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This text is related to the 3 Lectures I gave at PCMI, IAS/Park City Mathematics
Institute, July 7-27, 2024 in Park City, Utah [40]. The content of this text is a slight ex-
tension of those, in particular I tried to give more precise descriptions of the objects in play.

The reader is assumed to have a good acquaintance with classical homotopy theory,
algebraic topology, as well as with some basis in algebraic geometry over a field.
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great support and to the IAS Princeton for its support in the organisation of the PCMI 2024. I would also
like to take the opportunity to thank the IAS Princeton for allowing me to spend the year 2023-2024 as a
member at the Institute and to thank the Giorgio and Elena Petronio Fellowship for the financial support
I received there. Part of the mathematics appearing in this work where elaborated during my time at the
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1. Introduction: the classical (hi-)story

To start, let us recall some standard facts from homotopy theory (see [51][20] for in-
stance, also [47] which is more oriented to stable homotopy theory).

let H be the homotopy category of C.W.-complexes whose objects are C.W.-complexes
(see loc. cıt.), or quickly said, cellular complexes, and whose morphisms are homotopy
classes of continuous maps between those. This category slowly emerged in history as a
fundamental one. An isomorhism in that category is what is known as a homotopy equiva-
lence. The classification or understanding of the homotopy types of C.W.-complexes, that
is to say the C.W.-complexes up to homotopy equivalence, is a very hard problem.

In the same lines, the computation or understanding of the set of morphisms in H be-
tween two fixed C.W.-complexes is extremely difficult. To cite only one example: the
computation of the homotopy classes of maps from an i-sphere Si to an n-sphere Sn for
i ≥ n integers, in other words the so called homotopy groups of spheres, is an incredibly
mysterious and unsolved problem (althought some general facts are known).

Homotopy groups

For n ≥ 0 recall that the n-th sphere, that we denote by Sn is the closed subset Sn ⊂ Rn+1

defined by the equation Σn
i=0(xi)

2 = 1 where the xi are the coordinates in R(n+1) (also clalled
the unit sphere). It is a differentiable compact submanifold of R(n+1) of dimension n.

By choosing for instance (1, 0, . . . , 0) ∈ Sn as base point, it becomes a pointed space.
For n ≥ 1, Sn = Σ(S(n−1)) is the suspension of the (n − 1)-sphere. As a consequence, for
any pointed topological space X, the pointed set πn(X) of pointed homotopy classes of
pointed continuous maps Sn → X is a group, abelian for n ≥ 2. The first one, π1(X), is
called the fundamental group of X, and the πn(X), n ≥ 2, are the higher homotopy groups
of X, which are all abelian.

Let n and i be integers ≥ 1. To study πi(S
n) one may observe by a standard argument

that any element α ∈ πi(Sn) is represented by a differentiable map f . By Sard’s theorem,
f always admits regular values x ∈ Sn, that is to say such that f is transversal at x,
which means that the differential of f is an epimorphism at any point whose image is x.
If i ≤ (n − 1) this means that f (−1)(x) is empty. Thus f maps into Sn − {x} ∼= Rn and
thus is homotopic to a constant map. It follows that

πi(S
n) = 0

for i ≤ (n− 1).

For i = n, the same reasonning shows that for any point yj in f (−1)(x) the differential dfyj
has to be an isomorphism between the tangent spaces. So, by the local inversion theorem,
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the yj are disjoints and isolated, so finitely many. As Sn is canonically oriented, we may
assigne a sign εj ∈ {±1} depending on whether dfyj , which is an isomorphism from the tan-
gent space at yj to the tangent space at x, preserves (+1) or reverses (−1) the orientations.

The number

deg(f ;x) = Σyj∈f (−1)(x) εj ∈ Z
can be shown to be independent of the choice of x and also on the representent f of
α ∈ πn(Sn). It is called the Brouwer degree of α. It can be shown that

deg : πn(Sn) ∼= Z , α 7→ deg(α)

is a group isomorphism.

Of course it is well known that the πi(S
n) for i > n are harder to compute, and still

unknown for i big enough.

Vector bundles and characteristic classes

Let r ≥ 1 and BGLr(R) be the classifying space of the topological group GLr(R);
BGLr(R) is a pointed connected C.W.-complex whose loop space is an h-group isomorphic
to GLr(R) in the category of group objects in the pointed homotopy category. An impor-
tant result in algebraic topology is that over a C.W.-complex X, real vector bundles of rank
r up to isomorphism form a set canonically in bijection with the set of homotopy classes
of continuous maps from X to BGLr(R). This canonical bijection is explicit, taking any
continous map f : X → BGLr(R) to the pull-back of the universal rank r-vector bundle
ξr on BGLr(R) through f .

This theory has a lot of applications, like characteristic classes, and obstruction theory
to split off trivial factors. For instance, given an oriented rank n-vector bundle ξ over an
n-dimensional C.W.-complex X, there is an natural characteristic class e(ξ) ∈ Hn(X;Z),
the Euler class, whose vanishing is equivalent to the fact that ξ split off a trivial rank 1
vector bundle (or ξ has a nowhere vanishing section), see for instance [29].

Geometric topology

Let Diff be the categoy of (nice2) differentiable manifolds. The obvious functor

Diff → H
taking a differentiable manifold to its underlying topological space (which admits a C.W.-
complex structure) has amazingly fine properties, which led a long time ago to the fact
that in big enough dimension (at least 5) compact differentiable manifolds can be classified
up to diffeomorphisms essentially by invariants coming from H through this functor; to

2we will not make this precise
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be more precise, coming from some rather subtle enhancement of that functor, involving
the fundamental group, Poincaré duality for the singular chain complex of the classifying
space, the map classifying the normal bundle, etc...

Let us illustrate this fact, by one of the main example of the very fine connection be-
tween differential geometry and homotopy theory. Let M ∈ Diff be a (nice) compact
differentiable manifold of dimension n. Choose a proper embedding i : M ⊂ Sn+N into a
big enough sphere. One may always find a tubular neighborhood T of M in Sn+N , that
is to say an open subset of Sn+N containing M and diffeomorphic to the total space of
the normal bundle νi of the embedding i (which is of rank N). The Thom-Pontryagin
construction consists in collapsing the complement Z of T in Sn+N to a point. Clearly
the space Sn+N/Z is homeomorphic to the one point compactification of T , which is also
homeomorphic to the one point compactification of νi which is called the Thom space of
νi and denoted by Th(νi). This Thom-Pontryagin construction thus defines a continous
pointed map

Sn+N → Th(νi)

Now the classifying map of νi : M → BGLN(R), which we mentioned above, induces a
continuous pointed map

Th(νi)→ Th(ξN)

between the Thom spaces of νi and the Thom space of the universal rank N -bundle ξN
(note that one has to modify a bit the definition of the Thom space to make it work
when the base is non compact). The composition of the Thom-Pontryagin construction
Sn+N → Th(νi) and the above map yields a pointed map:

Sn+N → Th(ξN)

This defines an element in πn+N(Th(ξN)), the n + N -th homotopy group of Th(ξN). If
MGl∞(R) (denoted MO in the original paper of Thom [48]) denotes the Thom spectrum
obtained by using all the Th(ξN) and the corresponding maps from the suspension of
Th(ξN) to Th(ξN+1) [47], this construction define a class

[M ] ∈ πSn (MGl∞(R))

the n-th stable homotopy group of the spectrum MGl∞(R). This class is called the fun-
damental class of M in MGl∞(R). First this class can be shown to be independent on any
choice (even of i), and only depends on M as the notation suggests.

Secondly the main theorem of Thom [48], says that M can be recovered up to unoriented
cobordism from the class [M ]. The ring πS∗ (MGl∞(R) = π∗(MO) is indeed isomorphic to
the unoriented cobordism ring and was entirely computed by Thom.

Amazingly, a very sophisticated refinement of these theorems, called surgery theory, re-
lying on very subtle technics of “plumbing”, introduced by John Milnor, allows one to
classify diffeomorphisms classes of compact differential manifolds of dimension at least 5 in
terms of algebraic invariants obtained from homotopy theory, see [13][14]. This beautiful
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theory, with which I got acquainted thanks to my advisor Jean Lannes, has had3 a huge
influence in my attempt to developp the A1-homotopy theory with Vladimir Voevodksy
[36]. Observe also that the theory of algebraic cobordism was achieved in [24], from the
geometric point of view, and that Marc Levine proved that the geometric cobordism coin-
cides with the homotopical one [22], that is the stable A1-homotopy groups of the algebraic
Thom spectrum MGL (introduced by V. Voevodksy).

In the present text, I won’t touch stable A1-homotopy theory at all. I will only ad-
dress the unstable aspects of the role A1-homotopy theory may play in algebraic geometry.
I will also only address the case where the base scheme is the spectrum of a (perfect) field k.

