhat similar,
but which is much more amenable to math-
ematical reasoning.

Suppose we remove two opposite corners
of an 8 × 8 chessboard, and we ask: Is it
possible to tile the resulting figure with 31
dominoes?

Our chessboard would not be a chessboard
if its cells were not colored black and white
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alternatingly. As it turns out, this coloring
is crucial in answering the question at hand.

Notice that, regardless of where it is
placed, a domino will cover one black and
one white square of the board. Therefore, 31
dominoes will cover 31 black squares and 31
white squares. However, the board has 32
black squares and 30 white squares in all, so
a tiling does not exist. This is an example
of a coloring argument ; such arguments are
very common in showing that certain tilings
are impossible.

A natural variation of this problem is to
now remove one black square and one white
square from the chessboard. Now the re-
sulting board has the same number of black
squares and white squares; is it possible to
tile it with dominoes?

Let us show that the answer is yes, regard-
less of which black square and which white
square we remove. Consider any closed path
that covers all the cells of the chessboard,
like the one shown below.

Now start traversing the path, beginning
with the point immediately after the black
hole of the chessboard. Cover the first and
second cell of the path with a domino; they
are white and black, respectively. Then cover
the third and fourth cells with a domino;
they are also white and black, respectively.
Continue in this way, until the path reaches
the second hole of the chessboard. Fortu-
nately, this second hole is white, so there is
no gap between the last domino placed and
this hole. We can therefore skip this hole,
and continue covering the path with succes-
sive dominoes. When the path returns to
the first hole, there is again no gap between
the last domino placed and the hole. There-
fore, the board is entirely tiled with domi-
noes. This procedure is illustrated below.

What happens if we remove two black
squares and two white squares? If we re-
move the four squares closest to a corner of
the board, a tiling with dominoes obviously
exists. On the other hand, in the example
below, a domino tiling does not exist, since
there is no way for a domino to cover the
upper left square.

3



This question is clearly more subtle than
the previous one. The problem of describing
which subsets of the chessboard can be tiled
by dominoes leads to some very nice mathe-
matics. We will say more about this topic in
Section 5.

Let us now consider a more difficult ex-
ample of a coloring argument, to show that
a 10 × 10 board cannot be tiled with 1 × 4
rectangles.

Giving the board a chessboard coloring
gives us no information about the existence
of a tiling. Instead, let us use four colors, as
shown above. Any 1×4 tile that we place on
this board will cover an even number (possi-
bly zero) of squares of each color.

Therefore, if we had a tiling of the board,
the total number of squares of each color
would be even. But there are 25 squares of
each color, so a tiling is impossible.

With these examples in mind, we can in-
vent many similar situations where a certain
coloring of the board makes a tiling impos-
sible. Let us now discuss a tiling problem
which cannot be solved using such a coloring
argument.

Consider the region T (n) consisting of a
triangular array of n(n + 1)/2 unit regular
hexagons.

T(1)
T(2)

T(3)
T(4)

Call T (2) a tribone. We wish to know the
values of n for which T (n) be tiled by tri-
bones. For example, T (9) can be tiled as
follows.

Since each tribone covers 3 hexagons,
n(n+1)/2 must be a multiple of 3 for T (n) to
be tileable. However, this does not explain
why regions such as T (3) and T (5) cannot be
tiled.

Conway [20] showed that the triangular ar-
ray T (n) can be tiled by tribones if and only
if n = 12k, 12k + 2, 12k + 9 or 12k + 11 for
some k ≥ 0. The smallest values of n for
which T (n) can be tiled are 0, 2, 9, 11, 12,
14, 21, 23, 24, 26, 33, and 35. Conway’s
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proof uses a certain nonabelian group which
detects information about the tiling that no
coloring can detect, while coloring arguments
can always be rephrased in terms of abelian
groups. In fact, it is possible to prove that
no coloring argument can establish Conway’s
result [15].

3 Counting tilings, exactly.

Once we know that a certain tiling problem
can be solved, we can go further and ask:
How many solutions are there?

