If a parallelogram have the same base with a triangle and be in the same parallels, the parallelogram is double of the triangle.
Ἐὰν παραλληλόγραμμον τριγώνῳ βάσιν τε ἔχῃ τὴν αὐτὴν καὶ ἐν ταῖς αὐταῖς παραλλήλοις ᾖ, διπλάσιόν ἐστι τὸ παραλληλόγραμμον τοῦ τριγώνου. Παραλληλόγραμμον γὰρ τὸ ΑΒΓΔ τριγώνῳ τῷ ΕΒΓ βάσιν τε ἐχέτω τὴν αὐτὴν τὴν ΒΓ καὶ ἐν ταῖς αὐταῖς παραλλήλοις ἔστω ταῖς ΒΓ, ΑΕ: λέγω, ὅτι διπλάσιόν ἐστι τὸ ΑΒΓΔ παραλληλόγραμμον τοῦ ΒΕΓ τριγώνου. Ἐπεζεύχθω γὰρ ἡ ΑΓ. ἴσον δή ἐστι τὸ ΑΒΓ τρίγωνον τῷ ΕΒΓ τριγώνῳ: ἐπί τε γὰρ τῆς αὐτῆς βάσεώς ἐστιν αὐτῷ τῆς ΒΓ καὶ ἐν ταῖς αὐταῖς παραλλήλοις ταῖς ΒΓ, ΑΕ. ἀλλὰ τὸ ΑΒΓΔ παραλληλόγραμμον διπλάσιόν ἐστι τοῦ ΑΒΓ τριγώνου: ἡ γὰρ ΑΓ διάμετρος αὐτὸ δίχα τέμνει: ὥστε τὸ ΑΒΓΔ παραλληλόγραμμον καὶ τοῦ ΕΒΓ τριγώνου ἐστὶ διπλάσιον. Ἐὰν ἄρα παραλληλόγραμμον τριγώνῳ βάσιν τε ἔχῃ τὴν αὐτὴν καὶ ἐν ταῖς αὐταῖς παραλλήλοις ᾖ, διπλάσιόν ἐστι τὸ παραλληλόγραμμον τοῦ τριγώνου: ὅπερ ἔδει δεῖξαι. | If a parallelogram have the same base with a triangle and be in the same parallels, the parallelogram is double of the triangle. For let the parallelogram ABCD have the same base BC with the triangle EBC, and let it be in the same parallels BC, AE; I say that the parallelogram ABCD is double of the triangle BEC. For let AC be joined. Then the triangle ABC is equal to the triangle EBC; for it is on the same base BC with it and in the same parallels BC, AE. [I. 37] But the parallelogram ABCD is double of the triangle ABC; for the diameter AC bisects it; [I. 34] so that the parallelogram ABCD is also double of the triangle EBC. Therefore etc. |