This text is organized as follows. In the next section I will outline the content of the
fundational paper [36], in which one of the main aim was exactly to make available the
Thom-Pontryagin construction in algebraic geometry. In the following section, I will ex-
plain quickly the content of [32], see also [31], giving the basic structure of the A1-homotopy
sheaves and of the corresponding Postnikov towers. In the last section I will deal with more
recent applications, developpments, and open problems without being exhaustive, mostly
dealing with smooth (projective) A1-connected k-schemes.

Acknowledgments. This text is obviously influenced by [36] in section 2 and by [32][31]
in section 3. In the last section 4 it is, at several places, influenced by two long collabo-
rations [7] [34] and discussions I had in the past decade(s) with Aravind Asok and Anand
Sawant.

Conventions. Everywhere in these notes, k denotes a fixed field, which will be assumed
to be perfect in section 3 and 4. Sometimes, at the end of these notes in section 4, k will
be even assumed to be algebraically closed. As we will never change the base field, we will
drop k from most of the standard notations. For instance, An means the n-th dimensional
affine space over k; Pn means n-th dimensional projective space over k, Gm, GLn as well.
Every object is, unless otherwise stated defined over k.

2. A1-homotopy theory

In this section we quickly outline the content of the fundational paper [36].

2.1. Spaces over k. We let Smk denote the category of smooth (separated) k-schemes
[18][26][27]. This is the perfect analogue in algebraic geometry over k of the category Diff .

In classical topology, the category Diff maps obviously to the category T op of topolog-
ical spaces and continuous maps by forgetting the structure. In fact, for nice differentiable

3for the author
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manifolds (as assumed above), the underlying topological space always admits a struc-
ture of C.W.-complex. So in that case, the corresponding homotopy category falls in your
hands: it is the category H whose objects are topological spaces admitting a structure of
C.W.-complex and homotopy classes of continuous maps between those.

One of the aims of [36] was precisely to define the analogue of the category of “topolog-
ical spaces”, and its associated homotopy category HA1(k) of spaces over k to which Smk

maps naturally. Of course that homotopy category had to satisfy some natural properties.
The invariance by A1, meaning that A1 should be contractible4. Moreover one of the most
important other natural property, in fact the only other one, was to make available the
Thom-Pontryagin construction.

A way to define a natural category of spaces containing your favorite given category of
geometric objects is given by Grothendieck theory of sheaves of sets for a given topology.
We choosed for reasons exactly related to the Thom-Pontryagin construction mentioned
above, to choose the Ninevich topology on the site Smk. Then we call a space over k a
simplicial sheaf of sets in the Nisnevich topology on the category Smk. We denote that
category by Space(k), thus Space(k) = ∆opShvNis(Smk) is the category of simplicial ob-
jects in the category ShvNis(Smk) of sheaves of sets in the Nisnevich topology on Smk.
For recollection on the Nisnevich topology see [36] for instance.

Let us just mention of few things. Call a commutative square in Smk:

V ⊂ Y
↓ ↓
U ⊂ X

an elementary distinguished square [36], or simply a Nisnevich square, if the right vertical
morphism f : Y → X is étale, U ⊂ X is an open immersion, V = f−1(U) is the inverse
image of U in Y , and if the induced morphism (by f)

(Y − V )red → (X − U)red

is an isomorphism of schemes. One may show (loc. cıt) that a functor F : (Smk)
op → Set

is a sheaf of sets in the Nisnevich topology if and only if for any elementary distinguished
square as above the induced map of sets:

F (X) ∼= F (Y )×F (V ) F (U)

is a bijection.

An example of elementary distinguished square is when Y → X is an open immersion
and {U, Y } form an open covering of X. In that case V is the intersection. In particu-
lar a sheaf of sets in the Nisnevich topology is a sheaf in the Zariski topology. But there

4as most of the cohomological invariants for smooth k-schemes are A1-invariant
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are many elementary distinguished square in which f is not an open immersion, see loc. cıt.

For any X ∈ Smk, the presheaf of sets on Smk:

HomSmk
(−, X) : (Smk)

op → Set , Y 7→ HomSmk
(Y,X)

is a sheaf of sets in the Nisnevich topology, called the sheaf represented by X. The induced
functor Smk → ShvNis(Smk) so obtained is a full embedding and we will not distinguish
between a smooth k-scheme X and its image in ShvNis(Smk), which will be thus simply
denoted by X. By considering a sheaf of sets as a constant simplicial object (where all
the morphisms in the simplicial structure are the identity), we see that Smk is also a full
subcategory of Space(k); again we will not distinguish bewteen a smooth k-scheme X and
its associated space in Space(k).

Now all the usual constructions in topology are available in Space(k). Quotients, push
forward, pull-back, etc.. For instance if U ⊂ X is an open immersion with X ∈ Smk, X/U
means the space obtained by collapsing U to the point Spec(k) = ∗. If G is a sheaf of
groups, for instance an algebraic group scheme in Smk, BG is the classifying space of G
obtained by the usual simplicial formulas (see [36] for instance).

2.2. Homotopy theories of spaces over k. The A1-homotopy category HA1(k) is ob-
tained from that the category of spaces by formally inverting the class WA1 of A1-weak
equivalences in the line of the model categories of Quillen [41]. The class WA1 of A1-weak
equivalences is formally generated by a standard process in localization of categories from
two types of morphisms in the category of spaces. The simplicial weak equivalences, de-
noted by Ws, and the collection of projections prX : X ×A1 → X , for any space X ; see [36].

Recall that for any point x ∈ X ∈ Smk, there is a functor “stalk at x” : ShvNis(Smk)→
Set which takes a sheaf of sets F to its stalk Fx, the colimit over the (opposite) category
of Nisnevich neighborhoods Ω → X of x of the sets F (Ω). A Nisnevich neighborhood
f : Ω → X of x being an étale morphism such that f−1(x) is a set with one point y ∈ Ω
such that the induced field extension κ(x) ⊂ κ(y) on the residue fields respectively of x
and y is an isomorphism.

The stalk at x of the affine line A1
k is the henselisation OhX,x of the local ring OX,x of X

at x. By abuse of notations we also sometimes write F (OhX,x) for the stalk at x of a sheaf F .

A morphism of spaces over k: f : X → Y is then called a simplicial weak equivalence, if
for any point x ∈ X ∈ Smk the induced map of simplicial sets

fx : Xx → Yx
is a weak equivalence, see [41]. We let Hs(k) be the category obtained by inverting the
simplicial weak equivalences, also called the simplicial homotopy category of spaces. This
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category was known for a long time, and was in fact almost already considered in [19],
as the notion of hypercovering, introduced by Verdier, is a particular case of a morphism
whose stalks are all trivial Kan fibrations of simplical sets.

The class of A1-weak equivalences WA1 can then be otained by a formal process to make
each projection X × A1 → X , for X ∈ Smk, an A1-weak equivalence. The class of mor-
phisms so obtained is denoted by WA1 , thus somehow WA1 is “generated” by Ws and the
projections X × A1 → X . Then the A1-homotopy category of spaces over k, denoted by
HA1(k), is the category obtained by inverting formally any morphism of WA1 in the category
of spaces. As clearly, by definition, any simplicial weak equivalence is an A1-equivalence,
that is Ws ⊂ WA1 , the category HA1(k) is also obtained from Hs(k) by inverting (the image
of) WA1 . One may show [36] that it is obtained from a simplicial model category structure
in the sense of [41][15].

The passage from Hs(k) to HA1(k) can be explained a bit further:

Proposition 2.1. [36] The obvious functor LA1 : Hs(k) → HA1(k) which inverts the A1-
weak equivalences in Hs(k) admits a right adjoint

HA1(k)→ Hs(k)

which is a full embedding.

Thus LA1 : Hs(k) → HA1(k) is the left adjoint to the full embedding HA1(k) ⊂ Hs(k).
For any space X , the unit of the adjunction is a morphism in Hs(k) of the form:

X → LA1(X )

A space X will be called A1-local if an only if the previous morphism (in Hs(k)): X →
LA1(X ) is a simplical weak equivalence. The space LA1(X ) is called the A1-localization of
X . Thus the A1-homotopy category HA1(k) can also be viewed as the full subcategory of
Hs(k) whose objects are the A1-local spaces. And in fact, by definition of WA1 , a space
X can be shown to be A1-local exactly if the morphism (in Hs(k)) : X → RHom(A1,X )
from X to the (derived) function space of morphisms from A1 to X is a simplicial weak
equivalence; see [36] where the formal construction of LA1 is explained.

Spaces which have isomorphic A1-localization are called (weakly) A1-equivalent. In the
sequel we will also use A1-equivalence to mean A1-weak equivalence.

Examples. 1) The projective line over k, P1 is A1-equivalent to the simplicial suspension
Σ(Gm) of the multiplicative group Gm = A1−{0} pointed by 1. The simplicial suspension
means the one obtained from the model category structure on spaces [41]. To see this
use the natural covering of P1 by its two (contractible) A1 ⊂ P1 and whose intersection is
exactly Gm. The cartesian commutative square:
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Gm ⊂ A1

↓ ↓
A1 ⊂ P1

is also cocartesian and is a homotopy push-out square as P1 is the union of the two A1’s.
Mapping it to the homotopy push-out square

Gm → ∗
↓ ↓
∗ → Σ(Gm)

defines an A1-equivalence in HA1(k) :

P1 ∼= Σ(Gm)

as the morphisms A1 → ∗ are A1-equivalences by definition!