As we saw earlier, there are 2339 ways (up
to symmetry) to tile a 6× 10 rectangle using
each one of the 12 pentominoes exactly once.
It is perhaps interesting that this number is
so large, but the exact answer is not so in-
teresting, especially since it was found by a
computer search.

The first significant result on tiling enu-
meration was obtained independently in 1961
by Fisher and Temperley [7] and by Kaste-
leyn [12]. They found that the number of
tilings of a 2m×2n rectangle with 2mn domi-
noes is equal to

4mn
m∏

j=1

n∏

k=1

(
cos2

jπ

2m + 1
+ cos2

kπ

2n + 1

)
.

Here Π denotes product and π denotes
180◦, so the number above is given by 4mn

times a product of sums of two squares of
cosines, such as

cos
2π

5
= cos 72◦ = 0.3090169938 . . . .

This is a remarkable formula! The numbers
we are multiplying are not integers; in most
cases, they are not even rational numbers.
When we multiply these numbers we mirac-
ulously obtain an integer, and this integer is

exactly the number of domino tilings of the
2m× 2n rectangle.

For example, for m = 2 and n = 3, we get:

46(cos2 36◦ + cos2 25.71 . . .◦)×
(cos2 36◦ + cos2 51.43 . . .◦)×
(cos2 36◦ + cos2 77.14 . . .◦)×
(cos2 72◦ + cos2 25.71 . . .◦)×
(cos2 72◦ + cos2 51.43 . . .◦)×
(cos2 72◦ + cos2 77.14 . . .◦)

= 46(1.4662 . . .)(1.0432 . . .)(0.7040 . . .)×
(0.9072 . . .)(0.4842 . . .)(0.1450 . . .)

= 281.

Skeptical readers with a lot of time to spare
are invited to find all domino tilings of a 4×6
rectangle and check that there are, indeed,
exactly 281 of them.

Let us say a couple of words about the
proofs of this result. Kasteleyn expressed the
answer in terms of a certain Pfaffian, and re-
duced its computation to the evaluation of a
related determinant. Fisher and Temperley
gave a different proof using the transfer ma-
trix method, a technique often used in sta-
tistical mechanics and enumerative combina-
torics.

AZ(1)

AZ(2)

AZ(3)

AZ(7)

There is a different family of regions for
which the number of domino tilings is sur-
prisingly simple. The Aztec diamond AZ(n)

5



is obtained by stacking successive centered
rows of length 2, 4, . . . , 2n, 2n, . . . , 4, 2, as
shown above.

The Aztec diamond of order 2, AZ(2), has
the following eight tilings:

Elkies, Kuperberg, Larsen and Propp [6]
showed that the number of domino tilings
of AZ(n) is 2n(n+1)/2. The following table
shows the number of tilings of AZ(n) for the
first few values of n.

1 2 3 4 5 6
2 8 64 1024 32768 2097152

Since 2(n+1)(n+2)/2 / 2n(n+1)/2 = 2n+1, one
could try to associate 2n+1 domino tilings of
the Aztec diamond of order n + 1 to each
domino tiling of the Aztec diamond of order
n, so that each tiling of order n + 1 occurs
exactly once. This is one of the four original
proofs found in [6]; there are now around 12
proofs of this result. None of these proofs is
quite as simple as the answer 2n(n+1)/2 might
suggest.

4 Counting tilings, approxi-

mately.

Sometimes we are interested in estimating
the number of tilings of a certain region. In
some cases, we will want to do this because
we are not able to find an exact formula.
In other cases, somewhat paradoxically, we
might prefer an approximate formula over an
exact formula. A good example is the num-
ber of tilings of a rectangle. We have an ex-
act formula for this number, but this formula
does not give us any indication of how large
this number is.

