Index ← Previous Next →

Measurement of figures: Book 12 Proposition 6

Translations

Αἱ ὑπὸ τὸ αὐτὸ ὕψος οὖσαι πυραμίδες καὶ πολυγώνους ἔχουσαι βάσεις πρὸς ἀλλήλας εἰσὶν ὡς αἱ βάσεις. Ἔστωσαν ὑπὸ τὸ αὐτὸ ὕψος πυραμίδες, ὧν [αἱ] βάσεις μὲν τὰ ΑΒΓΔΕ, ΖΗΘΚΛ πολύγωνα, κορυφαὶ δὲ τὰ Μ, Ν σημεῖα: λέγω, ὅτι ἐστὶν ὡς ἡ ΑΒΓΔΕ βάσις πρὸς τὴν ΖΗΘΚΛ βάσιν, οὕτως ἡ ΑΒΓΔΕΜ πυραμὶς πρὸς τὴν ΖΗΘΚΛΝ πυραμίδα. Ἐπεζεύχθωσαν γὰρ αἱ ΑΓ, ΑΔ, ΖΘ, ΖΚ. ἐπεὶ οὖν δύο πυραμίδες εἰσὶν αἱ ΑΒΓΜ, ΑΓΔΜ τριγώνους ἔχουσαι βάσεις καὶ ὕψος ἴσον, πρὸς ἀλλήλας εἰσὶν ὡς αἱ βάσεις: ἔστιν ἄρα ὡς ἡ ΑΒΓ βάσις πρὸς τὴν ΑΓΔ βάσιν, οὕτως ἡ ΑΒΓΜ πυραμὶς πρὸς τὴν ΑΓΔΜ πυραμίδα. καὶ συνθέντι ὡς ἡ ΑΒΓΔ βάσις πρὸς τὴν ΑΓΔ βάσιν, οὕτως ἡ ΑΒΓΔΜ πυραμὶς πρὸς τὴν ΑΓΔΜ πυραμίδα. ἀλλὰ καὶ ὡς ἡ ΑΓΔ βάσις πρὸς τὴν ΑΔΕ βάσιν, οὕτως ἡ ΑΓΔΜ πυραμὶς πρὸς τὴν ΑΔΕΜ πυραμίδα. δι' ἴσου ἄρα ὡς ἡ ΑΒΓΔ βάσις πρὸς τὴν ΑΔΕ βάσιν, οὕτως ἡ ΑΒΓΔΜ πυραμὶς πρὸς τὴν ΑΔΕΜ πυραμίδα. καὶ συνθέντι πάλιν, ὡς ἡ ΑΒΓΔΕ βάσις πρὸς τὴν ΑΔΕ βάσιν, οὕτως ἡ ΑΒΓΔΕΜ πυραμὶς πρὸς τὴν ΑΔΕΜ πυραμίδα. ὁμοίως δὴ δειχθήσεται, ὅτι καὶ ὡς ἡ ΖΗΘΚΛ βάσις πρὸς τὴν ΖΗΘ βάσιν, οὕτως καὶ ἡ ΖΗΘΚΛΝ πυραμὶς πρὸς τὴν ΖΗΘΝ πυραμίδα. καὶ ἐπεὶ δύο πυραμίδες εἰσὶν αἱ ΑΔ ΕΜ, ΖΗΘΝ τριγώνους ἔχουσαι βάσεις καὶ ὕψος ἴσον, ἔστιν ἄρα ὡς ἡ ΑΔΕ βάσις πρὸς τὴν ΖΗΘ βάσιν, οὕτως ἡ ΑΔΕΜ πυραμὶς πρὸς τὴν ΖΗΘΝ πυραμίδα. ἀλλ' ὡς ἡ ΑΔΕ βάσις πρὸς τὴν ΑΒΓΔΕ βάσιν, οὕτως ἦν ἡ ΑΔ ΕΜ πυραμὶς πρὸς τὴν ΑΒΓΔΕΜ πυραμίδα. καὶ δι' ἴσου ἄρα ὡς ἡ ΑΒΓΔΕ βάσις πρὸς τὴν ΖΗΘ βάσιν, οὕτως ἡ ΑΒΓΔΕΜ πυραμὶς πρὸς τὴν ΖΗΘΝ πυραμίδα. ἀλλὰ μὴν καὶ ὡς ἡ ΖΗΘ βάσις πρὸς τὴν ΖΗΘΚΛ βάσιν, οὕτως ἦν καὶ ἡ ΖΗΘΝ πυραμὶς πρὸς τὴν ΖΗΘΚΛΝ πυραμίδα. καὶ δι' ἴσου ἄρα ὡς ἡ ΑΒΓΔΕ βάσις πρὸς τὴν ΖΗΘΚΛ βάσιν, οὕτως ἡ ΑΒΓΔΕΜ πυραμὶς πρὸς τὴν ΖΗΘΚΛΝ πυραμίδα: ὅπερ ἔδει δεῖξαι.

Pyramids which are of the same height and have polygonal bases are to one another as the bases. Let there be pyramids of the same height of which the polygons ABCDE, FGHKL are the bases and the points M, N the vertices; I say that, as the base ABCDE is to the base FGHKL, so is the pyramid ABCDEM to the pyramid FGHKLN. For let AC, AD, FH, FK be joined. Since then ABCM, ACDM are two pyramids which have triangular bases and equal height, they are to one another as the bases; [XII. 5] therefore, as the base ABC is to the base ACD, so is the pyramid ABCM to the pyramid ACDM. And, componendo, as the base ABCD is to the base ACD, so is the pyramid ABCDM to the pyramid ACDM. [V. 18] But also, as the base ACD is to the base ADE, so is the pyramid ACDM to the pyramid ADEM. [XII. 5] Therefore, ex aequali, as the base ABCD is to the base ADE, so is the pyramid ABCDM to the pyramid ADEM. [V. 22] And again componendo, as the base ABCDE is to the base ADE, so is the pyramid ABCDEM to the pyramid ADEM. [V. 18] Similarly also it can be proved that, as the base FGHKL is to the base FGH, so is the pyramid FGHKLN to the pyramid FGHN. And, since ADEM, FGHN are two pyramids which have triangular bases and equal height, therefore, as the base ADE is to the base FGH, so is the pyramid ADEM to the pyramid FGHN. [XII. 5] But, as the base ADE is to the base ABCDE, so was the pyramid ADEM to the pyramid ABCDEM. Therefore also, ex aequali, as the base ABCDE is to the base FGH, so is the pyramid ABCDEM to the pyramid FGHN. [V. 22] But further, as the base FGH is to the base FGHKL, so also was the pyramid FGHN to the pyramid FGHKLN. [V. 22]