2) In the same spirit, A2−{0} is A1-equivalent to the simplicial suspension Σ
(

(Gm)∧2
)

of the smash product of Gm by itself. To see that we observe that A2 − {0} is covered by
Gm × A1 and A1 ×Gm, whose intersection is Gm ×Gm. Thus the cartesian commutative
square:

Gm ×Gm ⊂ Gm × A1

↓ ↓
A1 ×Gm ⊂ A2 − {0}

is also a homotopy push-out square. Collapsing the A1 we obtain the so-called join of Gm

and Gm, which is well-known to be the simplicial suspension Σ
(

(Gm)∧2
)
; to see it, embed

the following trivial homotopy push-out square:

Gm ∨Gm ⊂ Gm

↓ ↓
Gm ⊂ ∗

into the above square, using the base point 1 in Gm, and take the quotient termwise in the
squares, to obtains an A1-weak equivalence:

A2 − {0} ∼= Σ
(

(Gm)∧2
)

More generally, using the same technics, one gets that, for n ≥ 1, An − {0} is A1-
equivalent to the (n− 1)-suspension Σn−1((Gm)∧n) of the n-th smash power of (Gm):

An − {0} ∼= Σn−1((Gm)∧n)
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2.3. A1-Homotopy sheaves and Postnikov towers.

From now on, if X and Y are spaces, we will simply denote by [X ,Y ] the set of mor-
phisms HomHA1 (k)(X ,Y) from X to Y in the A1-homotopy category, and if X and Y are

pointed, [X ,Y ]• will be the pointed set of morphisms in the pointed A1-homotopy category
HA1,•. The latter is the homotopy category obtained from the category of pointed spaces
by inverting pointed A1-weak equivalences between pointed spaces, that is just morphisms
of pointed spaces which are A1-weak equivalence after forgetting the base points.

Sheaf of A1-connected components

For a space X we let πA1

0 (X ) denote the associated sheaf (of sets) on Smk to the presheaf
U 7→ HomHA1 (k)(U,X ) = [U,X ]. This sheaf is called the sheaf of A1-connected components
of X .

A sheaf of sets F : (Smk)
op → Set is said to be A1-invariant if for any X ∈ Smk, the

map F(X)→ F(A1 ×X) induced by the projection A1 ×X → X is a bijection. A space
X such the canonical morphism:

X → πA1

0 (X )

is an A1-equivalence is said to be A1-discrete. In fact this implies automatically that the
sheaf πA1

0 (X ) is A1-invariant. A space X is said to be A1-rigid if the canonical morphism

X → πA1

0 (X ) is an isomorphism of sheaves; observe that automatically an A1-rigid space is
a sheaf of sets, with trivial simplicial structure, which is A1-invariant. For instance Gm, or
A1 minus n points (n > 0), or a smooth curve of genus > 0 is A1-rigid. Abelian varieties,
open subsets in those are A1-rigid.

Remark 2.2. Contrary to an old conjecture of myself, which was disproved recently by
Joseph Ayoub [8], the sheaf of sets πA1

0 (X ) is not A1-invariant in general. However, if X is

a smooth k-scheme, in all the known examples, πA1

0 (X) is an A1-invariant sheaf.

A space X is said to be A1-connected if πA1

0 (X ) is the point (the final object of the

category of sheaves of sets). For instance πA1

0 (P1) = πA1

0 (A1) = ∗; more generally a smooth
k-scheme which can be covered by affine spaces is A1-connected. For instance Pn.

If C is a smooth curve which is A1-connected, one may show that C is either isomorphic
to A1 or to P1.

A slightly more subtle example of A1-connected smooth scheme is An − {0} for n ≥ 2;
but this follows from the fact mentionned above, that it is A1-equivalent to Σn−1((Gm)∧n)
and as n− 1 ≥ 1, it is a simplicial suspension, which is always A1-connected.
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Observe that if a smooth scheme X is A1-connected, it must be irreducible, and it must
admit at least a rational k-point.

Higher A1-Homotopy sheaves

Let X be a pointed space, and n ≥ 1. We let πA1

n (X ) denote the sheaf on Smk associated
to the presheaf of groups

U 7→ [Σn(U+),X ]•

Here U+ mean the space obtained by adding a (disjoint) base point to the smooth k-scheme
U , and Σn is the n-th suspension functor.

This is a sheaf of groups for n = 1 and a sheaf of abelian groups for n ≥ 2. It is called
the n-th A1-homotopy sheaf of the pointed space X and is denoted by πA1

n (X ).

Unlike the πA1

0 , the higher A1-homotopy sheaves of a pointed space X have all the ex-
pected properties as we will see below.

Definition 2.3. 1) A sheaf of groups G is said to be strongly A1-invariant if for any
X ∈ Smk and any i ∈ {0, 1},

H i
Nis(X;G) ∼= H i

Nis(X × A1;G)

2) A sheaf of abelian groups M is said to be strictly A1-invariant if for any X ∈ Smk

and any i ∈ N,

H i
Nis(X;M) ∼= H i

Nis(X × A1;M)

Remark 2.4. 1) A non trivial result [32] when the field k is perfect is that a sheaf of
abelian groups which is strongly A1-invariant is automatically strictly A1-invariant. Thus
1) and 2) coincide when they both make sense at the same time, that is to say for sheaves
of abelian groups. The hard part of course is that 1) ⇒ 2). The proof of this fact was
recently simplified by J. Ayoub [9].

2) A constant sheaf of abelian groups, the sheaf represented by an abelian variety over
k, the multiplicative group Gm are examples of strictly A1-invariant sheaves.

3) Voevodsky’s A1-invariant sheaves with transfers [53][52] are also strictly A1-invariant
sheaves. In fact these were the basic first examples of strictly A1-invariant sheaves.

Theorem 2.5. [32] Assume k is a perfect field. Let X be a pointed space. Then the sheaf

πA1

1 (X ) is strongly A1-invariant, and the sheaves πA1

n , for n ≥ 2, are strictly A1-invariant.
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Remark 2.6. The proof of this fact was also recently simplified by J. Ayoub [9].

From the previous theorem follow formally some fundamental results. Using the same
procedure as above in the simplicial homotopy category of pointed spaces, one may de-
fine the simplicial homotopy sheaves πn(X ) of a pointed space. A space X is said to be
simplicially 0-connected if its simplicial sheaf π0(X ) of simplicial connected components is
reduced to a point. Then X (k) is non empty as X0 → π0(X ) is always an epimorphism, so
there are always k-rational points. One says moreover that X is (n− 1)-connected, n ≥ 1,
if for a chosen base point πi(X ) is trivial for i ≤ n− 1 (this property is independent of the
choice of a base point).

Corollary 2.7. Assume k is a perfect field. Let n ≥ 1, and let X be a simplicially (n−1)-
connected space. Then its A1-localization LA1(X ) is also (n− 1)-connected, that is to say

πA1

i (X ) = 0

for i ≤ (n− 1).

A space with the property of the corollary is said to be (n − 1)-A1-connected. For in-
stance the n-th suspension Σn(X ) of a pointed space X is (n−1)-A1-connected. Thus from
what we have seen above, An − {0} is always (n − 2)-A1-connected as it is A1-equivalent
to Σn−1((Gm)∧n). In the same way (P1)∧n is (n− 1)-A1-connected.

Let Gr(k) be the category of sheaves of groups on Smk in the Nisnevich topology, and
let GrA1(k) be its full subcategory consisting of strongly A1-invariant sheaves of groups.
The inclusion GrA1(k) ⊂ Gr(k) has a left adjoint Gr → GrA1(k), G 7→ GA1 . For G ∈ Gr,
GA1 is called (for obvious reasons) the free strongly A1-invariant sheaf of groups on G.
This functor is not hard to construct: one starts with the classifying space BG of G, then
GA1 = π1( LA1(BG)). In other words, GA1 = πA1

1 (BG).

In the same way, let Ab(k) be the category of sheaves of abelian groups on Smk in
the Nisnevich topology, and AbA1(k) be its full subcategory consisting of strictly A1-
invariant sheaves of abelian groups. The inclusion AbA1(k) ⊂ Ab(k) has also a left adjoint
Ab → AbA1(k), M 7→ MA1 . In fact from what we have seen above, it is the restriction
of Gr → GrA1(k), G 7→ GA1 to the category Ab(k). For M ∈ Ab(k), the sheaf MA1 is
called free strictly A1-invariant sheaf of abelian groups on M . It is also the free strongly
A1-invariant sheaf of groups on M .