For instance, since Aztec diamonds are
“skewed” squares, we might wonder: How
do the number of domino tilings of an Aztec
diamond and a square of about the same
size compare? After experimenting a bit
with these shapes, one notices that placing
a domino on the boundary of an Aztec di-
amond almost always forces the position of
several other dominoes. This almost never
happens in the square. This might lead us
to guess that the square should have more
tilings than the Aztec diamond.

To try to make this idea precise, let us
make a definition. If a region with N squares
has T tilings, we will say that it has N

√
T

degrees of freedom per square. The motiva-
tion, loosely speaking, is the following: If
each square could decide independently how
it would like to be covered, and it had N

√
T

possibilities to choose from, then the total
number of choices would be T .

The Aztec diamond AZ(n) consists of N =
2n(n + 1) squares, and it has T = 2n(n+1)/2

tilings. Therefore, the number of degrees of
freedom per square in AZ(n) is:

N
√

T = 4
√

2 = 1.189207115 . . .

6



For the 2n× 2n square, the exact formula
for the number of tilings is somewhat unsat-
isfactory, because it does not give us any in-
dication of how large this number is. Fortu-
nately, as Kasteleyn, Fisher and Temperley
observed, one can use their formula to show
that the number of domino tilings of a 2n×2n

square is approximately C4n2
, where

C = eG/π

= 1.338515152 . . . .

Here G denotes the Catalan constant, which
is defined as follows:

G = 1− 1
32

+
1
52
− 1

72
+ · · ·

= 0.9159655941 . . . .

Thus our intuition was correct. The square
board is “easier” to tile than the Aztec dia-
mond, in the sense that it has approximately
1.3385 . . . degrees of freedom per square,
while the Aztec diamond has 1.1892 . . ..

5 Demonstrating that a

tiling does not exist.

As we saw in Section 2, there are many tiling
problems where a tiling exists, but finding it
is a difficult task. However, once we have
found it, it is very easy to demonstrate its
existence to someone: We can simply show
them the tiling!

Can we say something similar in the case
that a tiling does not exist? As we also saw
in Section 2, it can be difficult to show that
a tiling does not exist. Is it true, however,
that if a tiling does not exist, then there is an
easy way of demonstrating that to someone?

In a precise sense, the answer to this ques-
tion is almost certainly no in general, even

for tilings of regions using 1 × 3 rectangles
[1]. Surprisingly, though, the answer is yes
for domino tilings!

Before stating the result in its full general-
ity, let us illustrate it with an example. Con-
sider the following region, consisting of 16
black squares and 16 white squares. (The
dark shaded cell is a hole in the region.)

One can use a case by case analysis to be-
come convinced that this region cannot be
tiled with dominoes. Knowing this, can we
find an easier, faster way to convince some-
one that this is the case?

One way of doing it is the following. Con-
sider the six black squares marked with a •.
They are adjacent to a total of five white
squares, which are marked with a ∗. We
would need six different tiles to cover the
six marked black squares, and each one of
these tiles would have to cover one of the five
marked white squares. This makes a tiling
impossible.

*
* *

* *

Philip Hall [10] showed that in any region
which cannot be tiled with dominoes, one
can find such a demonstration of impossibil-
ity. More precisely, one can find k cells of
one color which have fewer than k neighbors.
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Therefore, to demonstrate to someone that
tiling the region is impossible, we can simply
show them those k cells and their neighbors!

Hall’s statement is more general than this,
and is commonly known as the marriage the-
orem. The name comes from thinking of
the black cells as men and the white cells
as women. These men and women are not
very adventurous: They are only willing to
marry one of their neighbors. We are the
matchmakers; we are trying to find an ar-
rangement in which everyone can be happily
married. The marriage theorem tells us ex-
actly when such an arrangement exists.

6 Tiling rectangles with

rectangles.

One of the most natural tiling situations is
that of tiling a rectangle with smaller rectan-
gles. We now present three beautiful results
of this form.

The first question we wish to explore is:
When can an m × n rectangle be tiled with
a × b rectangles (in any orientation)? Let
us start this discussion with some motivating
examples.

