To construct, in a given rectilineal angle, a parallelogram equal to a given triangle.
Τῷ δοθέντι τριγώνῳ ἴσον παραλληλόγραμμον συστήσασθαι ἐν τῇ δοθείσῃ γωνίᾳ εὐθυγράμμῳ. Ἔστω τὸ μὲν δοθὲν τρίγωνον τὸ ΑΒΓ, ἡ δὲ δοθεῖσα γωνία εὐθύγραμμος ἡ Δ: δεῖ δὴ τῷ ΑΒΓ τριγώνῳ ἴσον παραλληλόγραμμον συστήσασθαι ἐν τῇ Δ γωνίᾳ εὐθυγράμμῳ. Τετμήσθω ἡ ΒΓ δίχα κατὰ τὸ Ε, καὶ ἐπεζεύχθω ἡ ΑΕ, καὶ συνεστάτω πρὸς τῇ ΕΓ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Ε τῇ Δ γωνίᾳ ἴση ἡ ὑπὸ ΓΕΖ, καὶ διὰ μὲν τοῦ Α τῇ ΕΓ παράλληλος ἤχθω ἡ ΑΗ, διὰ δὲ τοῦ Γ τῇ ΕΖ παράλληλος ἤχθω ἡ ΓΗ: παραλληλόγραμμον ἄρα ἐστὶ τὸ ΖΕΓΗ. καὶ ἐπεὶ ἴση ἐστὶν ἡ ΒΕ τῇ ΕΓ, ἴσον ἐστὶ καὶ τὸ ΑΒΕ τρίγωνον τῷ ΑΕΓ τριγώνῳ: ἐπί τε γὰρ ἴσων βάσεών εἰσι τῶν ΒΕ, ΕΓ καὶ ἐν ταῖς αὐταῖς παραλλήλοις ταῖς ΒΓ, ΑΗ: διπλάσιον ἄρα ἐστὶ τὸ ΑΒΓ τρίγωνον τοῦ ΑΕΓ τριγώνου. ἔστι δὲ καὶ τὸ ΖΕΓΗ παραλληλόγραμμον διπλάσιον τοῦ ΑΕΓ τριγώνου: βάσιν τε γὰρ αὐτῷ τὴν αὐτὴν ἔχει καὶ ἐν ταῖς αὐταῖς ἐστιν αὐτῷ παραλλήλοις: ἴσον ἄρα ἐστὶ τὸ ΖΕΓΗ παραλληλόγραμμον τῷ ΑΒΓ τριγώνῳ. καὶ ἔχει τὴν ὑπὸ ΓΕΖ γωνίαν ἴσην τῇ δοθείσῃ τῇ Δ. Τῷ ἄρα δοθέντι τριγώνῳ τῷ ΑΒΓ ἴσον παραλληλόγραμμον συνέσταται τὸ ΖΕΓΗ ἐν γωνίᾳ τῇ ὑπὸ ΓΕΖ, ἥτις ἐστὶν ἴση τῇ Δ: ὅπερ ἔδει ποιῆσαι. | To construct, in a given rectilineal angle, a parallelogram equal to a given triangle. Let ABC be the given triangle, and D the given rectilineal angle; thus it is required to construct in the rectilineal angle D a parallelogram equal to the triangle ABC. Let BC be bisected at E, and let AE be joined; on the straight line EC, and at the point E on it, let the angle CEF be constructed equal to the angle D; [I. 23] through A let AG be drawn parallel to EC, and [I. 31] through C let CG be drawn parallel to EF. Then FECG is a parallelogram. And, since BE is equal to EC, the triangle ABE is also equal to the triangle AEC, for they are on equal bases BE, EC and in the same parallels BC, AG; [I. 38] therefore the triangle ABC is double of the triangle AEC. But the parallelogram FECG is also double of the triangle AEC, for it has the same base with it and is in the same parallels with it; [I. 41] therefore the parallelogram FECG is equal to the triangle ABC. And it has the angle CEF equal to the given angle D. |