Then it is rather formal to obtain:

Corollary 2.8. Assume k is a perfect field. Let n ≥ 1 and let X be a simplicially (n− 1)-

connected space. Then for n = 1, πA1

1 (X ) is the free strongly A1-invariant sheaf of groups
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on π1(X ) and for n ≥ 2, πA1

n (X ) is the free strictly A1-invariant sheaf on the sheaf πn(X ).

From the theorem 2.5 one proves the two corollaries by induction on n. To start: if X
is a 0-simplicially connected pointed space, then πA1

0 (X ) = ∗ as well as π0(X )→ πA1

0 (X ) is
always an epimorphism. This statement is the first corollary for n = 1. Then one formally
deduce that for G a strongly A1-invariant sheaf of groups5,

[X , BG]• ∼= HomHs,•(X , BG) ∼= HomGr(k)(π1(X ), G) ∼= HomGr(k)((π1(X ))A1 , G)

and also

[X , BG]• ∼= [LA1(X ), BG]• ∼= HomGr(k)(π
A1

1 (X ), G)

Thus we deduce that (π1(X ))A1 → πA1

1 (X ) is an isomorphism. This is the second corollary

for n = 1. Then we conclude also that if X is 1-simplicially connected, πA1

1 (X ) is trivial,
which is the first corollary for n = 2. And so on, we may go up by an easy induction, using
Eilenberg-MacLane spaces6.2

An important application of the theorem 2.5 and its two corollaries is for n ≥ 2 for the
space An − {0}, that is the affine space of dimension n minus the origin. We have seen
above that An − {0} is A1-equivalent to Σn−1((Gm)∧n) and is thus (n − 2)-A1-connected

by the first corollary. The second corollary tells us that πA1

n−1(An − {0}) is the free strictly
A1-invariant sheaf on πn−1(Σn−1((Gm)∧n)). We will describe these below in the next sec-
tion.

Remark 2.9. For X a space, we may define the simplicial Postnikov tower (see [36] for
instance)

X → · · · → P n(X )→ P n−1(X )→ . . . P 1(X )→ P 0(X ) = π0(X )

so that the stalks at each point is the Postnikov tower of the simplicial set stalk of X at the
given point. It is known (loc. cıt.) that X is the homotopy inverse limit of its Postnikov
tower in Space(k). It follows easily from the theorem 2.5 that for X pointed connected, the
whole Postnikov tower X → · · · → P n(X )→ P n−1(X )→ . . . P 1(X )→ P 0(X ) = π0(X ) =
∗ consists of A1-local spaces.

It would be interesting to know whether more generally, for X an A1-local space with
π0(X ) = πA1

0 (X ) an A1-invariant sheaf of sets, the whole Postnikov tower X → · · · →
P n(X )→ P n−1(X )→ . . . P 1(X )→ P 0(X ) = πA1

0 (X ) also consists of A1-local spaces.

5one uses the formal fact that BG is A1-local if and only if G is strongly A1-invariant
6and the fact that if M is strictly A1-invariant, K(M,n) is A1-local for any n
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3. A1-algebraic topology

In this section, the base field k is always assumed to be a perfect field. So that all the
results mentionned in the previous part are available.

3.1. The motivic Brouwer degree and Milnor-Witt K-theory.

Let n ≥ 1 be an integer. The smooth k-scheme An − {0} should be thought of as an
algebraic “sphere”. Through a complex embedding of k it becomes Cn − {0} which is
homotopy equivalent to the unit sphere in R2n, that is S2n−1. Through a real embedding
it maps to Rn − {0} which homotopy equivalent to Sn−1.

For n = 1, A1 − {0} = Gm is an A1-rigid space, its A1-homotopy type is the πA1

0 (Gm) =
Gm itself, and there are no other higher A1-homotopy sheaves.

For n ≥ 2, we have seen above that An − {0} is A1-equivalent to Σn−1((Gm)∧n) and as
the latter is (n− 2)-simplicially connected, both are (n− 2)-A1-connected.

Let SL2 ⊂ GL2 be the special linear subgroup, kernel of the determinant GL2 → Gm.
The morphism SL2 → A2 − {0} taking an element to its first column is easily seen to be

an A1-equivalence7. It follows that πA1

1 (A2 − {0}) is a sheaf of abelian groups, and as it is
strongly invariant, we know it is strictly A1-invariant by remark 2.4. Thus by corollary 2.8
for n ≥ 2, πA1

n−1(An − {0}) is the free strictly A1-invariant sheaf associated to Z((Gm)∧n),
the free sheaf of abelian groups on the sheaf of pointed sets (Gm)∧n (where the base point
of Gm is 1).

Remark 3.1. Using similar reasoning, and standard results, it is not hard to prove that
for n ≥ 2, πA1

n ((P1)∧n) is canonically isomorphic to πA1

n−1(An−{0}) as (P1)∧n is canonically
A1-equivalent to Σ(An − {0}).

We may summarize what precedes as follows:

Theorem 3.2. For n ≥ 2, πA1

n−1(An − {0}) = πA1

n ((P1)∧n) is the free strictly A1-invariant
sheaf of abelian groups Z((Gm)∧n)A1 generated by the pointed sheaf of sets (Gm)∧n.

This means exactly the following. For any n ≥ 2 and for any strictly A1-invariant sheaf
of abelian groups M , one has the following property. Any morphism of pointed sheaves of
sets:

(Gm)∧n →M

7by using the covering of A2 − {0} by two open subsets that we mentionned above
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“extends” uniquely to a morphism of strictly A1-invariant sheaves

Z((Gm)∧n)A1 →M

Surprisingly it is possible to describe these sheaves rather explicitely.

We first need to introduce a purely algebraic object, for any commutative field F , called
its Milnor-Witt K-theory. This was introduced by the author, but the following very sim-
ple description, which plays a fundamental role in the theory, was found in collaboration
with Mike Hopkins:

Definition 3.3. Let F be a commutative field. The Milnor-Witt K-theory KMW
∗ (F ) of F

is the graded associative ring with units generated by the symbols [a], for each unit a ∈ F ,
of degree +1, and the symbol η of degree −1 subject to the following relations:

(1) (Steinberg relation) For each a ∈ F× − {1}, one has [a].[1− a] = 0;

(2) For each pair (a, b) ∈ (F×)2 one has [ab] = [a] + [b] + η.[a].[b];

(3) For each a ∈ F×, one has [a].η = η.[a];

(4) η2.[−1] + 2.η = 0

The fourth relation sounds very strange a prıorı. For a ∈ F×, set < a >:= η.[a] + 1 ∈
KMW

0 (F ). Set h := 1+ < −1 >, this will be later identified as the hyperbolic plane. Then
h = η.[−1] + 2 and thus the relation (4) can be rewritten as

η.h = 0

Some simple observations. Given a finite sequence (a1, . . . , an) ∈ (F×)n of units in
F we may form the product [a1] . . . [an] ∈ KMW

n (F ). This induces the symbol map
((Gm)∧n)(F ) = (F×)∧n → KMW

n (F ) for n ≥ 0. Here we use the fact that [1] = 0 [32].

The quotient KMW
∗ (F )/η by η is clearly the Milnor K-theory KM

∗ (F ) [28].

One can check by hands that the commutative ring KMW
0 (F ), is generated by the sym-

blols < a > and satisfy exactly the presentation of the Grothendieck-Witt ring GW (F )
of symmetric bilinear non degenerate forms described in [30]. This is true over any field,
even in characteristic 2; see [32] for more details.

Thus there is an identification of rings KMW
0 (F ) = GW (F ). As η.h = 0, multiplication

by η : KMW
0 (F ) = GW (F )→ KMW

−1 (F ) induces a morphism GW (F )/h→ KMW
−1 (F ). Now

GW (F )/h is well known to be the Witt ring W (F ) of F , and one may check in fact that
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multiplication by ηn induces for any n ≥ 1 and isomorphism:

W (F ) ∼= KMW
−n (F )

Remark 3.4. Similarly one may introduce the Witt K-theory of F asKW
∗ (F ) := KMW

∗ (F )/h.
Clearly KW

∗ (F ) = W (F ) in degree ∗ ≤ 0. Using the Milnor conjectures [28] on quadratic
forms proved in [37] one may prove that the multiplication by ηn induces for each n ≥ 0
a monomorphism KW

n (F ) ⊂ KW
0 (F ) = W (F ) whose image is the n-th power In(F ) of the

fundamental ideal I(F ) of the Witt ring, that is the kernel of the mod 2 rank epimorhism
W (F )→ Z/2.

The Milnor conjecture previously mentioned in particular claims that the canonical
epimorphism

KM
n (F )/2→ In(F )/In+1(F )

is in fact an isomorphism for each n and one may deduce that the canonical morphism

KMW
n (F )→ In(F )×In(F )/In+1(F ) K

M
n (F )

is an isomorphism for all n. Observe that this also makes sense for n < 0 as KM
n (F ) = 0,

as well as In(F )/In+1(F ) and the right hand side is just W (F )

Quickly said, the Milnor-Witt K-theory of F is the fiber product of the Milnor K-theory
KM
∗ (F ) and the Witt K-theory KW

∗ (F ) over KM
∗ (F )/2 = KW

∗ (F )/η.