Can a 7× 10 rectangle be tiled with 2× 3
rectangles? This is clearly impossible, be-
cause each 2×3 rectangle contains 6 squares,
while the number of squares in a 7× 10 rect-
angle is 70, which is not a multiple of 6. For
a tiling to be possible, the number of cells of
the large rectangle must be divisible by the
number of cells of the small rectangle. Is this
condition enough?

Let us try to tile a 17× 28 rectangle with
4 × 7 rectangles. The argument of the pre-
vious paragraph does not apply here; it only
tells us that the number of tiles needed is 17.

Let us try to cover the leftmost column first.

?

Our first attempt failed. After covering
the first 4 cells of the column with the first
tile, the following 7 cells with the second tile,
and the following 4 cells with the third tile,
there is no room for a fourth tile to cover the
remaining two cells. In fact, if we manage
to cover the 17 cells of the first column with
4× 7 tiles, we will have written 17 as a sum
of 4s and 7s. But it is easy to check that this
cannot be done, so a tiling does not exist.
We have found a second reason for a tiling
not to exist: It may be impossible to cover
the first row or column, because either m or
n cannot be written as a sum of a s and b s.

Is it then possible to tile a 10 × 15 rect-
angle using 1 × 6 rectangles? 150 is in fact
a multiple of 6, and both 10 and 15 can be
written as a sum of 1s and 6s. However, this
tiling problem is still impossible!

The full answer to our question was given
by de Bruijn and Klarner [4, 13]. They
proved that an m× n rectangle can be tiled
with a× b rectangles if and only if:

• mn is divisible by ab,

• the first row and column can be covered;
i.e., both m and n can be written as
sums of a s and b s, and

• either m or n is divisible by a, and either
m or n is divisible by b.

Since neither 10 nor 15 are divisible by 6,
the 10 × 15 rectangle cannot be tiled with
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1× 6 rectangles. There are now many proofs
of de Bruijn and Klarner’s theorem. A par-
ticularly elegant one uses properties of the
complex roots of unity [4, 13]. For an inter-
esting variant with fourteen (!) proofs, see
[21].

The second problem we wish to discuss is
the following. Let x > 0, such as x =

√
2.

Can a square be tiled with finitely many rect-
angles similar to a 1 × x rectangle (in any
orientation)? In other words, can a square
be tiled with finitely many rectangles, all of
the form a× ax (where a may vary)?

For example, for x = 2/3, some of the tiles
we can use are the following:

1.5

1

2

4

π2

3π

3

6

They have the same shape, but different
sizes. In this case, however, we only need
one size, because we can tile a 2 × 2 square
with six 1× 2/3 squares.

1 1

x = 2/3

2/3

2/3

For reasons which will become clear later,
we point out that x = 2/3 satisfies the equa-
tion 3x − 2 = 0. Notice also that a similar
construction will work for any positive ratio-
nal number x = p/q.

Let us try to construct a tiling of a square
with similar rectangles of at least two dif-

ferent sizes. There is a tiling approxi-
mately given by the picture below. The
rectangles are similar because 0.7236 . . . /1 =
0.2/0.2764 . . ..

1/5

.2764

.7236

1

How did we find this configuration? Sup-
pose that we want to form a square by
putting five copies of a rectangle in a row,
and then stacking on top of them a larger
rectangle of the same shape on its side, as
shown. Assume that we know the square has
side length 1, but we do not know the dimen-
sions of the rectangles. Let the dimensions of
the large rectangle be 1×x. Then the height
of each small rectangle is equal to 1−x. Since
the small rectangles are similar to the large
one, their width is x(1−x). Sitting together
in the tiling, their total width is 5x(1 − x),
which should be equal to 1.

