On a given straight line to describe a parallelepipedal solid similar and similarly situated to a given parallelepipedal solid.
Ἀπὸ τῆς δοθείσης εὐθείας τῷ δοθέντι στερεῷ παραλληλεπιπέδῳ ὅμοιόν τε καὶ ὁμοίως κείμενον στερεὸν παραλληλεπίπεδον ἀναγράψαι. Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἡ ΑΒ, τὸ δὲ δοθὲν στερεὸν παραλληλεπίπεδον τὸ ΓΔ: δεῖ δὴ ἀπὸ τῆς δοθείσης εὐθείας τῆς ΑΒ τῷ δοθέντι στερεῷ παραλληλεπιπέδῳ τῷ ΓΔ ὅμοιόν τε καὶ ὁμοίως κείμενον στερεὸν παραλληλεπίπεδον ἀναγράψαι. Συνεστάτω γὰρ πρὸς τῇ ΑΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Α τῇ πρὸς τῷ Γ στερεᾷ γωνίᾳ ἴση ἡ περιεχομένη ὑπὸ τῶν ΒΑΘ, ΘΑΚ, ΚΑΒ, ὥστε ἴσην εἶναι τὴν μὲν ὑπὸ ΒΑΘ γωνίαν τῇ ὑπὸ ΕΓΖ, τὴν δὲ ὑπὸ ΒΑΚ τῇ ὑπὸ ΕΓΗ, τὴν δὲ ὑπὸ ΚΑΘ τῇ ὑπὸ ΗΓΖ: καὶ γεγονέτω ὡς μὲν ἡ ΕΓ πρὸς τὴν ΓΗ, οὕτως ἡ ΒΑ πρὸς τὴν ΑΚ, ὡς δὲ ἡ ΗΓ πρὸς τὴν ΓΖ, οὕτως ἡ ΚΑ πρὸς τὴν ΑΘ. καὶ δι' ἴσου ἄρα ἐστὶν ὡς ἡ ΕΓ πρὸς τὴν ΓΖ, οὕτως ἡ ΒΑ πρὸς τὴν ΑΘ. καὶ συμπεπληρώσθω τὸ ΘΒ παραλληλόγραμμον καὶ τὸ ΑΛ στερεόν. Καὶ ἐπεί ἐστιν ὡς ἡ ΕΓ πρὸς τὴν ΓΗ, οὕτως ἡ ΒΑ πρὸς τὴν ΑΚ, καὶ περὶ ἴσας γωνίας τὰς ὑπὸ ΕΓΗ, ΒΑΚ αἱ πλευραὶ ἀνάλογόν εἰσιν, ὅμοιον ἄρα ἐστὶ τὸ ΗΕ παραλληλόγραμμον τῷ ΚΒ παραλληλογράμμῳ. διὰ τὰ αὐτὰ δὴ καὶ τὸ μὲν ΚΘ παραλληλόγραμμον τῷ ΗΖ παραλληλογράμμῳ ὅμοιόν ἐστι καὶ ἔτι τὸ ΖΕ τῷ ΘΒ: τρία ἄρα παραλληλόγραμμα τοῦ ΓΔ στερεοῦ τρισὶ παραλληλογράμμοις τοῦ ΑΛ στερεοῦ ὅμοιά ἐστιν. ἀλλὰ τὰ μὲν τρία τρισὶ τοῖς ἀπεναντίον ἴσα τέ ἐστι καὶ ὅμοια, τὰ δὲ τρία τρισὶ τοῖς ἀπεναντίον ἴσα τέ ἐστι καὶ ὅμοια: ὅλον ἄρα τὸ ΓΔ στερεὸν ὅλῳ τῷ ΑΛ στερεῷ ὅμοιόν ἐστιν. Ἀπὸ τῆς δοθείσης ἄρα εὐθείας τῆς ΑΒ τῷ δοθέντι στερεῷ παραλληλεπιπέδῳ τῷ ΓΔ ὅμοιόν τε καὶ ὁμοίως κείμενον ἀναγέγραπται τὸ ΑΛ: ὅπερ ἔδει ποιῆσαι. | On a given straight line to describe a parallelepipedal solid similar and similarly situated to a given parallelepipedal solid. Let AB be the given straight line and CD the given parallelepipedal solid; thus it is required to describe on the given straight line AB a parallelepipedal solid similar and similarly situated to the given parallelepipedal solid CD. For on the straight line AB and at the point A on it let the solid angle, contained by the angles BAH, HAK, KAB, be constructed equal to the solid angle at C, so that the angle BAH is equal to the angle ECF, the angle BAK equal to the angle ECG, and the angle KAH to the angle GCF; and let it be contrived that, as EC is to CG, so is BA to AK, and, as GC is to CF, so is KA to AH. [VI. 12] Therefore also, ex aequali, as EC is to CF, so is BA to AH. [V. 22] Let the parallelogram HB and the solid AL be completed. Now since, as EC is to CG, so is BA to AK, and the sides about the equal angles ECG, BAK are thus proportional, therefore the parallelogram GE is similar to the parallelogram KB. For the same reason the parallelogram KH is also similar to the parallelogram GF, and further FE to HB; therefore three parallelograms of the solid CD are similar to three parallelograms of the solid AL. But the former three are both equal and similar to the three opposite parallelograms, and the latter three are both equal and similar to the three opposite parallelograms; therefore the whole solid CD is similar to the whole solid AL. [XI. Def. 9] |