These results won’t be used in the sequel.

One technical step, explained in details in [32] is that one may construct for any n ∈ Z a
canonical strictly A1-invariant sheaf KMW

n of “unramified” Milnor-Witt K-theory in weight
n whose stalk a the generic point ξ ∈ X ∈ Smk, X irreducible with function field F , is the
group KMW

n (F ). Moreover the restriction morphism KMW
n (X) → KMW

n (F ) = KMW
n (F )

is injective, with image explicitely described inside KMW
n (F ). Of course for n ≥ 1, the

canonical symbol map in Milnor-Witt K-theory of fields mentioned above extends to a
morphism of pointed sheaves of sets:

(Gm)∧n → KMW
n

and one of the main computations in A1-algebraic topology is the fact that:

Theorem 3.5. [32] For each n ≥ 1, the morphism (Gm)∧n → KMW
n is the universal one

to a strictly A1-invariant sheaf of abelian groups.

At once we get the following consequence:
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Corollary 3.6. For any n ≥ 2, we have canonical isomorphisms

πA1

n−1(Σn−1((Gm)∧n)) ∼= πA1

n−1(An − {0}) ∼= πA1

n ((P1)∧n) ∼= KMW
n

An important and simple construction which naturally occurs when manipulating strictly
A1-invariant sheaves M is the contraction M 7→ M−1, first used a lot by V. Voevodsky
[52][53]. Roughly speaking M−1 is the sheaf of pointed Gm-loops in M . It has the property
that for any X ∈ Smk, there is a functorial splitting M(Gm ×X) = M(X)⊕M−1(X).

It is not hard to check (see [32]) that for any n, there is an canonical identification
(KMW

n )−1 = KMW
n−1 . Moreover, playing with the definitions and the previous results, it is

not hard to check that for any M ∈ AbA1(k), the group of morphisms HomAbA1 (k)(K
MW
n ,M)

is canonically isomorphic to M−n(k), for n ≥ 1, where M 7→M−n is the iteration of n times
the contraction onM . In particular there is a canonical identificationHomAbA1 (k)(K

MW
n ,KM

n ) =

KMW
0 (k) = GW (k). From the computation above 3.6 we get the so called motivic version

of the theory of the Brouwer degree:

Corollary 3.7. (Motivic Brouwer degree). For any n ≥ 2, there exists a “degree” isomor-
phism

[(An − {0}), (An − {0})] ∼= [(P1)∧n, (P1)∧n] ∼= GW (k)

For n = 1 it is an epimorphism

[P1,P1] � GW (k)

with kernel isomorphic to k×2.

This computation reflects the two possible topological intuitions that arise in A1-homotopy
theory. Given a smooth k-scheme X and a real embedding k ⊂ R, one may consider the
topological space X(R) of real points with it classical topology; it is a differentiable mani-
fold. One may also consider the topological space X(C) of complex points with it classical
topology; it is also a differentiable manifold, in fact a complex analytic manifold as well.

We already mentionned above, that in the case of the algebraic sphere An − {0}, the
real and complex realizations are spheres of different dimensions. So on one hand we get a
complex Brouwer degree, an integer, independent in fact of the choice of the real embedding,
and an real Brouwer degree, also an integer which now depends on the real embedding.
The above formula is taking care of all these phenomena at the same time. This is reflected
by the cartesian square mentioned above in degre 0 for Milnor-Witt K-theory:

GW (k) → Z
↓ ↓

W (k) → Z/2
The top horizontal morphism corresponds to the complex Brouwer degree, independ of
any embedding, and the left vertival one takes care of the real Brouwer degrees: each real
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embedding k ⊂ R defines a signature homomorphism W (k)→ Z which composed with the
morphism GW (k) � W (k) gives the corresponding real Brouwer degree.

The motivic Brouwer degree has been used to enrich a lot of geometric computations,
leading to quadratic enumerative geometry where instead of usual integers one gets a qua-
dratic refinement in GW (k); see for instance [23][38]. See also [12] for an other way of
using GW (k) as an enrichement of Z.

3.2. A1-coverings and πA1

1 .

An A1-covering Y → X is a morphism which has the unique right lifting property for
A1-trivial cofibrations. This means the following. For any commutative square of spaces
of the form

A → Y
↓ ↓
B → X

where A → B is a monomorphism and an A1-equivalence, also called an A1-trivial cofibra-
tion, there exists a unique morphism B → Y which let the whole diagram commutative.

This definition is analogous to the classical definition of coverings, for nice spaces, involv-
ing the so called unique lifting property of homotopies. The πA1

1 and the theory A1-coverings
of a given A1-connected space are connected in a similar way as in the classical theory, as
we will see below.

A finite étale covering Y → X between smooth k-varieties in characteristic 0 is an
A1-covering. A Galois étale covering Y → X with Galois group of order prime to the
characteristic of k is an A1-covering.

A Gm-torsor Y → X is an A1-covering ! Remember that through a real embedding of
k, R× is up to homotopy {±1} and a Gm-torsor becomes up to homotopy a Z/2-covering.

More generally if G is a strongly A1-invariant sheaf of groups, any G-torsor (in the Nis-
nevich topology) is an A1-covering.

The following can be proved along the same lines as the classical result:

Theorem 3.8. [32] Any pointed A1-connected space X admits a unique pointed A1-covering

X̃ → X with X̃ simply A1-connected, up to canonical isomorphism. Forgetting the base

points, the morphism X̃ → X is a torsor under the strongly A1-invariant sheaf of groups
πA1

1 (X ). If CovA1(X ) denotes the category of A1-coverings of X , then for any A1-coverings
π : Y → X , if Γπ ⊂ Y denotes the inverse image of the base point x0 of X , then the map

HomCovA1 (X )(X̃ ,Y)→ Γπ(k) ,
(
φ : X̃ → Y

)
7→ φ(x̃0)
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(where x̃0 is the chosen base point of X̃ ) is a bijection. More generally, there is a canonical

right action of πA1

1 (X ) on the fiber Γπ ⊂ Y of π at x0 and this action induce an equivalence
of categories:

CovA1(X ) ∼= πA1

1 (X )− ShvA1(k)

where the right hand side is the category of A1-invariant sheaves of sets endowed with a
right action of πA1

1 (X ).

Here are a some examples:

Theorem 3.9. Let n ≥ 2. The canonical Gm-torsor

(An+1 − {0})→ Pn

is the universal covering of Pn and defines an isomorphism

πA1

1 (Pn) ∼= Gm

Indeed the morphism is a Gm-torsor (in fact already in the Zariski topology) and we
have seen that if n ≥ 2, (An+1 − {0}) is simply A1-connected.

Observe however that the Gm-torsor (A2 − {0}) → P1 is not the universal covering of

P1 because A2 − {0} is not simply A1-connected, as its πA1

1 was seen to be isomorphic to

KMW
2 . We will describe the πA1

1 (P1) below.

We already observed that the projection SL2 → (A2 − {0}) is an A1-equivalence, so

πA1

1 (SL2) ∼= KMW
2 . We have the following more precise result:

Theorem 3.10. The universal A1-covering of SL2 admits a group structure and is given
by a central extension of the form

0→ KMW
2 → S̃L2 → SL2 → 1

We already know the last affirmation of the A1-fundamental sheaf of groups of SL2
∼=

(A2−{0}). One has just to observe, like in classical topology, that the universal A1-covering
of an A1-connected sheaf of groups admits a canonical and unique group structure which
turns the projection into a group homomorphism. The fact that the extension is central

can also be deduced along the same lines: quickly said the action of KMW
2 on S̃L2 by

conjugations defines automorphisms S̃L2
∼= S̃L2 of covering of SL2. As they all take the

base point (which is the 0 of KMW
2 ) to itself, they all are the identity.

Remark 3.11. This statement has been generalized in [34] to any A1-connected split semi-
simple algebraic group. In fact we observed first that a split semi-simple algebraic group G
is A1-connected if and only if it is simply connected in the sense of algebraic group theory
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[45]. We then proved in loc. cıt. that for G a split, semi-simple, almost simple, algebraic

group, πA1

1 (G) ∼= KMW
2 for G of symplectic type, and πA1

1 (G) ∼= KM
2 for G not of symplectic

type.

To conclude this section, we want to describe πA1

1 (P1). To do this we use the A1-fibration
sequence

A2 − {0} → P1 → P∞ ∼= B(Gm)

which, using the long exact sequence of A1-homotopy sheaves, gives an exact sequence of
the form:

1→ KMW
2 → πA1

1 (P1)→ Gm → 1

This extension is central. Indeed, as we already observed above, the projection to the first

column SL2
'→ A2 − {0} is an A1-equivalence. If one embedds Gm ⊂ SL2 as diagonal

matrices, one gets a fibration sequence:

SL2/(Gm)→ B(Gm)→ BSL2

Then the induced morphism SL2/(Gm) → P1 is an A1-weak equivalence; now BSL2 is

simply A1-connected and its πA1

2 is KMW
2 . We thus get a morphism in HA1(k) : B(Gm)→

K(KMW
2 , 2), whose homotopy fiber is B(πA1

1 (P1)). And the fibration sequence

B(πA1

1 (P1))→ B(Gm)→ K(KMW
2 , 2)

induces with the exact sequence of A1-homotopy sheaves, a central extension, which is
exactly the above one.