Therefore, the picture above is a solu-
tion to our problem if x satisfies the equa-
tion 5x(1 − x) = 1, which we rewrite as
5x2 − 5x + 1 = 0. One value of x which
satisfies this equation is

x =
5 +

√
5

10
= 0.7236067977 . . . ,

giving rise to the tiling illustrated above.
But recall that any quadratic polynomial

has two roots; the other one is

x =
5−√5

10
= 0.2763932023 . . . ,

and it gives rise to a different tiling which
also satisfies the conditions of the problem.
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It may be unexpected that our tiling prob-
lem has a solution for these two somewhat
complicated values of x. In fact, the situ-
ation can get much more intricate. Let us
find a tiling using three similar rectangles of
different sizes.

1

x = .5698

.4302

.2451 .7549

Say that the largest rectangle has dimen-
sions 1×x. Imitating the previous argument,
we find that x satisfies the equation

x3 − x2 + 2x− 1 = 0.

One value of x which satisfies this equation
is

x = 0.5698402910 . . . .

For this value of x, the tiling problem can be
solved as above. The polynomial above has
degree three, so it has two other solutions.
They are approximately 0.215 + 1.307

√−1
and 0.215 − 1.307

√−1. These two complex
numbers do not give us real solutions to the
tiling problem.

In the general situation, Laczkovich and
Szekeres [14] gave the following amazing an-
swer to this problem. A square can be tiled
with finitely many rectangles similar to a
1× x rectangle if and only if:

• x is the root of a polynomial with integer
coefficients, and

• for the polynomial of least degree satis-
fied by x, any root a + b

√−1 satisfies
a > 0.

It is very surprising that these complex
roots, which seem completely unrelated to
the tiling problem, actually play a funda-
mental role in it. In the example above, a
solution for a 1× 0.5698 . . . rectangle is only
possible because 0.215 . . . is a positive num-
ber. Let us further illustrate this result with
some examples.

The value x =
√

2 does satisfy a poly-
nomial equation with integer coefficients,
namely x2 − 2 = 0. However, the other root
of the equation is −√2 < 0. Thus a square
cannot be tiled with finitely many rectangles
similar to a 1×√2 rectangle.

On the other hand, x =
√

2 + 17
12 satis-

fies the quadratic equation 144x2 − 408x +
1 = 0, whose other root is −√2 + 17

12 =
0.002453 · · · > 0. Therefore, a square can
be tiled with finitely many rectangles similar
to a 1× (

√
2 + 17

12) rectangle. How would we
actually do it?

Similarly, x = 3
√

2 satisfies the equation
x3−2 = 0. The other two roots of this equa-
tion are − 3√2

2 ± 3√2
√

3
2

√−1. Since − 3√2
2 < 0,

a square cannot be tiled with finitely many
rectangles similar to a 1× 3

√
2 rectangle.

Finally, let r/s be a rational number and
let x = r

s + 3
√

2. One can check that this
is still a root of a cubic polynomial, whose
other two roots are:

(
r

s
−

3
√

2
2

)
±

3
√

2
√

3
2

√−1.

It follows that a square can be tiled with
finitely many rectangles similar to a 1× ( r

s +
3
√

2) rectangle if and only if

r

s
>

3
√

2
2

.

As a nice puzzle, the reader can pick his or
her favorite fraction larger than 3

√
2/2, and
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tile a square with rectangles similar to a 1×
( r

s + 3
√

2) rectangle.

The third problem we wish to discuss is
motivated by the following remarkable tiling
of a rectangle into nine squares, all of which
have different sizes. (We will soon see what
the sizes of the squares and the rectangle
are.) Such tilings are now known as perfect
tilings.

a

b c

d
e

f

h

i
g

To find perfect tilings of rectangles, we
can use the approach of the previous prob-
lem. We start by proposing a tentative
layout of the squares, such as the pattern
shown above, without knowing what sizes
they have. We denote the side length of each
square by a variable. For each horizontal line
inside the rectangle, we write the following
equation: The total length of the squares sit-
ting on the line is equal to the total length
of the squares hanging from the line. For
example, we have the “horizontal equations”
a + d = g + h and b = d + e. Similarly,
we get a “vertical equation” for each vertical
line inside the rectangle, such as a = b+d or
d+h = e+f . Finally, we write the equations
that say that the top and bottom sides of the
rectangle are equal, and the left and right
sides of the rectangle are equal. In this case,

they are a+b+c = g+i and a+g = c+f+i. It
then remains to hope that the resulting sys-
tem of linear equations has a solution; and
furthermore, one where the values of the vari-
ables are positive and distinct. For the layout
proposed above, the system has a unique so-
lution up to scaling: (a, b, c, d, e, f, g, h, i) =
(15, 8, 9, 7, 1, 10, 18, 4, 14). The large rectan-
gle has dimensions 32× 33.

