Index ← Previous Next →

Solid geometry: Book 11 Proposition 21

Translations

Ἅπασα στερεὰ γωνία ὑπὸ ἐλασσόνων [ἢ] τεσσάρων ὀρθῶν γωνιῶν ἐπιπέδων περιέχεται. Ἔστω στερεὰ γωνία ἡ πρὸς τῷ Α περιεχομένη ὑπὸ ἐπιπέδων γωνιῶν τῶν ὑπὸ ΒΑΓ, ΓΑΔ, ΔΑΒ: λέγω, ὅτι αἱ ὑπὸ ΒΑΓ, ΓΑΔ, ΔΑΒ τεσσάρων ὀρθῶν ἐλάσσονές εἰσιν. Εἰλήφθω γὰρ ἐφ' ἑκάστης τῶν ΑΒ, ΑΓ, ΑΔ τυχόντα σημεῖα τὰ Β, Γ, Δ, καὶ ἐπεζεύχθωσαν αἱ ΒΓ, ΓΔ, ΔΒ. καὶ ἐπεὶ στερεὰ γωνία ἡ πρὸς τῷ Β ὑπὸ τριῶν γωνιῶν ἐπιπέδων περιέχεται τῶν ὑπὸ ΓΒΑ, ΑΒΔ, ΓΒΔ, δύο ὁποιαιοῦν τῆς λοιπῆς μείζονές εἰσιν: αἱ ἄρα ὑπὸ ΓΒΑ, ΑΒΔ τῆς ὑπὸ ΓΒΔ μείζονές εἰσιν. διὰ τὰ αὐτὰ δὴ καὶ αἱ μὲν ὑπὸ ΒΓΑ, ΑΓΔ τῆς ὑπὸ ΒΓΔ μείζονές εἰσιν, αἱ δὲ ὑπὸ ΓΔΑ, ΑΔΒ τῆς ὑπὸ ΓΔΒ μείζονές εἰσιν: αἱ ἓξ ἄρα γωνίαι αἱ ὑπὸ ΓΒΑ, ΑΒΔ, ΒΓΑ, ΑΓΔ, ΓΔΑ, ΑΔΒ τριῶν τῶν ὑπὸ ΓΒΔ, ΒΓΔ, ΓΔΒ μείζονές εἰσιν. ἀλλὰ αἱ τρεῖς αἱ ὑπὸ ΓΒΔ, ΒΔΓ, ΒΓΔ δυσὶν ὀρθαῖς ἴσαι εἰσίν: αἱ ἓξ ἄρα αἱ ὑπὸ ΓΒΑ, ΑΒΔ, ΒΓΑ, ΑΓΔ, ΓΔΑ, ΑΔΒ δύο ὀρθῶν μείζονές εἰσιν. καὶ ἐπεὶ ἑκάστου τῶν ΑΒΓ, ΑΓΔ, ΑΔΒ τριγώνων αἱ τρεῖς γωνίαι δυσὶν ὀρθαῖς ἴσαι εἰσίν, αἱ ἄρα τῶν τριῶν τριγώνων ἐννέα γωνίαι αἱ ὑπὸ ΓΒΑ, ΑΓΒ, ΒΑΓ, ΑΓΔ, ΓΔΑ, ΓΑΔ, ΑΔΒ, ΔΒΑ, ΒΑΔ ἓξ ὀρθαῖς ἴσαι εἰσίν, ὧν αἱ ὑπὸ ΑΒΓ, ΒΓΑ, ΑΓΔ, ΓΔΑ, ΑΔΒ, ΔΒΑ ἓξ γωνίαι δύο ὀρθῶν εἰσι μείζονες: λοιπαὶ ἄρα αἱ ὑπὸ ΒΑΓ, ΓΑΔ, ΔΑΒ τρεῖς [γωνίαι] περιέχουσαι τὴν στερεὰν γωνίαν τεσσάρων ὀρθῶν ἐλάσσονές εἰσιν. Ἅπασα ἄρα στερεὰ γωνία ὑπὸ ἐλασσόνων [ἢ] τεσσάρων ὀρθῶν γωνιῶν ἐπιπέδων περιέχεται: ὅπερ ἔδει δεῖξαι.

Any solid angle is contained by plane angles less than four right angles. Let the angle at A be a solid angle contained by the plane angles BAC, CAD, DAB; I say that the angles BAC, CAD, DAB are less than four right angles. For let points B, C, D be taken at random on the straight lines AB, AC, AD respectively, and let BC, CD, DB be joined. Now, since the solid angle at B is contained by the three plane angles CBA, ABD, CBD, any two are greater than the remaining one; [XI. 20] therefore the angles CBA, ABD are greater than the angle CBD. For the same reason the angles BCA, ACD are also greater than the angle BCD, and the angles CDA, ADB are greater than the angle CDB; therefore the six angles CBA, ABD, BCA, ACD, CDA, ADB are greater than the three angles CBD, BCD, CDB. But the three angles CBD, BDC, BCD are equal to two right angles; [I. 32] therefore the six angles CBA, ABD, BCA, ACD, CDA, ADB are greater than two right angles. And, since the three angles of each of the triangles ABC, ACD, ADB are equal to two right angles, therefore the nine angles of the three triangles, the angles CBA, ACB, BAC, ACD, CDA, CAD, ADB, DBA, BAD are equal to six right angles; and of them the six angles ABC, BCA, ACD, CDA, ADB, DBA are greater than two right angles; therefore the remaining three angles BAC, CAD, DAB containing the solid angle are less than four right angles.