The epimorhism of groups πA1

1 (P1)→ Gm admits a canonical section of pointed sheaves

of sets σ : Gm → πA1

1 (P1) : it is the universal morphism expressing πA1

1 (P1) as the free
strongly A1-invariant sheaf of groups on Gm (see 2.8). This explain why the long exact
sequences considered above are in fact short.

Then one may check [32] that the morphism Gm ∧Gm → KMW
2 induced by the formula

σ(U).σ(V ).σ(U.V )−1, which exactly measures the defect of σ to be a morphism of sheaves
of groups, is the universal symbol !

One may deduce for instance that the commutator [σ(U), σ(V )] ∈ KMW
2 is h.[U ].[V ] and

in particular one sees that πA1

1 (P1) is never a sheaf of abelian groups.

There will be more examples of computations of A1-fundamental groups in the last sec-
tion below.
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3.3. A1-homotopy classification of algebraic vector bundles.

It is classical that the set Φn(X) of isomorphism classes of rank n algebraic vector bun-
dles over X ∈ Smk is canonically in bijection with the set H1(X;GLn) of GLn-torsors
(either in the Zariski, Nisnevich or étale topology) over X.

Let Grn = ∪iGrn,i be the infinite Grassmanian, that is the union of the finite Grasman-
nians Grn,i of n-planes in the affine space An+i; it is in fact the same as the homogeneous
scheme GLn+i/Bn,i, with the Bn,i ⊂ GLn+i the subgroup of matrices of the form:(

M P
0 N

)
with M ∈ GLn, N ∈ GLi, and P an arbitrary n× i matrix.

It is well known that the quotient Vn,i := GLn+i/B
′
n,i , where B′n,i ⊂ Bn,i is the subgroup

such that M = Idn (as above), is a highly A1-connected space, as it is, up to A1-homotopy,
a successive fibration of spheres of the form GLn′/GLn′−1

∼=A1

(
An′ − {0}

)
, for n′ ∈

{i+1, . . . i+n}. Thus the union of the Vn,i over i is A1-equivalent to the point. Now there
is an obvious free action of GLn on Vn,i which makes the diagram:

GLn → Vn,i → Grn,i

a GLn-torsor on Grn,i. Thus setting Vn := ∪iVn,i we see that

GLn → Vn → Grn

is a GLn-torsor over Grn, with Vn weakly A1-contractible. It follows that Grn is A1-
equivalent to the classifying space BGLn, generalizing the fact that P∞ = ∪i Pi is A1-
equivalent to BGm.

Let T → X be a GLn-torsor on X ∈ Smk. The morphism:

T ×GLn Vn → T/GLn = X

is an A1-equivalence, as it is an A1-fibration with A1-contractible fibers (Vn indeed). Thus
by inverting that A1-equivalence the “classifying” diagram:

T ×GLn Vn → Vn/GLn = Grn
↓
X

defines a classifying morphism in HA1(k):

X → Grn

an element of [X,Grn].
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Theorem 3.12. ([32][5]) For any integer n ≥ 1 and any affine smooth k-scheme X the
previous map

Φn(X) = H1(X;GLn)→ [X,Grn]

is a bijection.

Remark 3.13. It is well-known that this map can’t be a bijection in general because
the functor X 7→ Φn(X) is not A1-invariant in general. Even for X = P1, the map
Φ2(P1) → Φ2(A1 × P1) is not a bijection. Now the right hand side X 7→ [X,Grn] is tau-
tologically A1-invariant. Over projectives spaces (or schemes) the classification of vector
bundles is a very difficult subject, much more complicated than over affine smooth schemes.

The proof of theorem 3.12 uses amongst others the fact that for any n and for any
smooth affine k-scheme X the projection X × A1 → X induces indeed a bijection

Φn(X) ∼= Φn(X × A1)

This is due to Lindel [25] in this generality, after the fundamental cases obtained by Quillen
[41] and Suslin [46] on the Serre problem, when X is some affine space Ad.

The theorem 3.12 was first proven in [32] for n ≥ 3 (the case n = 1 was already known
in [36]) and was proven in a much greater generality and the proof drastically simplified
in [5] [6].

One may deduce from theorem 3.12 some nice applications, which have had a lot of
further developments. For instance, one observes that there is an A1-fibration sequence of
pointed spaces:

An − {0} → Grn−1 → Grn
or equivalently

An − {0} → BGLn−1 → BGLn

where the morphism BGLn−1 → BGLn is obtained by the inclusion of groups GLn−1 ⊂

GLn, M 7→
(
M 0
0 1

)
.

For a given smooth affine k-scheme X, it follows that the map induced by the inclusion
above GLn−1 ⊂ GLn

Φn−1(X)→ Φn(X)

is the map taking a vector bundle ξ of rank n− 1 on X to the direct sum ξ ⊕ ε1, with ε1

the trivial line bundle A1 ×X over X.

Thus, for affine smooth k-schemes, we may study the map “adding the trivial line bundle”
by obstruction theory using the A1-fibration sequence :

An − {0} → BGLn−1 → BGLn
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and theorem 3.12,

The problem here is that πA1

0 (GLn) = Gm (through the determinant), so the A1-
connected space BGLn is not simply A1-connected. In general the obstruction involves
twisted cohomology groups. If ξ is a rank n algebraic vector bundle over X, and fξ :
X → BGLn classifies ξ, the composition fξ : X → BGLn → BGm is an element in
Pic(X) = [X,BGm] which is its first Chern class c1(ξ), or determinant line bundle Λn(ξ).
In case ξ is oriented in the sense that c1(ξ) = 0, it follows that ξ is actually classified by a
morphism

fξ : X → BSLn

Now the fibration sequence

An − {0} → BSLn−1 → BSLn

is a bit simpler to use because the base space BSLn is now simply A1-connected, and the
obstruction theory easier to explain and to use. A standard use of the Postnikov tower of
the morphism BSLn−1 → BSLn leads to the following.

The fact that An − {0} is (n− 2)-A1-connected and πA1

n−1(An − {0}) = KMW
n show that

the first non trivial stage of the Postnikov tower of the morphism BSLn−1 → BSLn is a
morphism

En : BSLn → K(KMW
n , n)

where K(KMW
n , n) is the Eilenberg-MacLane space which is (n−1)-A1-connected and with

πA1

n equal to KMW
n . The homotopy fiber of that morphism is the second non-trivial stage

of the Postnikov tower.

The Euler class e(ξ) ∈ Hn(X;KMW
n ) of ξ is the composition

X → BSLn → K(KMW
n , n)

of En and fξ. Now standard obstruction theory gives:

Theorem 3.14. (Theory of the Euler class) [32][31] Assume8 n ≥ 2. Let X be smooth
affine over k, and let ξ be an oriented algebraic vector bundle of rank n (Λn(ξ) is trivialized).
If dimension X ≤ n:(

ξ split off a trivial line bundle
)
⇔
(
e(ξ) = 0 ∈ Hn(X;KMW

n )
)

The groups Hn(X;KMW
n ) are now called Chow-Witt groups and were defined first in

[10], as well as a very concrete version of e(ξ). These groups have been extensively studied
since then, see for instance the survey [16]. There the twisted Euler class for non orientable

8In the references [32][31] n was supposed to be ≥ 4 as theorem 3.12 was not yet known for n = 2
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vector bundle ξ of rank n with determinant λ = Λn(ξ) was defined in details in the twisted
Chow-Witt group Hn(X;KMW

n (λ)) and the generalisation of the previous theorem in that
generality follows along the same lines by obstruction theory. See also [3] and [4] for more
complete surveys of the actual state of the art and recent developpments.

Observe that the theorem applied in case dim(X) < n implies that any ξ splits off a
trivial line bundle, a result which was long known over noetherian affine schemes as Bass-
Serre Theorem [44].

The theory of the Euler class is thus the first obstruction that appears to split off a
trivial line bundle.

Amazingly, Asok and Fasel [3] proved that one may actually use this approach to attack
the problem one step further: when can one split a trivial line bundle for a rank (n−1) vec-
tor bundle over a dimension n smooth affine scheme? In the obstruction theory approach,
one has to deal now with the first two non trivial A1-homotopy sheaves of An − {0}. The
first one is well understood in the Corollary 3.6 to our main computation, and was just
used for the proof of the previous theorem. The second A1-homotopy sheaf, becomes stably
the first stable A1-homotopy group of the sphere spectrum; it was computed recently in
[43]. More recently Asok, Bachmann and Hopkins proved some important new result con-
cerning an analogue of the Freundenthal suspension theorem involving the smash product
with Gm [2], which enabled them, using the results of Asok-Fasel just mentioned, to get
enough informations on the second non trivial A1-homotopy sheaf of An − {0} to prove a
conjecture of Murthy. See the talks by Asok and Hopkins at PCMI 2024 [1] [21].