Amazingly, the resulting system of linear
equations always has a unique solution up to
scaling, for any proposed layout of squares.
(Unfortunately, the resulting “side lengths”
are usually not positive and distinct.) In
1936, Brooks, Smith, Stone, and Tutte [2]
gave a beautiful explanation of this result.
They constructed a directed graph whose
vertices are the horizontal lines found in the
rectangle. There is one edge for each small
square, which goes from its top horizontal
line to its bottom horizontal line. The dia-
gram below shows the resulting graph for our
perfect tiling of the 32× 33 rectangle.

15
8

18
14

10
4

7
1

9

We can think of this graph as an electri-
cal network of unit resistors, where the cur-
rent flowing through each wire is equal to
the length of the corresponding square in
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the tiling. The “horizontal equations” for
the side lengths of the squares are equiva-
lent to the equations for conservation of cur-
rent in this network, and the “vertical equa-
tions” are equivalent to Ohm’s law. Knowing
this, our statement is essentially equivalent
to Kirchhoff’s theorem: The flow in each wire
is determined uniquely, once we know the po-
tential difference between some two vertices
(i.e., up to scaling).

Brooks, Smith, Stone, and Tutte were es-
pecially interested in studying perfect tilings
of squares. This also has a nice interpreta-
tion in terms of the network. To find tilings
of squares, we would need an additional lin-
ear equation, stating that the vertical and
horizontal side lengths of the rectangle are
equal. In the language of the electrical net-
work, this is equivalent to saying that the
network has total resistance 1.

While this correspondence between tilings
and networks is very nice conceptually, it
does not necessarily make it easy to con-
struct perfect tilings of squares, or even rect-
angles. In fact, after developing this the-
ory, Stone spent some time trying to prove
that a perfect tiling of a square was impossi-
ble. Roland Sprague finally constructed one
in 1939, tiling a square of side length 4205
with 55 squares. Since then, much effort and
computer hours have been spent trying to
find better constructions. Duijvestijn and his
computer [5] showed that the smallest possi-
ble number of squares in a perfect tiling of
a square is 21; the only such tiling is shown
below.

16

15

50

27

423733

29 25 18
9

11

7

35

19

4

6

24

2

17
8

7 What does a typical tiling

look like?

Suppose that we draw each possible solution
to a tiling problem on a sheet of paper, put
these sheets of paper in a bag, and pick one
of them at random. Can we predict what we
will see?

The random domino tiling of a 12 × 12
square shown above, with horizonal domi-
noes shaded darkly and vertical dominoes
shaded lightly, exhibits no obvious structure.
Compare this with a random tiling of the
Aztec diamond of order 50. Here there are
two shades of horizontal dominoes and two
shades of vertical dominoes, assigned accord-
ing to a certain rule not relevant here. These
pictures were created by Jim Propp’s Tilings
Research Group.
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This very nice picture suggests that some-
thing interesting can be said about random
tilings. The tiling is clearly very regular at
the corners, and gets more chaotic as we
move away from the edges. There is a well
defined region of regularity, and we can pre-
dict its shape. Jockusch, Propp and Shor
[11] showed that for very large n, and for
“most” domino tilings of the Aztec diamond
AZ(n), the region of regularity “approaches”
the outside of a circle tangent to the four lim-
iting sides. Sophisticated probability theory
is needed to make the terms “most” and “ap-
proaches” precise, but the intuitive meaning
should be clear.

This result is known as the Arctic circle
theorem. The tangent circle is the Arctic cir-
cle; the tiling is “frozen” outside of it. Many
similar phenomena have since been observed
and (in some cases) proved for other tiling
problems.

8 Relations among tilings

When we study the set of all tilings of a re-
gion, it is often useful to be able to “navi-
gate” this set in a nice way. Suppose we have
one solution to a tiling problem, and we want
to find another one. Instead of starting over,
it is probably easier to find a second solution
by making small changes to the first one. We
could then try to obtain a third solution from
the second one, then a fourth solution, and
so on.

In the case of domino tilings, there is a
very easy way to do this. A flip in a domino
tiling consists of reversing the orientation of
two dominoes forming a 2× 2 square.

This may seem like a trivial transforma-
tion to get from one tiling to another. How-
ever, it is surprisingly powerful. Consider the
two following tilings of a region.

Although they look very different from
each other, one can in fact reach one from the
other by successively flipping 2× 2 blocks.

Thurston [20] showed that this is a gen-
eral phenomenon. For any region R with no
holes, any domino tiling of R can be reached
from any other by a sequence of flips.

This domino flipping theorem has numer-
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ous applications in the study of domino
tilings. We point out that the theorem can
be false for regions with holes, as shown by
the two tilings of a 3×3 square with a hole in
the middle. There is a version due to Propp
[18] of the domino flipping theorem for re-
gions with holes, but we will not discuss it
here.

9 Confronting infinity.

We now discuss some tiling questions which
involve arbitrary large regions or arbitrarily
small tiles.

The first question is motivated by the fol-
lowing identity:

1
1 · 2 +

1
2 · 3 +

1
3 · 4 + · · · = 1.

Consider infinitely many rectangular tiles of
dimensions 1× 1

2 , 1
2× 1

3 , 1
3× 1

4 , . . . . These tiles
get smaller and smaller, and the above equa-
tion shows that their total area is exactly
equal to 1. Can we tile a unit square using
each one of these tiles exactly once?

1

1/2 1/3
1/2 1/3

1/4
1/4

1/5
1/5

1/6 ...

1

1

This seems to be quite a difficult problem.
An initial attempt shows how to fit the first

five pieces nicely. However, it is difficult to
imagine how we can fit all of the pieces into
the square, without leaving any gaps.

1

1/2

1/3

1/2

1/3

1/4

1/5

1/4

1/5
1/6

To this day, no one has been able to find a
tiling, or prove that it does not exist. Paul-
hus [16] has come very close; he found a way
to fit all these rectangles into a square of
side length 1.000000001. Of course Paulhus’s
packing is not a tiling as we have defined the
term, since there is leftover area.

Let us now discuss a seemingly simple
problem about tilings that makes it neces-
sary to consider indeterminately large re-
gions. Recall that a polyomino is a collec-
tion of unit squares arranged with coincident
sides.

Let us call a collection of polyominoes
“good” if it is possible to tile the whole plane
using the collection as tiles, and “bad” oth-
erwise. A good and a bad collection of poly-
ominoes are shown below.

good bad

*
*
*

It is easy to see why it is impossible to
tile the whole plane with the bad collection
shown above. Once we lay down a tile, the
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square(s) marked with an asterisk cannot be
covered by any other tile.

However, we can still ask: How large of a
square region can we cover with a tiling? Af-
ter a few tries, we will find that it is possible
to cover a 4× 4 square.

It is impossible, however to cover a 5 × 5
square. Any attempt to cover the central cell
of the square with a tile will force one of the
asterisks of that tile to land inside the square
as well.

In general, the question of whether a given
collection of polyominoes can cover a given
square is a tremendously difficult one. A
deep result from mathematical logic states
that there does not exist an algorithm to de-
cide the answer to this question.1

An unexpected consequence of this deep
fact is the following. Consider all the bad
collections of polyominoes which have a total
of n unit cells. Let L(n) be the side length
of the largest square which can be covered
with one of them. The bad collection of our
example, which has a total of 22 unit squares,
shows that L(22) ≥ 4.