Another very interesting area related to the previous one is the study of the geometric
classifying space of reductive groups. The situation is more complicated here, as the geo-
metric classifying space of a reductive group is in general not A1-connected. This is related
to the theory of cohomological invariants [17]. The Motivic Cohomology of these and their
Motives is still mysterious, althought there has been a lot of results, see for instance [49]
[50].

3.4. Geometric A1-Topology.

We want to describe shortly some works, mostly in progress, which show the potentiel
use of A1-homotopy theory to the study of smooth projectives schemes over a field, in
analogy to what we mentioned in the classical case how geometric topology can study
compact differentiable manifolds. These smooth projectives schemes over a field are really
the analogues of compact differentiable manifolds.

A1-connectedness.
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First we deal with the notion of A1-connectedness. In classical algebraic topology, a
compact differentiable manifold is the disjoint union of finitely many connected compact
differentiable manifolds. The situation in algebraic geometry is more complicated. But we
will describe the smooth projective k-schemes which are A1-connected. Recall that a space
is said to be A1-connected if its πA1

0 is trivial. As for any space X the morphism X → πA1

0

is always an epimorphism of sheaves and as the point ∗ = Spec(k) is the spectrum of a
field, it follows9 that X (k) 6= ∅. We already saw above examples of A1-connected spaces.

A more naive notion is the notion of being A1-chain connected. A smooth k-scheme
X is said to be A1-chain connected if for any finite type field extension K of k any two
elements of X(K), the set of K-rational points of X, or k-morphisms Spec(K)→ X, can
be connected by a finite chain of k-morphisms A1

K → X, in the obvious way. As we are
assuming that k is a perfect field, a finite type field extension K of k is always the function
field of an integral smooth k-scheme. It is known [33] that an A1-chain connected smooth
k-scheme X (or space) is A1-connected. In [7] we proved the converse when X is smooth
proper over k.

The only A1-connected proper smooth curve is P1. The only A1-connected smooth curves
are A1 and P1.

For higher dimensional smooth schemes it is more complicated and interesting. In [7] we
proved that over an algebraically closed field k, a smooth projective surface is A1-connected
if and only if it is rational. It means basically that such a surface can be reached from P2

by a finite sequence of blowing up a point or blowing down a rational curve.

However, it is known that in general, over perfect fields, there are examples of A1-
connected smooth projective surfaces which are not rational, for instance10 some conic
bundle over P1 are sometimes A1-connected but not rational [11]. In fact if a smooth pro-
jective surface over k is A1-connected, it is either rational, or a conic bundle over P1 [35];
this fact uses all the known results on smooth projective surfaces over a perfect field (see
[35] for a survey of what we need).

In [7] we proved that if one blows up a closed smooth k-scheme in a smooth projective
scheme X and if Y is the blow-up, then ( X is A1-connected ) ⇔ (Y is A1-connected).
This is not so hard using the criterium mentioned above that for smooth projective, A1-
connected is equivalent to being A1-chain connected. Using this we could prove that
in characteristic 0, any rational smooth projective scheme is A1-chain connected, so A1-
connected.

9Because we are using the Nisnevich topology. It would be wrong in the étale toplogy
10This was mentioned to us by Aravind Asok
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Here is an easy observation which explains a huge difference between algebraic geom-
etry and algebraic topology; a smooth projective k-scheme of dimension > 0 which is
A1-connected is never simply A1-connected:

Lemma 3.15. Let X be a smooth projective scheme over k. If X is A1-connected, and of
dimension > 0, the sheaf πA1

1 (X) at any (rational) point is non trivial.

Proof. It is well known that if dim(X) > 0, then Pic(X) 6= 0. To see that, embedd X into
some PN . Then the pull-back L of O(1) through the closed embedding X ⊂ PN is non
trivial. Indeed L is generated by N + 1-sections, so there is an epimorphism

(OX)N+1 � L
If L ∼= OX is trivial, then any global section of L on X is constant, and there is no
epimorphism of OX-modules (OX)N+1 � L except if dim(X) = 0.

Now we proved in [7] that if X is A1-connected, for any base (rational) point of X, there

is an isomorphism bewteen Pic(X) and HomGr(π
A1

1 (X),Gm). So clearly, if Pic(X) 6= 0,

the πA1

1 (X) has to be non trivial. �

πA1

1 of smooth A1-connected k-schemes

The previous result shows why the study of smooth projective A1-connected k-scheme
from the A1-homotopical point of view is much less intuitive than the study of compact
differential manifolds, because the latter was understood first in case of highly connected
compact differential manifolds.

Let us give now some examples, some computations, and some facts concerning the
πA1

1 (X) of A1-connected smooth projective schemes X.

The πA1

1 (P1) was already described above, it is a very explicit central extension of Gm

by KMW
2 , and is a non commutative sheaf of groups. For n ≥ 2 we also have seen that

πA1

1 (Pn) = Gm.

As we seen in the proof above, given an A1-connected smooth projective scheme X, for
any choice of base (rational) point there is an isomorphism Pic(X) ∼= HomGr(π

A1

1 (X),Gm.
It follows that if we blow up a closed smooth k-scheme in X and if Y is the blow-up,
then it is easy to check that (for any convenient choice of base point) πA1

1 (Y )→ πA1

1 (X) is

an epimorphism. And it follows that πA1

1 (Y ) is strictly bigger than πA1

1 (X) as the Picard
group of Y is Pic(X)⊕Z. In the case we blow up a rational point x ∈ X(k) the diagram:

E ⊂ Y
↓ ↓
{x} ⊂ X
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in which E is the exceptional divisor of the blow up, thus isomorphic to Pn−1 with n =
dim(X), is very often homotopy cocartesian. So the Van-Kampen theorem tells us that

πA1

1 (X) is the cokernel in the category of strongly A1-invariant sheaves of groups of the
non trivial morphism

πA1

1 (Pn−1) = πA1

1 (E)→ πA1

1 (Y )

In general there is no simple formula.

Let us try to understand the simplest possible cases, the smooth projective A1-connected
surfaces; remember that over any field a smooth projective A1-connected curve is isomor-
phic to P1 so everything is known. In general, if k is not assumed to be algebraically
closed, we have mentioned that there are examples of smooth projective A1-connected sur-
faces which are conic bundles over P1, and which are not rational. In [35] one may find
some further discussion of rational smooth projective k-surfaces for k perfect. We will here
assume for simplicity that the field k is now algebraically closed so that all the results and
ideas in [7] can be used.

In that case we know that the smooth projective A1-connected surfaces are exactly
the rational ones. There is a list of so called minimal models, consisting of P2 and the
Hirzebruch surfaces Σn, n ∈ N, so that any smooth projective A1-connected surface X
is obtained by inductively blowing up a closed point finitely many times from one of the
minimal model from that list.

Recall that O(n) denotes the n-th tensor product of the canonical line bundle O(1) on
P1. Then Σn is equal to P(O ⊕ O(n)) the projective bundle of the rank 2 vector bundle
O ⊕O(n) on P1, for n ∈ N.

The πA1

1 of Hirzeburch surfaces was describe in [7], using the A1-fibration sequence

P1 → Σn → P1

which induces a long exact sequence in A1-homotopy sheaves. In that case, as the morphism
Σn → P1 has a section, we see that the induced diagram

1→ πA1

1 (P1)→ πA1

1 (Σn)→ πA1

1 (P1)→ 1

is a split short exact sequence, so the sheaves πA1

1 (Σn) are semi-direct products. We proved
that for n even the semi-direct product is actually a product. For instance Σ0 is P1 × P1.
For n odd the sheaves πA1

1 (Σn) are all isomorphic to an explicit semi-direct product through

a non trivial tautological operation of πA1

1 (P1) on itself. In fact we proved:

Theorem 3.16. [7] For n ≥ 0, the Σn’s are distinguished up to A1-equivalence by their πA1

1 ;

in other words Σn and Σm are A1-homotopy equivalent if and only πA1

1 (Σn) and πA1

1 (Σm)
are isomorphic (and the latter occurs if and only if n and m have the same parity).
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In fact we proved slightly more: Σn and Σm are A1-homotopy equivalent if and only if
Σn and Σm are A1-h-cobordant [7]. We conjectured then that this holds in general: two
smooth projective A1-connected surfaces are A1-homotopy equivalent if and only if are
A1-h-cobordant. A proof of that conjecture was only sketched there, but it is known in a
big proportion of cases (depending on the configurations of points one blows up).

Recall the following classical result of differential topology. Let S be a compact con-
nected differentiable surface. Let x ∈ S be a point. Then S − s has the homotopy type of
a wedge of circles.