One might expect L(22) to be reasonably
small. Given a bad collection of tiles with
a total of 22 squares, imagine that we start

1A related question is the following: Given a poly-

omino P , does there exist a rectangle which can be

tiled using copies of P? Despite many statements to

the contrary in the literature, it is not known whether

there exists an algorithm to decide this.

laying down tiles to fit together nicely and
cover as large a square as possible. Since
the collection is bad, at some point we will
inevitably form a hole which we cannot cover.
It seems plausible to assume that this will
happen fairly soon, since our tiles are quite
small.

Surprisingly, however, the numbers L(n)
are incredibly large! If f(n) is any func-
tion that can be computed on a computer,
even with infinite memory, then L(n) > f(n)
for all large enough n. Notice that comput-
ers can compute functions which grow very
quickly, such as

f(n) = nn, f(n) = nnn
, or

f(n) = nn
. ..

n

(a tower of length n), . . . .

In fact, all of these functions are tiny in com-
parison with certain other computable func-
tions. In turn, every computable function is
tiny in comparison with L(n).

We can give a more concrete consequence
of this result. There exists a collection of
polyominoes with a modest number of unit
squares2, probably no more than 100, with
the following property: It is impossible to tile
the whole plane with this collection; however,
it is possible to completely cover Australia3,
with a tiling.

A very important type of problem is con-
cerned with tilings of infinite (unbounded)
regions, in particular, tilings of the entire
plane. This is a vast subject (the 700-page
book [9] by Grünbaum and Shephard is de-
voted primarily to this topic), but lack of
space prevents us from saying more than a
few words.

2Say “unit squares” have a side length of 1 cm.
3which is very large and very flat

15



A famous result in mathematical crystal-
lography states that there are 17 essentially
different tiling patterns of the plane that
have symmetries in two independent direc-
tions [9, Sec. 6.2]. These symmetry types
are called plane crystallographic groups. The
Alhambra palace in Granada, Spain, dating
to the 13th and 14th century, is especially
renowned for its depiction of many of these
tiling patterns. We give two samples below.

Owen Jones, The Grammar of Ornament,

views 90 and 93. c©1998 Octavo and the

Rochester Institute of Technology. Used

with permission. Imaged by Octavo,

www.octavo.com.

Another well-known source of plane tiling
patterns is the drawings, lithographs, and en-
gravings of the Dutch graphic artist Maurits

Cornelis Escher (1898–1972). Again we give
two samples below.

M.C. Escher’s Symmetry Drawings E105

and E110. c©2004 The M.C. Escher Com-

pany, Baarn, Holland. All rights reserved.

In the opposite direction to plane tilings with
lots of symmetry are tilings with no symme-
try. The most interesting are those discov-
ered by Sir Roger Penrose. Dart and kite
tilings are the best known example: We wish
to tile the plane using the tiles shown below,
with the rule that tiles can only be joined at
vertices which have the same color.
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The coloring of the tiles makes it impossi-
ble to cover the plane by repeating a small
pattern in a regular way, as was done in the
four previous tilings. However, there are in-
finitely many different dart and kite tilings of
the plane [8, 17]. Below is a sketch of such a
tiling, created by Franz Gähler and available
at www.itap.physik.uni-stuttgart.de/

∼gaehler; it has many pleasing features,
but does not follow any obvious pattern.

These Penrose tilings have many remark-
able properties; for instance, any Penrose
tiling of the plane contains infinitely many
copies of any finite region which one can form
using the tiles.

Our last example is another kind of Pen-
rose tiling, which is obtained by gluing two

kinds of rhombi, following a similar rule.
This figure was created by Russell Towle in
Dutch Flat, CA, with a Mathematica note-
book available at library.wolfram.com/

infocenter/Math Source/1197/.

We leave the reader to investigate further
the fascinating subject of tilings of the plane.
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