Conjecture 3.17. Let X be smooth projective A1-connected k-surface (still assuming k is
algebraically closed). Let x ∈ X be a closed point. Then there is an A1-equivalence

X − {x} ∼= ∨ri=1P1

with r the rank of the Picard group of X (a finite type free abelian group).

This is known in many cases, for instance the minimal surfaces, and some work in
progress following [7] might prove the general case.

Remark 3.18. If one removes more than one rational point, the conjecture predicts that
X to which we remove finitely many points is A1-equivalent to a wedge of P1’s (same num-
ber of them) to which we add a wedge of an A2 − {0} for each extra point removed.

To illustrate this kind of ideas, if F is a finite set of rational k-points of A2, it is known
for instance that A2 −F is A1-connected, and that there is an A1-weak equivalence:

A2 −F ∼= ∨F(A2 − {0})

Remark 3.19. If k is only assumed to be perfect, one may generalise the previous conjec-
tures as follows. If L is a finite separable extension of k, we denote by ∨LP1 the quotient
of P1

L by any L-rational point in the category of sheaves of sets on (Smk)Nis. We call this
pointed space a wedge of P1’s parametrized by L. Observe that it is A1-connected and that
if [L : k] = n, then the extension of ∨LP1 to an algebraic closure k of k becomes a wedge of
n copies of P1. We conjecture that if X is a projective smooth A1-connected surface over
a perfect field, and if x ∈ X(k) is a k-rational point, then X − {x} is A1-equivalent to a
finite wedge of ∨Li

P1, for finitely many Li’s, finite separable extensions of k. An abelian
version of that is proven in [35] using the cellular A1-homology we are going to discuss now.

Cellular A1-homology, Poincaré duality and A1-geometric topology
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To conclude, we will introduce the cellular A1-homology (see [34]) and show some com-
putations . To give a geometric intuition, one may introduce the cellular A1-homology
objects of a smooth k-scheme X (or in fact of any space) using the Verdier formula [19], or
more precisely using the dual Verdier formula. The Verdier formula gives a computation
of the étale cohomology of X with coefficients in a given étale sheaf of abelian groups M
as:

H∗ét(X;M) ∼= colimX• ∼→XH
∗(M(X•))

where the X•
∼−→ X’s run over the category of hypercoverings X• of X in the étale topol-

ogy, up to simplicial homotopy of hypercoverings. These form a left filtering essentially
small category so the colimit is well defined. Moreover, each X• is a simplicial object in the
category of étale morphisms to X and M(X•) is the associated cosimplicial abelian group
obtained by taking sections of M ; H∗(M(X•)) means then its obvious cohomology.

If ` is a prime number, different from char(k), and one would try to define the mod `
étale homology directly, not by a dualizing process, inspired by the previous formula, one
would take the formula

H ét
∗ (X;Z/`) ∼= limX• ∼→XH∗(Z/`(X•))

In the previous formula, by Z/`(X•) we mean the simplicial Z/`-vector space obtained
by taking, in each simplicial degree n, the sections Z/`(Xn) on the smooth k-scheme Xn
of the constant étale sheaf Z/`. In case k is separably closed, the objects H ét

∗ (X;Z/`) of
the previous definition, which look like profinite Z/`-vector spaces, can be shown to be
constant Z/`-vector spaces, finite dimentional, and are the dual of the étale cohomology
groups

H∗ét(X;Z/`)
In some sense, the mod ` étale homology groups of a smooth k-scheme X can be seen as
the left derived functors of the functor X 7→ H ét

0 (X;Z/`) = Z/`(X). For the definition of

the cellular A1-homology, we will proceed in an analogous way, using the HA1

0 instead of
the H ét

0 (−;Z/`).

Now k is again assumed to be any perfect field. For X a smooth k-scheme, we denote by
HA1

0 (X) the free strictly A1-invariant sheaf on X. With the notations we introduced in 2.3
it is just Z(X)A1 . It has the property that, for any strictly A1-invariant sheaf M ∈ AbA1(k)
there is an identification of the form:

M(X) ∼= HomAbA1 (k)(H
A1

0 (X),M)

In other words any morphism of sheaves of sets X → M extends uniquely to a morphism
of sheaves of abelian groups HA1

0 (X)→M .

We define the cellular A1-homology objects of X with integral coefficients as the graded
pro-object Hcell

∗ (X) of the category AbA1(k) of strictly A1-invariant sheaves defined by the
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formula:
Hcell
∗ (X) := limX• ∼→XH∗(H

A1

0 (X ))

where the X•
∼→ X run this time over the category of hypercoverings X• → X of X in

the Nisnevich topology, up to simplicial homotopy of hypercoverings. These form a left
filtering essentially small category so the limit is well defined. Moreover, each X• is a sim-
plicial sheaf of sets (which can always be chosen to be a simplicial smooth k-scheme) and

H∗(H
A1

0 (X•)) means then the homology in the abelian category AbA1(k) of the simplicial

object HA1

0 (X•) ∈ ∆opAbA1(k).

These Hcell
∗ (X) are obviously pro-object in AbA1(k) and one may show that they agree

with the one defined in [34]. We conjecture in [34] and [35] that these are in fact always
constant. We can prove this in many cases, but the adaptation of the analogous result in
the étale topology (using for instance Artin’s notion of good neighborhoods) is not com-
pletely clear.

However we may formally prove that if X is a smooth k-scheme of Krull dimension ≤ d,
the objects Hcell

n (X) vanish for n > d. These cellular homology of X are in general easier
to compute than the A1-homology [32], and are to some extent the left derived functors of

X 7→ HA1

0 (X).

One may obtain a universal coefficient cohomological spectral sequence, for any M ∈
AbA1(k), of the form Ep,q

r (X;M)⇒ H∗Nis(X;M) with E2-term

Ep,q
2 (X;M) = ExtpAbA1 (k)(H

cell
q (X),M)

For smooth schemes X with a reasonable “cellular” structure [34], like Pn, or any split
reductive k-group, or reasonable homogeneous varieties over those, it is know that the
cellular homology are constant. For Pn we may compute the whole cellular homology.

In general, this cellular homology is much more computable. In [35] we are able to
entirely compute Hcell

∗ (X) for X a smooth projective k-rational surface, which is what we
ment above by the generalisation to perfect field of the abelian version of what we have
done with Asok over an algebraically closed field for the π1.

Poincaré duality should holds in an explicit form. One of the most concrete consequence
of that would be the following:

Conjecture 3.20. Let X be a smooth projective A1-connected k-scheme of dimension n.
Then: (

X is orientable
)
⇔
(
Hcell
n (X) ∼= KMW

n

)
Here we mean orientable in the sense that the canonical line bundle Λn(TX), the n-

exterior power of the tangent bundle TX , is a square. Of course an orientation is a choice
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of the square root. Once the orientation is choosen, the isomorphism Hcell
n (X) ∼= KMW

n

would be canonical.

This statement is an obvious analogue of the fact that a compact connected differentiable
manifold M of dimension n is orientable if and only if Hn(M ;Z) ∼= Z.

This conjecture is true for the Pn’s, as for n odd we compute that Hcell
n (Pn) = KMW

n

and for n even, we know that Hcell
n (Pn) = Ker(η : KMW

n → KMW
n−1). We can also prove

this conjecture in several cases, and for instance in [35] we prove it for the case of rational
projective smooth surfaces over a perfect field.

One on the nice applications of such a result, is the following. Let f : X → Y be a
morphism in HA1(k) between two oriented smooth projective A1-connected k-schemes of
dimension n; then one may define deg(f) ∈ GW (k) = KMW

0 (k) as the induced morphism

Hcell
n (f) : KMW

n = Hcell
n (X)→ Hcell

n (Y ) = KMW
n

and using the canonical identification GW (k) = HomAbA1 (k)(K
MW
n ,KMW

n ) [32].

An other direction of applications, is the fact that in many interesting cases we know
the existence for a nice X of an explicit cellular chain complex Ccell

∗ (X) in the abelian cat-
egory AbA1(k). It could be used to understand the nature of the signature of the smooth
projective A1-connected k-scheme X, as this problem was addressed and described in a
talk of the author at the conference [39].

Another exciting potential development11 of these new technics is the possibility to
define, for nice12 smooth projective A1-connected k-schemes X and Y , the Whitehead
torsion τ(f) of an A1-weak equivalence f : X → Y using the associated morphism of
cellular chain complexes

Ccell(f) : Ccell
∗ (X)→ Ccell

∗ (Y )

by mimicking the standard definition. We think that in this way we may distinguished
Hirzebruch surfaces Σn and Σm with same parity of n and m, which we know from [7] are
A1-h-cobordant, thus A1-weak equivalent. This means that given an A1-weak equivalence
f : Σn

∼= Σm, one may define the torsion τ(f) in some motivic Whitehead group, so that if
n and m are different, then τ(f) 6= 0. Of course there should be a generalisation of this to
handle all the cases of A1-weak equivalences between nice smooth projective A1-connected
k-schemes. These idea where also described in [7].
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